Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis imaging in the management of prostate cancer

Abstract

Angiogenesis is an integral part of benign prostatic hyperplasia, is associated with prostatic intraepithelial neoplasia and is a key factor in the growth and metastasis of prostate cancer. This review focuses on ultrasound and dynamic MRI in the evaluation of prostate cancer angiogenesis, and compares these techniques to functional CT and hydrogen magnetic resonance spectroscopic imaging. Image-based evaluation of angiogenesis in the prostate has established clinical roles in lesion detection, tumor staging and the detection of suspected tumor recurrence. One limitation of all these imaging techniques, however, is inadequate lesion characterization, particularly in differentiating prostatitis from cancer in the peripheral zone of the prostate, and in distinguishing between benign prostatic hyperplasia and central-gland tumors. Ultimately, local availability, expertise and the need to minimize patients' radiation burden will influence which technique is used in prostatic evaluations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power Doppler ultrasound for detecting prostate cancer.
Figure 2: Transverse ultrasound section of the prostate gland.
Figure 3: Axial ultrasound section of prostate gland.
Figure 4: Carcinoma of the prostate showing a response to antiandrogen therapy on ultrasound.
Figure 5: Carcinoma of the prostate showing a response to antiandrogen therapy on dynamic MRI.
Figure 6: Monitoring the effects of high-intensity focused ultrasound (HIFU).

Similar content being viewed by others

References

  1. Izawa JI and Dinney CP (2001) The role of angiogenesis in prostate and other urologic cancers: a review. CMAJ 164: 662–670

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrer FA et al. (1998) Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology 51: 161–167

    Article  CAS  Google Scholar 

  3. Jackson MW et al. (1997) Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol 157: 2323–2328

    Article  CAS  Google Scholar 

  4. Haggstrom S et al. (1999) Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. J Urol 161: 1620–1625

    Article  CAS  Google Scholar 

  5. Jain RK et al. (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95: 10820–10825

    Article  CAS  Google Scholar 

  6. Stefanou D et al. (2004) Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in benign prostatic hyperplasia and prostate cancer. In Vivo 18: 155–160

    CAS  PubMed  Google Scholar 

  7. Sinha AA et al. (2004) Microvessel density as a molecular marker for identifying high-grade prostatic intraepithelial neoplasia precursors to prostate cancer. Exp Mol Pathol 77: 153–159

    Article  CAS  Google Scholar 

  8. Bono AV et al. (2002) Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis 5: 123–127

    Article  CAS  Google Scholar 

  9. Bigler SA et al. (1993) Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24: 220–226

    Article  CAS  Google Scholar 

  10. Offersen BV et al. (1998) Immunohistochemical determination of tumor angiogenesis measured by the maximal microvessel density in human prostate cancer. APMIS 106: 463–469

    Article  CAS  Google Scholar 

  11. Deering RE et al. (1995) Microvascularity in benign prostatic hyperplasia. Prostate 26: 111–115

    Article  CAS  Google Scholar 

  12. Weidner N et al. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brawer MK et al. (1994) Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73: 678–687

    Article  CAS  Google Scholar 

  14. Borre M et al. (1998) Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer 78: 940–944

    Article  CAS  Google Scholar 

  15. Newman JS et al. (1995) Prostate cancer: diagnosis with color Doppler sonography with histologic correlation of each biopsy site. Radiology 195: 86–90

    Article  CAS  Google Scholar 

  16. Shigeno K et al. (2000) The role of colour Doppler ultrasonography in detecting prostate cancer. BJU Int 86: 229–233

    Article  CAS  Google Scholar 

  17. Cornud F et al. (2000) Endorectal color Doppler sonography and endorectal MR imaging features of nonpalpable prostate cancer: correlation with radical prostatectomy findings. AJR Am J Roentgenol 175: 1161–1168

    Article  CAS  Google Scholar 

  18. Halpern EJ and Strup SE (2000) Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol 174: 623–627

    Article  CAS  Google Scholar 

  19. Harvey CJ et al. (2001) Developments in ultrasound contrast media. Eur Radiol 11: 675–689

    Article  CAS  Google Scholar 

  20. Harvey CJ et al. (2002) Advances in ultrasound. Clin Radiol 57: 157–177

    Article  Google Scholar 

  21. Goossen TE et al. (2003) The value of dynamic contrast enhanced power Doppler ultrasound imaging in the localization of prostate cancer. Eur Urol 43: 124–131

    Article  Google Scholar 

  22. Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38: 2079–2084

    Article  CAS  Google Scholar 

  23. Collins DJ and Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 23: 65–83

    Article  Google Scholar 

  24. Sedelaar JP et al. (2001) Three-dimensional grayscale ultrasound: evaluation of prostate cancer compared with benign prostatic hyperplasia. Urology 57: 914–920

    Article  CAS  Google Scholar 

  25. Strohmeyer D et al. (2001) Contrast-enhanced transrectal color Doppler ultrasonography (TRCDUS) for assessment of angiogenesis in prostate cancer. Anticancer Res 21: 2907–2913

    CAS  PubMed  Google Scholar 

  26. Shigeno K et al. (2003) Transrectal colour Doppler ultrasonography for quantifying angiogenesis in prostate cancer. BJU Int 91: 223–226

    Article  CAS  Google Scholar 

  27. Jager GJ et al. (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203: 645–652

    Article  CAS  Google Scholar 

  28. Liney GP et al. (1999) In vivo magnetic resonance spectroscopy and dynamic contrast enhanced imaging of the prostate gland. NMR Biomed 12: 39–44

    Article  CAS  Google Scholar 

  29. Turnbull LW et al. (1999) Differentiation of prostatic carcinoma and benign prostatic hyperplasia: correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. J Magn Reson Imaging 9: 311–316

    Article  CAS  Google Scholar 

  30. Padhani AR et al. (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55: 99–109

    Article  CAS  Google Scholar 

  31. Engelbrecht MR et al. (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229: 248–254

    Article  Google Scholar 

  32. Buckley DL et al. (2004) Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging—initial experience. Radiology 233: 709–715

    Article  Google Scholar 

  33. Kiessling F et al. (2004) Simple models improve the discrimination of prostate cancers from the peripheral gland by T1-weighted dynamic MRI. Eur Radiol 14: 1793–1801

    PubMed  Google Scholar 

  34. Schlemmer HP et al. (2004) Can preoperative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14: 309–317

    Article  Google Scholar 

  35. Zakian KL et al. (2005) Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234: 804–814

    Article  Google Scholar 

  36. Halpern EJ et al. (2001) Prostate cancer: contrast-enhanced US for detection. Radiology 219: 219–225

    Article  CAS  Google Scholar 

  37. Frauscher F et al. (2002) Comparison of contrast enhanced color Doppler targeted biopsy with conventional systematic biopsy: impact on prostate cancer detection. J Urol 167: 1648–1652

    Article  Google Scholar 

  38. Unal D et al. (2000) Three-dimensional contrast-enhanced power Doppler ultrasonography and conventional examination methods: the value of diagnostic predictors of prostate cancer. BJU Int 86: 58–64

    Article  CAS  Google Scholar 

  39. Namimoto T et al. (1998) The value of dynamic MR imaging for hypointensity lesions of the peripheral zone of the prostate. Comput Med Imaging Graph 22: 239–245

    Article  CAS  Google Scholar 

  40. Tanaka N et al. (1999) Diagnostic usefulness of endorectal magnetic resonance imaging with dynamic contrast-enhancement in patients with localized prostate cancer: mapping studies with biopsy specimens. Int J Urol 6: 593–599

    Article  CAS  Google Scholar 

  41. Ogura K et al. (2001) Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57: 721–726

    Article  CAS  Google Scholar 

  42. Ito H et al. (2003) Visualisation of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br J Radiol 76: 617–624

    Article  CAS  Google Scholar 

  43. van Dorsten FA et al. (2004) Combined quantitative dynamic contrast-enhanced MR imaging and 1H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 20: 279–287

    Article  Google Scholar 

  44. Shukla-Dave A et al. (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings—initial observations. Radiology 231: 717–724

    Article  Google Scholar 

  45. Bloch BN et al. (2005) Non-invasive prostate tumor volumetry using parametrically analyzed dynamic contrast enhanced MRI (DCE-MRI): correlation with whole mount prostatectomy specimens—initial results. Magn Reson Med 13: 1941 (In press)

    Google Scholar 

  46. Pouliot J et al. (2004) Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 59: 1196–1207

    Article  Google Scholar 

  47. Padhani AR et al. (2001) Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with MR imaging. Radiology 218: 365–374

    Article  CAS  Google Scholar 

  48. Smith DM and Murphy WM (1994) Histologic changes in prostate carcinomas treated with leuprolide (luteinizing hormone-releasing hormone effect). Distinction from poor tumor differentiation. Cancer 73: 1472–1477

    Article  CAS  Google Scholar 

  49. Civantos F et al. (1996) Histopathological effects of androgen deprivation in prostatic cancer. Semin Urol Oncol 14: 22–31

    CAS  PubMed  Google Scholar 

  50. Eckersley RJ et al. (2002) Quantitative microbubble enhanced transrectal ultrasound as a tool for monitoring hormonal treatment of prostate carcinoma. Prostate 51: 256–267

    Article  Google Scholar 

  51. Bostwick DG (2000) Immunohistochemical changes in prostate cancer after androgen deprivation therapy. Mol Urol 4: 101–107

    CAS  PubMed  Google Scholar 

  52. Matsushima H et al. (1999) Correlation between proliferation, apoptosis, and angiogenesis in prostate carcinoma and their relation to androgen ablation. Cancer 85: 1822–1827

    Article  CAS  Google Scholar 

  53. Harvey CJ et al. (2001) Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland: early experience. J Comput Assist Tomogr 25: 43–49

    Article  CAS  Google Scholar 

  54. Huber P et al. (1999) Synergistic interaction of ultrasonic shock waves and hyperthermia in the Dunning prostate tumor R3327-AT1. Int J Cancer 82: 84–91

    Article  CAS  Google Scholar 

  55. Boni RA et al. (1997) Laser ablation-induced changes in the prostate: findings at endorectal MR imaging with histologic correlation. Radiology 202: 232–236

    Article  CAS  Google Scholar 

  56. Osman YM et al. (2000) Correlation between central zone perfusion defects on gadolinium-enhanced MRI and intraprostatic temperatures during transurethral microwave thermotherapy. J Endourol 14: 761–766

    Article  CAS  Google Scholar 

  57. Sedelaar JP et al. (2000) The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur Urol 37: 559–568

    Article  CAS  Google Scholar 

  58. Takeda M et al. (2002) Value of multi-sectional fast contrast-enhanced MR imaging in patients with elevated PSA levels after radical prostatectomy. AJR Am J Roentgenol 178 (Suppl): 97

    Google Scholar 

  59. Coakley FV et al. (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233: 441–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar R Padhani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhani, A., Harvey, C. & Cosgrove, D. Angiogenesis imaging in the management of prostate cancer. Nat Rev Urol 2, 596–607 (2005). https://doi.org/10.1038/ncpuro0356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro0356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing