Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the systemic therapy of malignant pleural mesothelioma

Abstract

Malignant pleural mesothelioma is an aggressive thoracic malignancy associated with exposure to asbestos, and its incidence is anticipated to increase during the first half of this century. Chemotherapy is the mainstay of treatment, yet sufficiently robust evidence to substantiate the current standard of care has emerged only in the past 5 years. This Review summarizes the evidence supporting the clinical activity of chemotherapy, discusses the use of end points for its assessment and examines the influence of clinical and biochemical prognostic factors on the natural history of malignant pleural mesothelioma. Early-phase clinical trials of second-line and novel agents are emerging from an increased understanding of mesothelioma cell biology. Coupled with high-quality translational research, such developments have real potential to improve the outlook of patients at a time of increasing incidence.

Key Points

  • Malignant pleural mesothelioma remains a highly lethal cancer, which is increasing in incidence in several countries

  • Chemotherapy is the mainstay of treatment for the majority of patients presenting as inoperable

  • Despite the therapeutic plateau of the past 20 years, randomized trials have now confirmed that combining antifolates with platinum-based therapy confers a survival benefit

  • No standard therapy has yet been defined in the second-line setting

  • New approaches for treating this disease are arising from a better understanding of the underlying biology and are beginning to be translated into the clinical setting

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Objective responses from a series of 59 clinical trials.
Figure 2: Comparison of response rates for platinum-based regimens.
Figure 3: Prognostic factors as predictors of outcome.

Similar content being viewed by others

References

  1. Hodgson JT et al. (2005) The expected burden of mesothelioma mortality in Great Britain from 2002 to 2050. Br J Cancer 92: 587–593

    Article  CAS  Google Scholar 

  2. Flores RM (2005) The role of PET in the surgical management of malignant pleural mesothelioma. Lung Cancer 49 (Suppl 1): S27–S32

    Article  Google Scholar 

  3. Berghmans T et al. (2002) Activity of chemotherapy and immunotherapy on malignant mesothelioma: a systematic review of the literature with meta-analysis. Lung Cancer 38: 111–121

    Article  CAS  Google Scholar 

  4. Ellis P et al. (2006) The use of chemotherapy in patients with advanced malignant pleural mesothelioma: a systematic review and practice guideline. J Thorac Oncol 1: 591–601

    Article  Google Scholar 

  5. van Meerbeeck JP et al. (2005) Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J Clin Oncol 23: 6881–6889

    Article  CAS  Google Scholar 

  6. Vogelzang NJ et al. (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21: 2636–2644

    Article  CAS  Google Scholar 

  7. Fennell DA and Rudd RM (2004) Defective core-apoptosis signalling in diffuse malignant pleural mesothelioma: opportunities for effective drug development. Lancet Oncol 5: 354–362

    Article  CAS  Google Scholar 

  8. Byrne MJ and Nowak AK (2004) Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann Oncol 15: 257–260

    Article  CAS  Google Scholar 

  9. Oxnard GR et al. (2006) Modeling of mesothelioma growth demonstrates weaknesses of current response criteria. Lung Cancer 52: 141–148

    Article  Google Scholar 

  10. Francart J et al. (2006) Progression-free survival rate as primary end point for phase II cancer clinical trials: application to mesothelioma. The EORTC Lung Cancer Group. J Clin Oncol 24: 3007–3012

    Article  Google Scholar 

  11. O'Brien ME et al. (2006) A randomised trial in malignant mesothelioma (M) of early (E) versus delayed (D) chemotherapy in symptomatically stable patients: the MED trial. Ann Oncol 17: 270–275

    Article  CAS  Google Scholar 

  12. Muers MF et al. (2004) BTS randomised feasibility study of active symptom control with or without chemotherapy in malignant pleural mesothelioma: ISRCTN 54469112. Thorax 59: 144–148

    Article  CAS  Google Scholar 

  13. Andreopoulou E et al. (2004) The palliative benefits of MVP (mitomycin C, vinblastine and cisplatin) chemotherapy in patients with malignant mesothelioma. Ann Oncol 15: 1406–1412

    Article  CAS  Google Scholar 

  14. Steele JP et al. (2000) Phase II study of vinorelbine in patients with malignant pleural mesothelioma. J Clin Oncol 18: 3912–3917

    Article  CAS  Google Scholar 

  15. Green J et al. Pemetrexed disodium in combination with cisplatin versus other cytotoxic agents or supportive care for the treatment of malignant pleural mesothelioma. Cochrane Database Systematic Reviews 2007, Issue 1. Art No.:CD005574. doi:10.1002/14651858.CD005574.pub2.

    Google Scholar 

  16. Bottomley A et al. (2006) Short-term treatment-related symptoms and quality of life: results from an international randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an EORTC Lung-Cancer Group and National Cancer Institute, Canada, Intergroup Study. J Clin Oncol 24: 1435–1442

    Article  CAS  Google Scholar 

  17. Weder W et al. (2004) Neoadjuvant chemotherapy followed by extrapleural pneumonectomy in malignant pleural mesothelioma. J Clin Oncol 22: 3451–3457

    Article  CAS  Google Scholar 

  18. Sugarbaker DJ et al. (1999) Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients. J Thorac Cardiovasc Surg 117: 54–63

    Article  CAS  Google Scholar 

  19. MARS (mesothelioma and radical surgery) trial. http://pfsearch.ukcrn.org.uk/StudyDetail.aspx?TopicID=1&StudyID=1189

  20. Zucali PA and Giaccone G (2006) Biology and management of malignant pleural mesothelioma. Eur J Cancer 42: 2706–2714

    Article  CAS  Google Scholar 

  21. Fennell DA et al. (2007) Efficacy and safety of first- or second-line irinotecan, cisplatin, and mitomycin in mesothelioma. Cancer 109: 93–99

    Article  CAS  Google Scholar 

  22. Nagel S et al. (2005) Second-line treatment of malignant pleural mesothelioma with Pemetrexed (Alimta)—a case report. Pneumologie 59: 108–111

    Article  CAS  Google Scholar 

  23. Giaccone G et al. (2002) Phase II trial of ZD0473 as second-line therapy in mesothelioma. Eur J Cancer 38 (Suppl 8): S19–S24

    Article  CAS  Google Scholar 

  24. Manegold C et al. (2005) Second-line (post-study) chemotherapy received by patients treated in the phase III trial of pemetrexed plus cisplatin versus cisplatin alone in malignant pleural mesothelioma. Ann Oncol 16: 923–927

    Article  CAS  Google Scholar 

  25. Sorensen JB et al. (2007) Pemetrexed as second-line treatment in malignant pleural mesothelioma after platinum-based first-line treatment. J Thorac Oncol 2: 147–152

    Article  Google Scholar 

  26. Jassem J et al. (2006) A randomized phase III trial comparing pemetrexed plus best supportive care (BSC) versus BSC in previously treated patients with advanced malignant pleural mesothelioma. Ann Oncol 17: ix214

    Google Scholar 

  27. Spirtas R et al. (1988) Survival patterns for malignant mesothelioma: the SEER experience. Int J Cancer 41: 525–530

    Article  CAS  Google Scholar 

  28. Herndon JE et al. (1998) Factors predictive of survival among 337 patients with mesothelioma treated between 1984 and 1994 by the Cancer and Leukemia Group B. Chest 113: 723–731

    Article  CAS  Google Scholar 

  29. Curran D et al. (1998) Prognostic factors in patients with pleural mesothelioma: the European Organization for Research and Treatment of Cancer experience. J Clin Oncol 16: 145–152

    Article  CAS  Google Scholar 

  30. Fennell DA et al. (2005) Statistical validation of the EORTC prognostic model for malignant pleural mesothelioma based on three consecutive phase II trials. J Clin Oncol 23: 184–189

    Article  Google Scholar 

  31. Edwards JG et al. (2000) Prognostic factors for malignant mesothelioma in 142 patients: validation of CALGB and EORTC prognostic scoring systems. Thorax 55: 731–735

    Article  CAS  Google Scholar 

  32. Flores RM et al. (2006) Positron emission tomography predicts survival in malignant pleural mesothelioma. J Thorac Cardiovasc Surg 132: 763–768

    Article  Google Scholar 

  33. Ceresoli GL et al. (2006) Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J Clin Oncol 24: 4587–4593

    Article  Google Scholar 

  34. Lopez-Rios F et al. (2006) Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res 66: 2970–2979

    Article  CAS  Google Scholar 

  35. Ohta Y et al. (1999) Tumor angiogenesis and recurrence in stage I non-small cell lung cancer. Ann Thorac Surg 68: 1034–1038

    Article  CAS  Google Scholar 

  36. Edwards JG et al. (2001) Angiogenesis is an independent prognostic factor in malignant mesothelioma. Br J Cancer 85: 863–868

    Article  CAS  Google Scholar 

  37. Strizzi L et al. (2001) Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193: 468–475

    Article  CAS  Google Scholar 

  38. Ohta Y et al. (1999) VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br J Cancer 81: 54–61

    Article  CAS  Google Scholar 

  39. Kumar-Singh S et al. (1999) Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta expression. J Pathol 189: 72–78

    Article  CAS  Google Scholar 

  40. Klabatsa A et al. (2006) Expression and prognostic significance of hypoxia-inducible factor 1alpha (HIF-1alpha) in malignant pleural mesothelioma (MPM). Lung Cancer 51: 53–59

    Article  CAS  Google Scholar 

  41. Erler JT et al. (2004) Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24: 2875–2889

    Article  CAS  Google Scholar 

  42. Kokturk N et al. (2005) Prognostic significance of Bax and Fas ligand in erionite and asbestos induced Turkish malignant pleural mesothelioma. Lung Cancer 50: 189–198

    Article  Google Scholar 

  43. Soini Y et al. (1999) Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res 5: 3508–3515

    CAS  PubMed  Google Scholar 

  44. O'Kane SL et al. (2006) Expression of bcl-2 family members in malignant pleural mesothelioma. Acta Oncol 45: 449–453

    Article  CAS  Google Scholar 

  45. Segers K et al. (1994) Immunoreactivity for bcl-2 protein in malignant mesothelioma and non-neoplastic mesothelium. Virchows Arch 424: 631–634

    Article  CAS  Google Scholar 

  46. Narasimhan SR et al. (1998) Resistance of pleural mesothelioma cell lines to apoptosis: relation to expression of Bcl-2 and Bax. Am J Physiol 275: L165–L171

    CAS  PubMed  Google Scholar 

  47. Gordon GJ et al. (2003) Using gene expression ratios to predict outcome among patients with mesothelioma. J Natl Cancer Inst 95: 598–605

    Article  CAS  Google Scholar 

  48. Gordon GJ et al. (2005) Validation of genomics-based prognostic tests in malignant pleural mesothelioma. Clin Cancer Res 11: 4406–4414

    Article  CAS  Google Scholar 

  49. Pass HI et al. (2004) Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res 10: 849–859

    Article  CAS  Google Scholar 

  50. Glinsky GV et al. (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115: 1503–1521

    Article  CAS  Google Scholar 

  51. Romano M et al. (2001) 5-lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. Faseb J 15: 2326–2336

    Article  CAS  Google Scholar 

  52. Hoang CD et al. (2004) Selective activation of insulin receptor substrate-1 and -2 in pleural mesothelioma cells: association with distinct malignant phenotypes. Cancer Res 64: 7479–7485

    Article  CAS  Google Scholar 

  53. Vogelzang NJ et al. (2005) New agents in the management of advanced mesothelioma. Semin Oncol 32: 336–350

    Article  CAS  Google Scholar 

  54. Jagadeeswaran R et al. (2006) Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res 66: 352–361

    Article  CAS  Google Scholar 

  55. Mukohara T et al. (2005) Inhibition of the met receptor in mesothelioma. Clin Cancer Res 11: 8122–8130

    Article  CAS  Google Scholar 

  56. Catalano A et al. (2004) Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem 279: 46706–46714

    Article  CAS  Google Scholar 

  57. Cacciotti P et al. (2005) SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res 65: 5256–5262

    Article  CAS  Google Scholar 

  58. Ramos-Nino ME et al. (2005) Human mesothelioma cells exhibit tumor cell-specific differences in phosphatidylinositol 3-kinase/AKT activity that predict the efficacy of Onconase. Mol Cancer Ther 4: 835–842

    Article  CAS  Google Scholar 

  59. Pespeni MH et al. (2007) Sensitization of mesothelioma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by heat stress via the inhibition of the 3-phosphoinositide-dependent kinase 1/Akt pathway. Cancer Res 67: 2865–2871

    Article  CAS  Google Scholar 

  60. Altomare DA et al. (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24: 6080–6089

    Article  CAS  Google Scholar 

  61. Bertino P et al. (2007) Preliminary data suggestive of a novel translational approach to mesothelioma therapy: imatinib mesylate with gemcitabine or pemetrexed. Thorax 62: 690–695

    Article  Google Scholar 

  62. Shih T and Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28: 1779–1802

    Article  CAS  Google Scholar 

  63. Karrison T et al. (2007) Final analysis of a multi-centre, double blind, placebo controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma [abstract #7526]. Proc Am Soc Clin Oncol Part 1: 25

  64. Wedge SR et al. (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65: 4389–4400

    Article  CAS  Google Scholar 

  65. Adnane L et al. (2005) Sorafenib (BAY 43-9006, Nexavar((R))), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 407: 597–612

    Article  Google Scholar 

  66. Prenen H et al. (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12: 2622–2627

    Article  CAS  Google Scholar 

  67. Motzer RJ et al. (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24: 16–24

    Article  CAS  Google Scholar 

  68. Motzer RJ et al. (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295: 2516–2524

    Article  CAS  Google Scholar 

  69. Fischer JR et al. (2006) Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer 54: 109–116

    Article  Google Scholar 

  70. Nguyen DM et al. (2004) Abrogation of p21 expression by flavopiridol enhances depsipeptide-mediated apoptosis in malignant pleural mesothelioma cells. Clin Cancer Res 10: 1813–1825

    Article  CAS  Google Scholar 

  71. Szlosarek PW et al. (2006) In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res 12: 7126–7131

    Article  CAS  Google Scholar 

  72. Borczuk AC et al. (2007) Molecular profiling of malignant peritoneal mesothelioma identifies the ubiquitin-proteasome pathway as a therapeutic target in poor prognosis tumors. Oncogene 26: 610–617

    Article  CAS  Google Scholar 

  73. Fennell DA et al. (2007) BCL-2 family regulation by the 20S proteosome inhibitor bortezomib. Oncogene [doi:10.1038/sj.onc.1210744]

  74. Sartore-Bianchi A et al. (2007) Bortezomib inhibits nuclear factor-kappa B-dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res 13: 5942–5951

    Article  CAS  Google Scholar 

  75. Gordon GJ et al. (2007) Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother Pharmacol [doi: 10.1007/s00280-007-0500-1]

  76. US National Institutes of Health. http://www.cancer.gov/search/psrv.aspx?cid=9817&protocolsearchid=3540567

  77. Hassan R et al. (2004) Mesothelin: a new target for immunotherapy. Clin Cancer Res 10: 3937–3942

    Article  CAS  Google Scholar 

  78. Ho M et al. (2005) Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin Cancer Res 11: 3814–3820

    Article  CAS  Google Scholar 

  79. Friedlander PL et al. (2003) Efficacy of CD40 ligand gene therapy in malignant mesothelioma. Am J Respir Cell Mol Biol 29: 321–330

    Article  CAS  Google Scholar 

  80. Gattacceca F et al. (2002) Ad-IFN gamma induces antiproliferative and antitumoral responses in malignant mesothelioma. Clin Cancer Res 8: 3298–3304

    CAS  PubMed  Google Scholar 

  81. Powell A et al. (2006) Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 52: 189–197

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Van Shoote for her help in editing the manuscript. Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A Fennell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennell, D., Gaudino, G., O'Byrne, K. et al. Advances in the systemic therapy of malignant pleural mesothelioma. Nat Rev Clin Oncol 5, 136–147 (2008). https://doi.org/10.1038/ncponc1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing