Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers

Abstract

The critical region determining the performance and lifetime of solid oxide electrochemical systems is normally at the electrode side of the electrode/electrolyte interface. Typically this electrochemically active region only extends a few micrometres and for best performance involves intricate structures and nanocomposites. Much of the most exciting recent research involves understanding processes occurring at this interface and in developing new means of controlling the structure at this interface on the nanoscale. Here we consider in detail the diverse range of materials architectures that may be involved, describe the evolution of these interface structures and finally explore the new chemistries that allow control and manipulation of these architectures to optimize both performance and durability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle and components of SOC.
Figure 2: SOC electrode materials and microstructures.
Figure 3: Tools and models for understanding active interfaces.
Figure 4: Segregation and contamination at the interface.
Figure 5: Electrode-potential-driven activation and passivation phenomena.
Figure 6: Examples of electrode microstructures prepared by infiltration.
Figure 7: Structural and functional properties of exsolved particles.

References

  1. Atkinson, A. et al. Advanced anodes for high-temperature fuel cells. Nature Mater. 3, 17–27 (2004).

    Article  Google Scholar 

  2. Gauckler, L. J. et al. Solid oxide fuel cells: systems and materials. CHIMIA Int. J. Chem. 58, 837–850 (2004).

    Article  Google Scholar 

  3. McIntosh, S. & Gorte, R. J. Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4866 (2004).

    Article  Google Scholar 

  4. Gorte, R. J. & Vohs, J. M. Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236–244 (2009).

    Article  Google Scholar 

  5. Cowin, P. I., Petit, C. T. G., Lan, R., Irvine, J. T. S. & Tao, S. Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energy Mater. 1, 314–332 (2011).

    Article  Google Scholar 

  6. Irvine, J. T. S., Sinclair, D. C. & West, A. R. Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990).

    Article  Google Scholar 

  7. Adler, S. B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ion. 135, 603–612 (2000).

    Article  Google Scholar 

  8. Adler, S. B. & Bessler, W. G. in Handbook of Fuel Cells 441–463 (Wiley, 2010); http://go.nature.com/IM8hMk

    Google Scholar 

  9. Ebbesen, S. D., Jensen, S. H., Hauch, A. & Mogensen, M. B. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014).

    Article  Google Scholar 

  10. Wilson, J. R. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nature Mater. 5, 541–544 (2006).

    Article  Google Scholar 

  11. Izzo, J. R. et al. Nondestructive reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 nm resolution. J. Electrochem. Soc. 155, B504–B508 (2008).

    Article  Google Scholar 

  12. Liu, J., Hull, S., Ahmed, I. & Skinner, S. J. Application of combined neutron diffraction and impedance spectroscopy for in-situ structure and conductivity studies of La2Mo2O9 . Nucl. Instrum. Methods Phys. Res. Sec. B 269, 539–543 (2011).

    Article  Google Scholar 

  13. Woolley, R. J., Ryan, M. P. & Skinner, S. J. In situ measurements on solid oxide fuel cell cathodes – simultaneous X-ray absorption and AC impedance spectroscopy on symmetrical cells. Fuel Cells 13, 1080–1087 (2013).

    Article  Google Scholar 

  14. Kubicek, M., Limbeck, A., Frö mling, T., Hutter, H. & Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. J. Electrochem. Soc. 158, B727–B734 (2011).

    Article  Google Scholar 

  15. Téllez, H., Druce, J., Kilner, J. A. & Ishihara, T. Relating surface chemistry and oxygen surface exchange in LnBaCo2O5+δ air electrodes. Faraday Discuss. 182, 145–157 (2015).

    Article  Google Scholar 

  16. Druce, J. et al. Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593–3599 (2014). This paper provides valuable insight into the surface reorganization in a range of perovskites relevant for SOC applications, which is essential for understanding and controlling surface-related phenomena at the electrochemical interface.

    Article  Google Scholar 

  17. Zhang, C. et al. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature Mater. 9, 944–949 (2010).

    Article  Google Scholar 

  18. Li, X. et al. High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. Energy Environ. Sci. 7, 306–310 (2013). This paper reports on the development of high-temperature surface-enhanced Raman spectroscopy, which represents an important step towards in situ and in operando study of SOC electrode surfaces for obtaining mechanistic insight into electrochemical processes.

    Article  Google Scholar 

  19. Choi, Y., Lin, M. C. & Liu, M. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations. J. Power Sources 195, 1441–1445 (2010).

    Article  Google Scholar 

  20. Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M. & Choi, Y. Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011).

    Article  Google Scholar 

  21. Traulsen, M. L. et al. Need for in operando characterization of electrochemical interface features. ECS Trans. 66, 3–20 (2015).

    Article  Google Scholar 

  22. Hansen, K. V., Norrman, K., Jacobsen, T., Wu, Y. & Mogensen, M. B. LSM microelectrodes: kinetics and surface composition. J. Electrochem. Soc. 162, F1165–F1174 (2015).

    Article  Google Scholar 

  23. Feng, Z. A., El Gabaly, F., Ye, X., Shen, Z.-X. & Chueh, W. C. Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface. Nature Commun. 5, 4374 (2014).

    Article  Google Scholar 

  24. Nowotny, J. Science of Ceramic Interfaces II (Newnes, 1995).

    MATH  Google Scholar 

  25. Lee, W., Han, J. W., Chen, Y., Cai, Z. & Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013). This paper provides a mechanistic model for the segregation and reorganization observed at the surface of perovskite materials, highlighting means to control them with anticipated benefits in enhancing the electrochemical activity of perovskite-based SOC electrodes.

    Article  Google Scholar 

  26. Chen, Y. et al. Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1−xFexO3 surfaces. Energy Environ. Sci. 5, 7979–7988 (2012).

    Article  Google Scholar 

  27. Szot, K. & Speier, W. Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 60, 5909–5926 (1999).

    Article  Google Scholar 

  28. Baumann, F. S. et al. Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3−δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 152, A2074 (2005).

    Article  Google Scholar 

  29. Tomkiewicz, A. C., Tamimi, M. A., Huq, A. & McIntosh, S. FD electrolysis: is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases? Faraday Discuss. 182, 113–127 (2015).

    Article  Google Scholar 

  30. Neagu, D. et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Commun. 6, 8120 (2015). This paper compares the key structural and physicochemical properties of nickel metal particles prepared by deposition and exsolution methods, highlighting the latter as highly promising for enhancing the functionality of perovskite-supported metal particles for a range of applications including SOCs.

    Article  Google Scholar 

  31. Chen, Y. et al. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energy Mater. http://doi.org/f28dmr (2015).

    Google Scholar 

  32. Jiang, S. P. & Chen, X. Chromium deposition and poisoning of cathodes of solid oxide fuel cells – a review. Int. J. Hydrog. Energy 39, 505–531 (2014).

    Article  MathSciNet  Google Scholar 

  33. Nowotny, J., Sorrell, C. C. & Bak, T. Segregation in zirconia: equilibrium versus non-equilibrium segregation. Surf. Interface Anal. 37, 316–324 (2005).

    Article  Google Scholar 

  34. Hansen, K. V. & Mogensen, M. Absence of dopant segregation to the surface of scandia and yttria co-stabilized zirconia. Electrochem. Solid-State Lett. 15, B70–B71 (2012).

    Article  Google Scholar 

  35. Mogensen, M. & Hansen, K. V. in Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability (Wiley, 2009); http://go.nature.com/6RzEqt

    Google Scholar 

  36. Mogensen, M. & Holtappels, P. in Solid Oxide Fuels Cells: Facts and Figures (eds Irvine, J. T. S. & Connor, P. ) 25–45 (Springer, 2013).

    Book  Google Scholar 

  37. Zhao, L., Perry, N. H., Daio, T., Sasaki, K. & Bishop, S. R. Improving the Si impurity tolerance of Pr0.1Ce0.9O2−δ SOFC electrodes with reactive surface additives. Chem. Mater. 27, 3065–3070 (2015).

    Article  Google Scholar 

  38. Larsen, P. H., Mogensen, M., Hendriksen, P. V., Linderoth, S. & Ming, C. Removal of impurity phases from electrochemical devices. European patent 2031677 A1 (2009).

  39. Backhaus-Ricoult, M. et al. In situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy. Solid State Ion. 179, 891–895 (2008).

    Article  Google Scholar 

  40. Knibbe, R., Traulsen, M. L., Hauch, A., Ebbesen, S. D. & Mogensen, M. Solid oxide electrolysis cells: degradation at high current densities. J. Electrochem. Soc. 157, B1209 (2010).

    Article  Google Scholar 

  41. Chen, K. & Jiang, S. P. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. Int. J. Hydrog. Energy 36, 10541–10549 (2011).

    Article  Google Scholar 

  42. Tietz, F., Sebold, D., Brisse, A. & Schefold, J. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013).

    Article  Google Scholar 

  43. Graves, C., Ebbesen, S. D., Jensen, S. H., Simonsen, S. B. & Mogensen, M. B. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature Mater. 14, 239–244 (2015). This paper demonstrates that electrolysis-induced degradation, previously believed to be irreversible, can in fact be reverted by cycling between electrolysis and fuel-cell modes, thus highlighting not only unexpected SOCs rejuvenation mechanisms for enhanced long-term stability, but also the viability of applying SOCs for renewable electricity storage.

    Article  Google Scholar 

  44. Hughes, G. A., Railsback, J. G., Yakal-Kremski, K. J., Butts, D. M. & Barnett, S. A. Degradation of (La0.8Sr0.2)0.98MnO3−δ–Zr0.84Y0.16O2−γ composite electrodes during reversing current operation. Faraday Discuss. 182, 365–377 (2015).

    Article  Google Scholar 

  45. la O', G. J., Savinell, R. F. & Shao-Horn, Y. Activity enhancement of dense strontium-doped lanthanum manganite thin films under cathodic polarization: a combined AES and XPS study. J. Electrochem. Soc. 156, B771 (2009).

    Article  Google Scholar 

  46. Niakolas, D. K. Sulfur poisoning of Ni-based anodes for solid oxide fuel cells in H/C-based fuels. Appl. Catal. Gen. 486, 123–142 (2014).

    Article  Google Scholar 

  47. Ebbesen, S. D., Graves, C., Hauch, A., Jensen, S. H. & Mogensen, M. Poisoning of solid oxide electrolysis cells by impurities. J. Electrochem. Soc. 157, B1419 (2010).

    Article  Google Scholar 

  48. Pihlatie, M., Ramos, T. & Kaiser, A. Testing and improving the redox stability of Ni-based solid oxide fuel cells. J. Power Sources 193, 322–330 (2009).

    Article  Google Scholar 

  49. Faes, A. et al. Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part II: electrical, electrochemical and microstructural characterization of tape-cast cells. J. Power Sources 196, 8909–8917 (2011).

    Article  Google Scholar 

  50. Graves, C. Reversing and repairing microstructure degradation in solid oxide cells during operation. ECS Trans. 57, 3127–3136 (2013).

    Article  Google Scholar 

  51. Klotz, D. et al. Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures. J. Electrochem. Soc. 158, B587 (2011).

    Article  Google Scholar 

  52. Graves, C., Chatzichristodoulou, C. & Mogensen, M. B. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes. Faraday Discuss. 182, 75–95 (2015).

    Article  Google Scholar 

  53. Chen, M. et al. Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. J. Electrochem. Soc. 160, F883–F891 (2013).

    Article  Google Scholar 

  54. Baumann, F. S. et al. Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154, B931–B941 (2007).

    Article  Google Scholar 

  55. Abernathy, H. et al. Examination of the mechanism for the reversible aging behaviour at open circuit when changing the operating temperature of (La0.8Sr0.2)0.95MnO3 electrodes. Solid State Ion. 272, 144–154 (2015).

    Article  Google Scholar 

  56. DeCaluwe, S. C. et al. In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS. J. Phys. Chem. C 114, 19853–19861 (2010).

    Article  Google Scholar 

  57. Molero-Sánchez, B., Addo, P., Buyukaksoy, A., Paulson, S. & Birss, V. Electrochemistry of La0.3Sr0.7Fe0.7 Cr0.3O3−δ as an oxygen and fuel electrode for RSOFCs. Faraday Discuss. 182, 159–175 (2015).

    Article  Google Scholar 

  58. Blennow, P., Kammer Hansen, K., Wallenberg, L. R. & Mogensen, M. Strontium titanate-based composite anodes for solid oxide fuel cells. ECS Trans. 13, 181–194 (2008).

    Article  Google Scholar 

  59. Corre, G. et al. Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009).

    Article  Google Scholar 

  60. Lee, S.-Y. & Aris, R. The distribution of active ingredients in supported catalysts prepared by impregnation. Catal. Rev. 27, 207–340 (1985).

    Article  Google Scholar 

  61. Komiyama, M. Design and preparation of impregnated catalysts. Catal. Rev. 27, 341–372 (1985).

    Article  Google Scholar 

  62. Vohs, J. M. & Gorte, R. J. High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009). This paper reviews the fabrication and modification of SOC electrodes by infiltration of active components into a porous scaffold, while providing insights into the relationships between the materials properties, electrochemical performance and stability.

    Article  Google Scholar 

  63. Ding, D., Li, X., Lai, S. Y., Gerdes, K. & Liu, M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014).

    Article  Google Scholar 

  64. Liu, Z. et al. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. J. Power Sources 237, 243–259 (2013).

    Article  Google Scholar 

  65. Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrog. Energy 37, 449–470 (2012).

    Article  Google Scholar 

  66. Zhao, L., Amarasinghe, S. & Jiang, S. P. Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3−δ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation. Electrochem. Commun. 37, 84–87 (2013).

    Article  Google Scholar 

  67. Lou, X. et al. Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property. J. Power Sources 195, 419–424 (2010).

    Article  Google Scholar 

  68. Choi, Y. et al. Highly efficient layer-by-layer-assisted infiltration for high-performance and cost-effective fabrication of nanoelectrodes. ACS Appl. Mater. Interfaces 6, 17352–17357 (2014).

    Article  Google Scholar 

  69. Sholklapper, T. Z., Jacobson, C. P., Visco, S. J. & De Jonghe, L. C. Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 8, 303–312 (2008).

    Article  Google Scholar 

  70. Ni, C. S., Vohs, J. M., Gorte, R. J. & Irvine, J. T. S. Fabrication and characterisation of a large-area solid oxide fuel cell based on dual tape cast YSZ electrode skeleton supported YSZ electrolytes with vanadate and ferrite perovskite-impregnated anodes and cathodes. J. Mater. Chem. A 2, 19150–19155 (2014).

    Article  Google Scholar 

  71. Savaniu, C.-D., Miller, D. N. & Irvine, J. T. S. Scale up and anode development for La-doped SrTiO3 anode-supported SOFCs. J. Am. Ceram. Soc. 96, 1718–1723 (2013).

    Article  Google Scholar 

  72. Ramos, T. et al. Effect of Ru/CGO versus Ni/CGO co-infiltration on the performance and stability of STN-based SOFCs. Fuel Cells 14, 1062–1065 (2014).

    Article  Google Scholar 

  73. Verbraeken, M. C. et al. Short stack and full system test using a ceramic A-site deficient strontium titanate anode. Fuel Cells 15, 682–688 (2015). This paper reports on the concept, fabrication and testing of the first all-oxide SOFC system at kW scale demonstrating the viability of this technology at an industrially relevant scale.

    Article  Google Scholar 

  74. Shiozaki, R. et al. Partial oxidation of methane over a Ni/BaTiO3 catalyst prepared by solid phasecrystallization. J. Chem. Soc. Faraday Trans. 93, 3235–3242 (1997).

    Article  Google Scholar 

  75. Nishihata, Y. et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002).

    Article  Google Scholar 

  76. Madsen, B. D., Kobsiriphat, W., Wang, Y., Marks, L. D. & Barnett, S. SOFC anode performance enhancement through precipitation of nanoscale catalysts. ECS Trans. 7, 1339–1348 (2007).

    Article  Google Scholar 

  77. Neagu, D., Tsekouras, G., Miller, D. N., Mé nard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chem. 5, 916–923 (2013).

    Article  Google Scholar 

  78. Neagu, D. & Irvine, J. T. S. in Comprehensive Inorganic Chemistry II 2nd edn (eds Reedijk, J. & Poeppelmeier, K. ) 397–415 (Elsevier, 2013).

    Book  Google Scholar 

  79. Tanaka, H. et al. The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal. Today 117, 321–328 (2006).

    Article  Google Scholar 

  80. Bierschenk, D. M. et al. Pd-substituted (La, Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior. J. Power Sources 196, 3089–3094 (2011).

    Article  Google Scholar 

  81. Tanaka, H. et al. Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. Angew. Chem. Int. Ed. 45, 5998–6002 (2006).

    Article  Google Scholar 

  82. Kobsiriphat, W. et al. Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance. J. Electrochem. Soc. 157, B279–B284 (2010).

    Article  Google Scholar 

  83. Jardiel, T. et al. New SOFC electrode materials: the Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5−xNix)O3−δ and (La0.75Sr0.25)(Cr0.5−xNixMn0.5)O3−δ . Solid State Ion. 181, 894–901 (2010).

    Article  Google Scholar 

  84. Sun, Y. et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J. Mater. Chem. A 3, 11048–11056 (2015).

    Article  Google Scholar 

  85. Tsekouras, G., Neagu, D. & Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 6, 256–266 (2013). This paper shows the use of in situ exsolution of metal particles from tailored perovskite electrodes to enhance high-temperature steam electrolysis in a SOEC, thus providing proof of concept for more efficient preparation and operation of SOEC electrodes for energy storage.

    Article  Google Scholar 

  86. Boulfrad, S., Cassidy, M., Djurado, E., Irvine, J. T. S. & Jabbour, G. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes. Int. J. Hydrog. Energy 38, 9519–9524 (2013).

    Article  Google Scholar 

  87. Yang, C. et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy 11, 704–710 (2015).

    Article  Google Scholar 

  88. Qin, Q. et al. Perovskite titanate cathode decorated by in situ grown iron nanocatalyst with enhanced electrocatalytic activity for high-temperature steam electrolysis. Electrochimica Acta 127, 215–227 (2014).

    Article  Google Scholar 

  89. Abild-Pedersen, F., Nørskov, J. K., Rostrup-Nielsen, J. R., Sehested, J. & Helveg, S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys. Rev. B 73, 115419 (2006).

    Article  Google Scholar 

  90. Katz, M. B. et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: bulk versus surface re-dispersion. J. Catal. 293, 145–148 (2012).

    Article  Google Scholar 

  91. Vels Jensen, K., Primdahl, S., Chorkendorff, I. & Mogensen, M. Microstructural and chemical changes at the Ni/YSZ interface. Solid State Ion. 144, 197–209 (2001).

    Article  Google Scholar 

  92. Hansen, K. V., Norrman, K. & Mogensen, M. H2 H2O Ni YSZ electrode performance effect of segregation to the interface. J. Electrochem. Soc. 151, A1436–A1444 (2004).

    Article  Google Scholar 

  93. Verbraeken, M. C., Iwanschitz, B., Mai, A. & Irvine, J. T. S. Evaluation of Ca doped La0.2Sr0.7TiO3 as an alternative material for use in SOFC anodes. J. Electrochem. Soc. 159, F757–F762 (2012).

    Article  Google Scholar 

  94. Baumann, F. S., Fleig, J., Habermeier, H.-U. & Maier, J. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3−δ model electrodes. Solid State Ion. 177, 1071–1081 (2006).

    Article  Google Scholar 

  95. Kuklja, M. M., Kotomin, E. A., Merkle, R., Mastrikov, Y. A. & Maier, J. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013).

    Article  Google Scholar 

  96. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nature Commun. 6, 6097 (2015).

    Article  Google Scholar 

  97. Sase, M. et al. Enhancement of oxygen exchange at the hetero interface of (La, Sr)CoO3/(La, Sr)2CoO4 in composite ceramics. Solid State Ion. 178, 1843–1852 (2008).

    Article  Google Scholar 

  98. Mogensen, M., Høgh, J., Hansen, K. V. & Jacobsen, T. A critical review of models of the H2/H2O/Ni/SZ electrode kinetics. ECS Trans. 7, 1329–1338 (2007).

    Article  Google Scholar 

  99. Chueh, W. C., Hao, Y., Jung, W. & Haile, S. M. High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nature Mater. 11, 155–161 (2012).

    Article  Google Scholar 

  100. Chen J. et al. Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ+Y2O3 stabilized ZrO2 composite cathodes. J. Power Sources 195, 5201–5205 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

C.C. acknowledges financial support from ECoProbe (DFF – 4005-00129) funded by the Danish Independent Research Council. C.G. and M.B.M. acknowledge financial support from Energinet.dk through the ForskEL programme Solid Oxide Fuel Cells for the Renewable Energy Transition contract no. 2014-1-12231. J.T.S.I., M.C.V. and D.N. acknowledge support from EPSRC Platform Grant EP/K015540/1, EPSRC Tailoring of microstructural evolution in impregnated SOFC electrodes EP/M014304/1 and Royal Society Wolfson Merit Award WRMA 2012/R2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. S. Irvine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irvine, J., Neagu, D., Verbraeken, M. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1, 15014 (2016). https://doi.org/10.1038/nenergy.2015.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2015.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing