Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why does cytotoxic chemotherapy cure only some cancers?

Abstract

Despite frequent responses to chemotherapy, curative treatment remains elusive for the majority of patients with metastatic solid tumors. By contrast, in testicular cancer, gestational choriocarcinoma, Hodgkin disease and high-grade lymphomas, chemotherapy is routinely curative, even for patients who present with widely disseminated disease. In the common advanced cancers, however, over 40 years of cytotoxic drug development has brought no significant change in cure rates. One interpretation is that the intrinsic properties of the malignancies themselves, rather than the qualities of individual drugs or combination therapies, are primarily responsible for their curability with chemotherapy. We suggest that the curability of these malignancies results from an intrinsic 'locked-in' state of sensitivity to proapoptotic stresses in these cells. A common property of such curable malignancies is that they arise from cells that undergo major genetic rearrangements or recombination as part of their normal physiology. The absence of further genetic and epigenetic changes in genes that regulate apoptosis, DNA repair and senescence allows these cells to maintain their intrinsic sensitivity to chemotherapy. This process allows the cells, when challenged with chemotherapy, to undergo the natural apoptotic pathways that contribute to their intrinsic qualities of chemosensitivity and high curability.

Key Points

  • Curability with cytotoxic chemotherapy is restricted to a very few types of cancer

  • Cancers currently curable by chemotherapy include testicular and ovarian germ-cell tumors, high-grade non-Hodgkin lymphoma (B cell and T cell), Hodgkin disease and gestational choriocarcinoma

  • Clinical and experimental evidence implies that curability results from the biological properties of specific cancers rather than properties of the drugs used to treat them

  • Chemotherapy-curable cancers all arise in cell types whose normal physiological function involves complex rearrangement and/or recombination of genomic DNA

  • Chemotherapy-curable cancers have an intrinsic hypersensitivity to DNA damage, associated with a low threshold to undergo apoptosis, which reflects the function(s) of the cell types they are derived from

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Romond EH et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684

    Article  CAS  PubMed  Google Scholar 

  2. Coiffier B et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346: 235–242

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ et al. (2001) Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  4. Heinrich MC et al. (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703

    Article  CAS  PubMed  Google Scholar 

  5. Li MC et al. (1958) Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N Engl J Med 259: 66–74

    Article  CAS  PubMed  Google Scholar 

  6. Hertz R et al. (1958) Chemotherapy of choriocarcinoma and related trophoblastic tumors in women. J Am Med Assoc 168: 845–854

    Article  CAS  PubMed  Google Scholar 

  7. McNeish IA et al. (2002) Low-risk persistent gestational trophoblastic disease: outcome after initial treatment with low-dose methotrexate and folinic acid from 1992 to 2000. J Clin Oncol 20: 1838–1844

    Article  CAS  PubMed  Google Scholar 

  8. Bower M et al. (1996) Placental site trophoblastic tumor: molecular analysis and clinical experience. Clin Cancer Res 2: 897–902

    CAS  PubMed  Google Scholar 

  9. Williams SD et al. (1987) Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med 316: 1435–1440

    Article  CAS  PubMed  Google Scholar 

  10. Murugaesu N et al. (2006) Malignant ovarian germ cell tumors: identification of novel prognostic markers and long-term outcome after multimodality treatment. J Clin Oncol 24: 4862–4866

    Article  PubMed  Google Scholar 

  11. Hasenclever D and Diehl V (1998) A prognostic score for advanced Hodgkin's disease. International Prognostic Factors Project on Advanced Hodgkin's Disease. N Engl J Med 339: 1506–1514

    Article  CAS  PubMed  Google Scholar 

  12. Sehn LH et al. (2007) The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 109: 1857–1861

    Article  CAS  PubMed  Google Scholar 

  13. Souhami RL et al. (1997) Five-day oral etoposide treatment for advanced small-cell lung cancer: randomized comparison with intravenous chemotherapy. J Natl Cancer Inst 89: 577–580

    Article  CAS  PubMed  Google Scholar 

  14. Mouridsen HT et al. (1977) Evaluation of single-drug versus multiple-drug chemotherapy in the treatment of advanced breast cancer. Cancer Treat Rep 61: 47–50

    CAS  PubMed  Google Scholar 

  15. Stebbing J and Crook T (2007) Cytotoxic-free treatment designs: time to resistance. Nat Clin Pract Oncol 4: 1

    Article  PubMed  Google Scholar 

  16. International Collaborative Ovarian Neoplasm Group (2002) Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet 360: 505–515

  17. Serrone L et al. (2000) Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res 19: 21–34

    CAS  PubMed  Google Scholar 

  18. Abou-Alfa GK et al. (2006) Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol 24: 4441–4447

    Article  CAS  PubMed  Google Scholar 

  19. Carbone PP et al. (1968) Management of patients with malignant lymphoma: a comparative study with cyclophosphamide and vinca alkaloids. Cancer Res 28: 811–822

    CAS  PubMed  Google Scholar 

  20. Horwich A et al. (2000) A medical research council randomized trial of single agent carboplatin versus etoposide and cisplatin for advanced metastatic seminoma. MRC Testicular Tumour Working Party. Br J Cancer 83: 1623–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mackenzie AR (1966) Chemotherapy of metastatic testis cancer. Results in 154 patients. Cancer 19: 1369–1376

    Article  CAS  PubMed  Google Scholar 

  22. Mackenzie AR (1966) The chemotherapy of metastatic seminoma. J Urol 96: 790–793

    Article  CAS  PubMed  Google Scholar 

  23. Longo DL et al. (1986) Twenty years of MOPP therapy for Hodgkin's disease. J Clin Oncol 4: 1295–1306

    Article  CAS  PubMed  Google Scholar 

  24. De Vita VT et al. (1972) Proceedings: Malignant lymphoma: treatment with combination chemotherapy. Proc Natl Cancer Conf 7: 379–390

    CAS  PubMed  Google Scholar 

  25. Bagley CM et al. (1972) Advanced lymphosarcoma: intensive cyclical combination chemotherapy with cyclophosphamide, vincristine, and prednisone. Ann Intern Med 76: 227–234

    Article  PubMed  Google Scholar 

  26. Sen S and D'Incalci M (1992) Apoptosis. Biochemical events and relevance to cancer chemotherapy. FEBS Lett 307: 122–127

    Article  CAS  PubMed  Google Scholar 

  27. Johnstone RW et al. (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164

    Article  CAS  PubMed  Google Scholar 

  28. Barnhart KT et al. (2003) The medical management of ectopic pregnancy: a meta-analysis comparing 'single dose' and 'multidose' regimens. Obstet Gynecol 101: 778–784

    PubMed  Google Scholar 

  29. Creinin MD et al. (1996) Methotrexate and misoprostol for early abortion: a multicenter trial. I. Safety and efficacy. Contraception 53: 321–327

    Article  CAS  PubMed  Google Scholar 

  30. Doll DC et al. (1989) Antineoplastic agents and pregnancy. Semin Oncol 16: 337–346

    CAS  PubMed  Google Scholar 

  31. Cardonick E and Iacobucci A (2004) Use of chemotherapy during human pregnancy. Lancet Oncol 5: 283–291

    Article  CAS  PubMed  Google Scholar 

  32. Matsui Y (1998) Regulation of germ cell death in mammalian gonads. Apmis 106: 142–147

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz D et al. (1999) P53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ 10: 665–675

    CAS  PubMed  Google Scholar 

  34. Houldsworth J et al. (1997) Aberrant expression of cyclin D2 is an early event in human male germ cell tumorigenesis. Cell Growth Differ 8: 293–299

    CAS  PubMed  Google Scholar 

  35. Sicinski P et al. (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384: 470–474

    Article  CAS  PubMed  Google Scholar 

  36. Trimmer EE et al. (1998) Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry 37: 352–362

    Article  CAS  PubMed  Google Scholar 

  37. Koberle B et al. (1997) DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int J Cancer 70: 551–555

    Article  CAS  PubMed  Google Scholar 

  38. Chresta CM et al. (1996) Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res 56: 1834–1841

    CAS  PubMed  Google Scholar 

  39. Balzer BL and Ulbright TM (2006) Spontaneous regression of testicular germ cell tumors: an analysis of 42 cases. Am J Surg Pathol 30: 858–865

    Article  PubMed  Google Scholar 

  40. Baltaci S et al. (2001) P53, Bcl-2 and Bax immunoreactivity as predictors of response and outcome after chemotherapy for metastatic germ cell testicular tumours. BJU Int 87: 661–666

    Article  CAS  PubMed  Google Scholar 

  41. Mayer F et al. (2003) Molecular determinants of treatment response in human germ cell tumors. Clin Cancer Res 9: 767–773

    CAS  PubMed  Google Scholar 

  42. Houldsworth J et al. (1998) Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16: 2345–2349

    Article  CAS  PubMed  Google Scholar 

  43. Wang X et al. (1996) Genetic basis of drug sensitivity in human testis tumour cells. Int J Cancer 65: 426–431

    Article  CAS  PubMed  Google Scholar 

  44. Rathmell JC and Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109 (Suppl): S97–S107

    Article  CAS  PubMed  Google Scholar 

  45. Bassing CH et al. (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (Suppl): S45–S55

    Article  CAS  PubMed  Google Scholar 

  46. Borghesi L et al. (2004) B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J Exp Med 199: 491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Odegard VH and Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6: 573–583

    Article  CAS  PubMed  Google Scholar 

  48. Lam QL et al. (2007) Impaired V(D)J recombination and increased apoptosis among B cell precursors in the bone marrow of c-Abl-deficient mice. Int Immunol 19: 267–276

    Article  CAS  PubMed  Google Scholar 

  49. Longerich S et al. (2005) The very 5´ end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions. J Exp Med 202: 1443–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Storb U and Stavnezer J (2002) Immunoglobulin genes: generating diversity with AID and UNG. Curr Biol 12: R725–R727

    Article  CAS  PubMed  Google Scholar 

  51. Rathmell JC (2004) B-cell homeostasis: digital survival or analog growth. Immunol Rev 197: 116–128

    Article  CAS  PubMed  Google Scholar 

  52. Li A et al. (2004) Utilization of Ig heavy chain variable, diversity, and joining gene segments in children with B-lineage acute lymphoblastic leukemia: implications for the mechanisms of VDJ recombination and for pathogenesis. Blood 103: 4602–4609

    Article  CAS  PubMed  Google Scholar 

  53. Pui CH et al. (2001) Childhood acute lymphoblastic leukaemia—current status and future perspectives. Lancet Oncol 2: 597–607

    Article  CAS  PubMed  Google Scholar 

  54. Holleman A et al. (2006) The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood 107: 769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alizadeh AA et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511

    Article  CAS  PubMed  Google Scholar 

  56. Shipp MA et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68–74

    Article  CAS  PubMed  Google Scholar 

  57. Brenner C and Kroemer G (2000) Apoptosis. Mitochondria—the death signal integrators. Science 289: 1150–1151

    Article  CAS  PubMed  Google Scholar 

  58. Hans CP et al. (2005) Expression of PKC-beta or cyclin D2 predicts for inferior survival in diffuse large B-cell lymphoma. Mod Pathol 18: 1377–1384

    Article  CAS  PubMed  Google Scholar 

  59. Decouvelaere AV et al. (2007) Heterogeneity of protein kinase C beta(2) expression in lymphoid malignancies. Histopathology 50: 561–566

    Article  PubMed  Google Scholar 

  60. Klein U et al. (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194: 1625–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kienle D et al. (2003) VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood 102: 3003–3009

    Article  CAS  PubMed  Google Scholar 

  62. Lossos IS et al. (2002) Apoptosis stimulating protein of p53 (ASPP2) expression differs in diffuse large B-cell and follicular center lymphoma: correlation with clinical outcome. Leuk Lymphoma 43: 2309–2317

    Article  CAS  PubMed  Google Scholar 

  63. Kuppers R and Rajewsky K (1998) The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. Annu Rev Immunol 16: 471–493

    Article  CAS  PubMed  Google Scholar 

  64. Oancea M et al. (2004) Apoptosis of multiple myeloma. Int J Hematol 80: 224–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Terpos E et al. (2005) Current treatment options for myeloma. Expert Opin Pharmacother 6: 1127–1142

    Article  CAS  PubMed  Google Scholar 

  66. Kim YH et al. (1999) Clinical characteristics and long-term outcome of patients with generalized patch and/or plaque (T2) mycosis fungoides. Arch Dermatol 135: 26–32

    CAS  PubMed  Google Scholar 

  67. Geissinger E et al. (2004) Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert's) variant are often derived from CD8+ cytotoxic T-cells. Virchows Arch 445: 334–343

    Article  PubMed  Google Scholar 

  68. Gascoyne RD et al. (1999) Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 93: 3913–3921

    CAS  PubMed  Google Scholar 

  69. Bonzheim I et al. (2004) Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood 104: 3358–3360

    Article  CAS  PubMed  Google Scholar 

  70. Ngan S and Seckl MJ (2007) Gestational trophoblastic neoplasia management: an update. Curr Opin Oncol 19: 486–491

    Article  PubMed  Google Scholar 

  71. Halperin R et al. (2000) Expression of the p53 gene and apoptosis in gestational trophoblastic disease. Placenta 21: 58–62

    Article  CAS  PubMed  Google Scholar 

  72. Wong SY et al. (1999) Apoptosis in gestational trophoblastic disease is correlated with clinical outcome and Bcl-2 expression but not Bax expression. Mod Pathol 12: 1025–1033

    CAS  PubMed  Google Scholar 

  73. Mayhew TM (2001) Villous trophoblast of human placenta: a coherent view of its turnover, repair and contributions to villous development and maturation. Histol Histopathol 16: 1213–1224

    CAS  PubMed  Google Scholar 

  74. Straszewski-Chavez SL et al. (2005) The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy. Endocr Rev 26: 877–897

    Article  CAS  PubMed  Google Scholar 

  75. Straszewski-Chavez SL et al. (2007) XAF1 mediates tumor necrosis factor-alpha-induced apoptosis and X-linked inhibitor of apoptosis cleavage by acting through the mitochondrial pathway. J Biol Chem 282: 13059–13072

    Article  CAS  PubMed  Google Scholar 

  76. Ratts VS et al. (2000) Expression of BCL-2, BAX and BAK in the trophoblast layer of the term human placenta: a unique model of apoptosis within a syncytium. Placenta 21: 361–366

    Article  CAS  PubMed  Google Scholar 

  77. Horowitz J (1999) Adenovirus-mediated p53 gene therapy: overview of preclinical studies and potential clinical applications. Curr Opin Mol Ther 1: 500–509

    CAS  PubMed  Google Scholar 

  78. Takenobu T et al. (2002) Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther 1: 1043–1049

    CAS  PubMed  Google Scholar 

  79. Roth JA (2006) Adenovirus p53 gene therapy. Expert Opin Biol Ther 6: 55–61

    Article  CAS  PubMed  Google Scholar 

  80. Zeimet AG and Marth C (2003) Why did p53 gene therapy fail in ovarian cancer. Lancet Oncol 4: 415–422

    Article  CAS  PubMed  Google Scholar 

  81. Kantarjian HM (2007) Recent experience with decitabine in MDS. Clin Adv Hematol Oncol 5:140

  82. Pfreundschuh M et al. (2006) CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MINT) Group. Lancet Oncol 7: 379–391

    Article  CAS  PubMed  Google Scholar 

  83. Forstpointner R et al. (2004) The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 104: 3064–3071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of T Crook is funded by Breakthrough Breast Cancer, The Institute of Cancer Research and Cancer Research UK. T Crook is a clinical scientist of Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Savage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, P., Stebbing, J., Bower, M. et al. Why does cytotoxic chemotherapy cure only some cancers?. Nat Rev Clin Oncol 6, 43–52 (2009). https://doi.org/10.1038/ncponc1260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing