Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis as a strategic target for ovarian cancer therapy

Abstract

Angiogenesis is a complex and highly regulated process that is crucial for tumor growth and metastasis. Insights into the molecular mechanisms of tumor angiogenesis have led to the identification of potential angiogenic targets and the development of novel antivascular agents. Many of these agents are being evaluated in clinical trials and have shown promising antitumor activity. This Review highlights the results of the latest clinical studies of antivascular agents in ovarian cancer and discusses the challenges and opportunities for future clinical trials.

Key Points

  • Angiogenesis is a complex and highly regulated process by which tumors develop new vasculature, which is essential for growth of the tumor beyond 1 mm in size

  • Anti-VEGF therapy with bevacizumab seems to be a relevant strategy for the treatment of ovarian cancer, with promising results from phase II trials

  • Potentially unique to ovarian cancer is an alarming rate of gastrointestinal perforation, and patients with impending or symptomatic bowel obstruction are at highest risk

  • Additional antivascular strategies, including multitargeted tyrosine kinase inhibitors, have proven efficacious in both preclinical and clinical phase I–II trials

  • With the growing portfolio of antivascular agents, identification of biomarkers to guide drug choice, dosing, the pharmacologic response, and drug resistance is of paramount importance

  • Careful consideration of statistical methodology and trial design are crucial to drug discovery and development

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of tumor neovascularization.

Similar content being viewed by others

References

  1. American Cancer Society (2007) Cancer Facts and Figures 2007. Atlanta, GA: American Cancer Society

  2. du Bois A et al. (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95: 1320–1329

    Article  CAS  PubMed  Google Scholar 

  3. Gore ME (2001) Treatment of relapsed epithelial ovarian carcinoma. In: ASCO 2001 Education Book, 468–476 (Ed MC Perry) Alexandria, VA: American Society of Clinical Oncology

    Google Scholar 

  4. Jain RK et al. (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3: 24–40

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6

    Article  CAS  PubMed  Google Scholar 

  6. Hicklin DJ and Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011–1027

    Article  CAS  PubMed  Google Scholar 

  7. Gasparini G et al. (2005) Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2: 562–577

    Article  CAS  PubMed  Google Scholar 

  8. Eskens FA (2004) Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br J Cancer 90: 1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan D and Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364

    Article  CAS  PubMed  Google Scholar 

  10. Holash J et al. (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362

    Article  CAS  PubMed  Google Scholar 

  11. Shirakawa K et al. (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99: 821–828

    Article  CAS  PubMed  Google Scholar 

  12. Maniotis AJ et al. (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: 739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baluk P et al. (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15: 102–111

    Article  CAS  PubMed  Google Scholar 

  14. Dome B et al. (2007) Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 170: 1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368–4380

    Article  CAS  PubMed  Google Scholar 

  16. Paley PJ et al. (1997) Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80: 98–106

    Article  CAS  PubMed  Google Scholar 

  17. Olson TA et al. (1994) Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res 54: 276–280

    CAS  PubMed  Google Scholar 

  18. Ishigami SI et al. (1998) Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 78: 1379–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohta Y et al. (1999) Tumor angiogenesis and recurrence in stage I non-small cell lung cancer. Ann Thorac Surg 68: 1034–1038

    Article  CAS  PubMed  Google Scholar 

  20. Kabbinavar F et al. (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21: 60–65

    Article  CAS  PubMed  Google Scholar 

  21. Hurwitz H et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    Article  CAS  PubMed  Google Scholar 

  22. Miller KD et al. (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23: 792–799

    Article  CAS  PubMed  Google Scholar 

  23. Johnson DH et al. (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22: 2184–2191

    Article  CAS  PubMed  Google Scholar 

  24. Sandler A et al. (2006) Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: 2542–2550

    Article  CAS  PubMed  Google Scholar 

  25. Wright JD et al. (2007) A multi-institutional evaluation of the safety and efficacy of bevacizumab for recurrent, platinum-resistant ovarian cancer. J Clin Oncol 24 (Suppl 18): 5019

    Google Scholar 

  26. Cohn DE et al. (2006) Bevacizumab and weekly taxane chemotherapy demonstrates activity in refractory ovarian cancer. Gynecol Oncol 102: 134–139

    Article  CAS  PubMed  Google Scholar 

  27. Monk BJ et al. (2006) Salvage bevacizumab (rhuMAB VEGF)-based therapy after multiple prior cytotoxic regimens in advanced refractory epithelial ovarian cancer. Gynecol Oncol 102: 140–144

    Article  CAS  PubMed  Google Scholar 

  28. Numnum TM et al. (2006) The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol Oncol 102: 425–428

    Article  CAS  PubMed  Google Scholar 

  29. Wright JD et al. (2006) Bevacizumab combination therapy in recurrent, platinum-refractory, epithelial ovarian carcinoma: A retrospective analysis. Cancer 107: 83–89

    Article  CAS  PubMed  Google Scholar 

  30. Burger RA et al. (2007) Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a Gynecologic Oncology Group (GOG) study. J Clin Oncol 25: 5165–5171

    Article  CAS  PubMed  Google Scholar 

  31. Cannistra SA et al. (2007) Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 25: 5180–5186

    Article  CAS  PubMed  Google Scholar 

  32. Garcia AA et al. (2008) Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol 26: 76–82

    Article  CAS  PubMed  Google Scholar 

  33. Friberg G et al. (2006) Bevacizumab (B) plus erlotinib (E) for patients (pts) with recurrent ovarian (OC) and fallopian tube (FT) cancer: Preliminary results of a multi-center phase II trial. J Clin Oncol 24 (Suppl 18): 5018

    Google Scholar 

  34. Han ES and Monk BJ (2007) What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol Oncol 105: 3–6

    Article  CAS  PubMed  Google Scholar 

  35. Martin L and Schilder RJ (2006) Novel non-cytotoxic therapy in ovarian cancer: current status and future prospects. J Natl Compr Canc Netw 4: 955–966

    Article  CAS  PubMed  Google Scholar 

  36. Dupont J et al. (2003) Phase I study of VEGF Trap in patients with solid tumors and lymphoma [abstract #194]. Proc Am Soc Clin Oncol 22

  37. Wedge SR et al. (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65: 4389–4400

    Article  CAS  PubMed  Google Scholar 

  38. Camidge DR et al. (2006) A phase I dose-escalation study of weekly IMC-1121B, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR2) IgG1 monoclonal antibody (Mab), in patients (pts) with advanced cancer. J Clin Oncol 24 (Suppl 18): 3032

    Google Scholar 

  39. Jayson GC et al. (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23: 973–981

    Article  CAS  PubMed  Google Scholar 

  40. Rosen L et al. (2003) Phase I trial of SU011248, a novel tyrosine kinase inhibitor in advanced solid tumors [abstract #765]. Proc Am Soc Clin Oncol 191

  41. Welsh S et al. (2006) Phase II study of sorafenib (BAY 43-9006) in combination with gencitabine in recurrent epithelial ovarian cancer: a PMH phase II consortium trial. J Clin Oncol 24 (Suppl 18): 5084

    Google Scholar 

  42. Raymond E et al. (2003) Final results of a phase I and pharmacokinetic study of SU11248, a novel multi-targeted tyrosine kinase inhibitor, in patients with advanced cancers [abstract #769]. Proc Am Soc Clin Oncol 22

  43. Casali PG et al. (2006) Updated results from a phase III trial of sunitinib in GIST patients (pts) for whom imatinib (IM) therapy has failed due to resistance or intolerance. J Clin Oncol 24 (Suppl 18): 9513

    Google Scholar 

  44. Beeram M et al. (2005) Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 23: 6771–6790

    Article  CAS  PubMed  Google Scholar 

  45. Thomas AL et al. (2005) Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 23: 4162–4171

    Article  CAS  PubMed  Google Scholar 

  46. Hecht JR et al. (2005) A randomized, double-blind, placebo-controlled, phase III study in patients (pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK 787/ZK 222584 or placebo (CONFIRM-1). J Clin Oncol 23 (Suppl 16): LBA3

    Article  Google Scholar 

  47. Schroder W et al. (2005) A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. J Clin Oncol 23 (Suppl 16): 5042

    Article  Google Scholar 

  48. Amin DN (2006) Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 66: 2173–2180

    Article  CAS  PubMed  Google Scholar 

  49. Thaker PH et al. (2005) Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clin Cancer Res 11: 4923–4933

    Article  CAS  PubMed  Google Scholar 

  50. Gordon AN et al. (2005) Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer 15: 785–792

    Article  CAS  PubMed  Google Scholar 

  51. Schilder RJ et al. (2005) Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 11: 5539–5548

    Article  CAS  PubMed  Google Scholar 

  52. Kerbel RS and Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4: 423–436

    Article  CAS  PubMed  Google Scholar 

  53. Kamat AA et al. (2007) Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res 67: 281–288

    Article  CAS  PubMed  Google Scholar 

  54. Colleoni M et al. (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13: 73–80

    Article  CAS  PubMed  Google Scholar 

  55. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10: 415–427

    Article  PubMed  Google Scholar 

  56. Siemann DW et al. (2005) Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11: 416–420

    CAS  PubMed  Google Scholar 

  57. Rustin G et al. (2003) 5,6-dimethylxantenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study. Br J Cancer 88: 1160–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gabra H (2006) Phase II study of DMXAA combined with carboplatin and paclitaxel in recurrent ovarian cancer. J Clin Oncol 24 (Suppl 18): 5032

    Google Scholar 

  59. Motzer RJ et al. (2002) Phase II trial of thalidomide for patients with advanced renal cell carcinoma. J Clin Oncol 20: 302–306

    Article  CAS  PubMed  Google Scholar 

  60. Eisen T (2002) Thalidomide in solid malignancies. J Clin Oncol 20: 2607–2609

    Article  PubMed  Google Scholar 

  61. Downs L Jr et al. (2006) A prospective randomized trial of thalidomide with topotecan compared to topotecan alone in women with recurrent epithelial ovarian, primary peritoneal or fallopian tube carcinoma [abstract #19]. Proceedings of the 38th Annual Meeting on Women's Cancer

  62. Landen CN et al. (2005) EphA2 as a target for ovarian cancer therapy. Expert Opin Ther Targets 9: 1179–1187

    Article  CAS  PubMed  Google Scholar 

  63. Landen CN Jr et al. (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65: 6910–6918

    Article  CAS  PubMed  Google Scholar 

  64. Jubb AM et al. (2006) Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6: 626–635

    Article  CAS  PubMed  Google Scholar 

  65. Hillan KJ et al. (2003) The role of VEGF expression in response to bevacizumab plus capcitabine in metastatic breast cancer (MBC) [abstract #776]. Proc Am Soc Clin Oncol 22

  66. Jubb AM et al. (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24: 217–227

    Article  CAS  PubMed  Google Scholar 

  67. Motzer RJ et al. (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24: 16–24

    Article  CAS  PubMed  Google Scholar 

  68. Drevs J et al. (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16: 558–565

    Article  CAS  PubMed  Google Scholar 

  69. Christensen O et al. (2005) Measurement of VEGF, sVEGFR-2, and DCE-MRI in a phase I study with BAY 58-9352, a VEGFR inhibitor. Eur J Clin Pharmacol 61: 704–704

    Google Scholar 

  70. Wedam SB et al. (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24: 769–777

    Article  CAS  PubMed  Google Scholar 

  71. Gormally E et al. (2007) Circulating free DNA in plasma or serum as biomarker of carcinogenesis: Practical aspects and biological significance. Mutat Res 635: 105–117

    Article  CAS  PubMed  Google Scholar 

  72. Chen XQ et al. (1999) Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 5: 2297–2303

    CAS  PubMed  Google Scholar 

  73. Kamat AA et al. (2006) Circulating cell-free DNA: a novel biomarker for response to therapy in ovarian carcinoma. Cancer Biol Ther 5: 1369–1374

    Article  CAS  PubMed  Google Scholar 

  74. Kamat AA et al. (2006) Quantification of total plasma cell-free DNA in ovarian cancer using real-time PCR. Ann NY Acad Sci 1075: 230–234

    Article  CAS  PubMed  Google Scholar 

  75. Garmy-Susini B and Varner JA (2005) Circulating endothelial progenitor cells. Br J Cancer 93: 855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Willett CG et al. (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10: 145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rugo HS et al. (2005) Change in circulating endothelial cells (CEC) and tumor cells (CTC) in patients (pts) receiving bevacizumab and erlotinib for metastatic breast cancer (MBC) predicts stable disease at first evaluation. J Clin Oncol 23 (Suppl 16): 525

    Article  Google Scholar 

  78. Morgan B et al. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21: 3955–3964

    Article  CAS  PubMed  Google Scholar 

  79. Raut P et al. (2006) Patterns of PET response after long-term sunitinib therapy in patients (pts) with imatinib (IM)-resistant gastrointestinal stromal tumors (GIST). J Clin Oncol 24 (Suppl 18): 9547

    Google Scholar 

  80. Tozer GM et al. (2001) Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 61: 6413–6422

    CAS  PubMed  Google Scholar 

  81. Kim TJ et al. (2007) Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res 67: 9337–9345

  82. Relf M et al. (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57: 963–969

    CAS  PubMed  Google Scholar 

  83. Kerbel RS et al. (2001) Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20: 79–86

    Article  CAS  PubMed  Google Scholar 

  84. Huang J et al. (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2: 36–42

    CAS  PubMed  Google Scholar 

  85. Lu C et al. (2007) Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67: 1757–1768

    Article  CAS  PubMed  Google Scholar 

  86. Sargent DJ et al. (2005) Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 23: 8664–8670

    Article  PubMed  Google Scholar 

  87. Schiller JH (2004) Clinical trial design issues in the era of targeted therapies. Clin Cancer Res 10: 4281S–4282S

    Article  PubMed  Google Scholar 

  88. Giantonio BJ et al. (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25: 1539–1544

    Article  CAS  PubMed  Google Scholar 

  89. Miller KD et al. (2003) E2100: a phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. Clin Breast Cancer 3: 421–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded, in part, by the National Cancer Institute grants CA109298 and CA110793, the UTMD Anderson Cancer Center SPORE in Ovarian Cancer (P50 CA083639), the Department of Defense (#W81XWH-04-1-0227), the Gynecologic Cancer Foundation, the Marcus Foundation, a Program Project Development Grant from the Ovarian Cancer Research Fund, Inc, and the NCI T32 Academic Gynecologic Oncologist Training Grant. Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscapeaccredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L Coleman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spannuth, W., Sood, A. & Coleman, R. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Rev Clin Oncol 5, 194–204 (2008). https://doi.org/10.1038/ncponc1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing