Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gonadal failure after treatment of hematologic malignancies: from recognition to management for health-care providers

Abstract

Many cancer treatments induce gonadal failure, which can cause infertility and menopausal symptoms in women. Improvements in treatments for hematologic malignancies have extended survival, thus making treatment-induced gonadal failure (TIGF) a more widespread problem. We reviewed the published literature on TIGF with the goal of providing practical information for health-care providers engaged in the management of hematologic malignancies. We conclude that managing TIGF involves risk assessment, provision of information, discussion of potential options for preserving fertility, and referral to appropriate specialists. All patients with hematologic malignancies should be given information regarding TIGF at the earliest possible time, ideally before treatment begins.

Key Points

  • Managing treatment-induced gonadal failure involves risk assessment, provision of information, discussions of options for the preservation of fertility, and referral to appropriate specialists

  • Risk assessment should be done on an individual basis with consideration of the patient's age and sex, the type and status of disease, number of children, and other factors such as the wish to have children

  • The availability of fertility preservation should be discussed at the earliest possible opportunity, ideally before commencement of treatment

  • The use of high-dose alkylating agents and high-dose total-body irradiation as conditioning for hematopoietic stem-cell transplantation carry the highest risk of subsequent treatment-induced gonadal failure

  • Sperm banking and embryo cryopreservation are the most well-established options for preserving fertility in adult patients; options for prepubertal children have yet to be established

  • Teams consisting of physicians, nurses, pharmacists, psychologists, and reproductive specialists should work together to provide the necessary information to help patients make decisions regarding the options available to them

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between external radiation dose to the testes and spermatogenesis.
Figure 2: The relationship between external radiation dose to the ovaries and ovarian function.
Figure 3: Steps that should be taken regarding options for preserving fertility during cancer treatment.

Similar content being viewed by others

References

  1. Jemal A et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57: 43–66

    Article  PubMed  Google Scholar 

  2. Surveillance, Epidemiology, and End Results (SEER) program: SEER Cancer Statistics Review, 1975–2003 [http://seer.cancer.gov/csr/1975_2003/] (accessed October 27, 2006)

  3. Schover LR (2005) Motivation for parenthood after cancer: a review. J Natl Cancer Inst Monogr 2–5

  4. Schover LR et al. (1999) Having children after cancer. A pilot survey of survivors' attitudes and experiences. Cancer 86: 697–709

    Article  CAS  PubMed  Google Scholar 

  5. Lee SJ et al. (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24: 2917–2931

    Article  PubMed  Google Scholar 

  6. Duffy CM et al. (2005) Discussions regarding reproductive health for young women with breast cancer undergoing chemotherapy. J Clin Oncol 23: 766–773

    Article  PubMed  Google Scholar 

  7. Harris RP et al. (2001) Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med 20: 21–35

    Article  CAS  PubMed  Google Scholar 

  8. Sklar C (2005) Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr 25–27

  9. Sanders JE et al. (1988) Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol 6: 813–818

    Article  CAS  PubMed  Google Scholar 

  10. Andrieu JM and Ochoa-Molina ME (1983) Menstrual cycle, pregnancies and offspring before and after MOPP therapy for Hodgkin's disease. Cancer 52: 435–438

    Article  CAS  PubMed  Google Scholar 

  11. Rivkees SA and Crawford JD (1988) The relationship of gonadal activity and chemotherapy-induced gonadal damage. JAMA 259: 2123–2125

    Article  CAS  PubMed  Google Scholar 

  12. Sklar CA et al. (2006) Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98: 890–896

    Article  PubMed  Google Scholar 

  13. Lantinga GM et al. (2006) Imminent ovarian failure in childhood cancer survivors. Eur J Cancer 42: 1415–1420

    Article  CAS  PubMed  Google Scholar 

  14. van der Kaaij MA et al. (2007) Gonadal function in males after chemotherapy for early-stage Hodgkin's lymphoma treated in four subsequent trials by the European Organisation for Research and Treatment of Cancer: EORTC Lymphoma Group and the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 25: 2825–2832

    Article  CAS  PubMed  Google Scholar 

  15. Ortin TT et al. (1990) Gonadal status and reproductive function following treatment for Hodgkin's disease in childhood: the Stanford experience. Int J Radiat Oncol Biol Phys 19: 873–880

    Article  CAS  PubMed  Google Scholar 

  16. Rueffer U et al. (2001) Male gonadal dysfunction in patients with Hodgkin's disease prior to treatment. Ann Oncol 12: 1307–1311

    Article  CAS  PubMed  Google Scholar 

  17. Fitoussi et al. (2000) Semen analysis and cryoconservation before treatment in Hodgkin's disease. Ann Oncol 11: 679–684

    Article  CAS  PubMed  Google Scholar 

  18. Blackhall FH et al. (2002) Semen cryopreservation, utilisation and reproductive outcome in men treated for Hodgkin's disease. Br J Cancer 87: 381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hallak J et al. (1999) Cryopreservation of sperm from patients with leukemia: is it worth the effort? Cancer 85: 1973–1978

    Article  CAS  PubMed  Google Scholar 

  20. Bahadur G et al. (2002) Semen quality and cryopreservation in adolescent cancer patients. Hum Reprod 17: 3157–3161

    Article  CAS  PubMed  Google Scholar 

  21. Hallak J et al. (2000) Characteristics of cryopreserved semen from men with lymphoma. J Assist Reprod Genet 17: 591–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Botchan A et al. (1997) Sperm quality in Hodgkin's disease versus non-Hodgkin's lymphoma. Hum Reprod 12: 73–76

    Article  CAS  PubMed  Google Scholar 

  23. Marmor D et al. (1986) Semen analysis in Hodgkin's disease before the onset of treatment. Cancer 57: 1986–1987

    Article  CAS  PubMed  Google Scholar 

  24. Redman JR et al. (1987) Semen cryopreservation and artificial insemination for Hodgkin's disease. J Clin Oncol 5: 233–238

    Article  CAS  PubMed  Google Scholar 

  25. Barr RD et al. (1993) Dyspermia in men with localized Hodgkin's disease. A potentially reversible, immune-mediated disorder. Med Hypotheses 40: 165–168

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi H et al. (2001) DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil Steril 75: 469–475

    Article  CAS  PubMed  Google Scholar 

  27. O'Donovan M (2005) An evaluation of chromatin condensation and DNA integrity in the spermatozoa of men with cancer before and after therapy. Andrologia 37: 83–90

    Article  CAS  PubMed  Google Scholar 

  28. Sanders JE et al. (1983) Late effects on gonadal function of cyclophosphamide, total-body irradiation, and marrow transplantation. Transplantation 36: 252–255

    Article  CAS  PubMed  Google Scholar 

  29. Whitehead E et al. (1982) The effects of Hodgkin's disease and combination chemotherapy on gonadal function in the adult male. Cancer 49: 418–422

    Article  CAS  PubMed  Google Scholar 

  30. Viviani S et al. (1985) Gonadal toxicity after combination chemotherapy for Hodgkin's disease. Comparative results of MOPP vs ABVD. Eur J Cancer Clin Oncol 21: 601–605

    Article  CAS  PubMed  Google Scholar 

  31. Whitehead E et al. (1983) The effect of combination chemotherapy on ovarian function in women treated for Hodgkin's disease. Cancer 52: 988–993

    Article  CAS  PubMed  Google Scholar 

  32. Santoro A et al. (1987) Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin's disease: superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J Clin Oncol 5: 27–37

    Article  CAS  PubMed  Google Scholar 

  33. Pryzant RM et al. (1993) Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin's lymphomas. J Clin Oncol 11: 239–247

    Article  CAS  PubMed  Google Scholar 

  34. Dann EJ et al. (2005) Fertility and ovarian function are preserved in women treated with an intensified regimen of cyclophosphamide, adriamycin, vincristine and prednisone (Mega-CHOP) for non-Hodgkin lymphoma. Hum Reprod 20: 2247–2249

    Article  CAS  PubMed  Google Scholar 

  35. Wallace WH et al. (1991) Male fertility in long-term survivors of childhood acute lymphoblastic leukaemia. Int J Androl 14: 312–319

    Article  CAS  PubMed  Google Scholar 

  36. Wallace WH et al. (1993) Ovarian function following the treatment of childhood acute lymphoblastic leukaemia. Med Pediatr Oncol 21: 333–339

    Article  CAS  PubMed  Google Scholar 

  37. Waxman J et al. (1983) Gonadal function in men treated for acute leukaemia. Br Med J (Clin Res Ed) 287: 1093–1094

    Article  CAS  Google Scholar 

  38. Leung W et al. (2000) Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 18: 3273–3279

    Article  CAS  PubMed  Google Scholar 

  39. Chemaitilly W et al. (2006) Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab 91: 1723–1728

    Article  CAS  PubMed  Google Scholar 

  40. Spinelli S et al. (1994) Ovarian recovery after total body irradiation and allogeneic bone marrow transplantation: long-term follow up of 79 females. Bone Marrow Transplant 14: 373–380

    CAS  PubMed  Google Scholar 

  41. Schimmer AD et al. (1998) Ovarian function after autologous bone marrow transplantation. J Clin Oncol 16: 2359–2363

    Article  CAS  PubMed  Google Scholar 

  42. Sanders JE (2004) Endocrine complications of high-dose therapy with stem cell transplantation. Pediatr Transplant 8 (Suppl 5): 39–50

    Article  PubMed  Google Scholar 

  43. Heimpel H et al. (1991) Gonadal function after bone marrow transplantation in adult male and female patients. Bone Marrow Transplant 8 (Suppl 1): 21–24

    PubMed  Google Scholar 

  44. Chatterjee R et al. (2001) Patterns of Leydig cell insufficiency in adult males following bone marrow transplantation for haematological malignancies. Bone Marrow Transplant 28: 497–502

    Article  CAS  PubMed  Google Scholar 

  45. Jacob A et al. (1998) Recovery of spermatogenesis following bone marrow transplantation. Bone Marrow Transplant 22: 277–279

    Article  CAS  PubMed  Google Scholar 

  46. Salooja N et al. (2001) Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet 358: 271–276

    Article  CAS  PubMed  Google Scholar 

  47. Carter A et al. (2006) Prevalence of conception and pregnancy outcomes after hematopoietic cell transplantation: report from the Bone Marrow Transplant Survivor Study. Bone Marrow Transplant 37: 1023–1029

    Article  CAS  PubMed  Google Scholar 

  48. Cheng YC et al. (2005) Low prevalence of premature ovarian failure in women given reduced-intensity conditioning regimens for hematopoietic stem-cell transplantation. Haematologica 90: 1725–1726

    PubMed  Google Scholar 

  49. Ash P (1980) The influence of radiation on fertility in man. Br J Radiol 53: 271–278

    Article  CAS  PubMed  Google Scholar 

  50. Shalet SM (1993) Effect of irradiation treatment on gonadal function in men treated for germ cell cancer. Eur Urol 23: 148–151

    Article  CAS  PubMed  Google Scholar 

  51. Speiser B et al. (1973) Aspermia following lower truncal irradiation in Hodgkin's disease. Cancer 32: 692–698

    Article  CAS  PubMed  Google Scholar 

  52. Signorello LB et al. (2006) Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst 98: 1453–1461

    Article  PubMed  Google Scholar 

  53. Critchley HO and Wallace WH (2005) Impact of cancer treatment on uterine function. J Natl Cancer Inst Monogr 64–68

  54. Wallace WH et al. (2005) Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 62: 738–744

    Article  PubMed  Google Scholar 

  55. Littley MD et al. (1989) Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol (Oxf) 31: 363–373

    Article  CAS  Google Scholar 

  56. Pai HH et al. (2001) Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 49: 1079–1092

    Article  CAS  PubMed  Google Scholar 

  57. World Health Organization (ed 4, 1999) Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. Cambridge: Cambridge University Press

  58. Speroff L and Fritz MA (2005) Male infertility. In: Clinical Gynecologic Endocrinology and Infertility 1135. Philadelphia, PA: Lippincott Williams & Wilkins

    Google Scholar 

  59. Chatterjee R and Kottaridis PD (2002) Treatment of gonadal damage in recipients of allogeneic or autologous transplantation for haematological malignancies. Bone Marrow Transplant 30: 629–635

    Article  CAS  PubMed  Google Scholar 

  60. Tanner JM and Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51: 170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomson AB et al. (2002) Late reproductive sequelae following treatment of childhood cancer and options for fertility preservation. Best Pract Res Clin Endocrinol Metab 16: 311–334

    Article  PubMed  Google Scholar 

  62. Oktay K et al. (2006) Measuring the impact of chemotherapy on fertility in women with breast cancer. J Clin Oncol 24: 4044–4046

    Article  PubMed  Google Scholar 

  63. Ruess ML et al. (1996) Age and the ovarian follicle pool assessed with transvaginal ultrasonography. Am J Obstet Gynecol 174: 624–627

    Article  CAS  PubMed  Google Scholar 

  64. Blumenfeld Z (2002) Preservation of fertility and ovarian function and minimalization of chemotherapy associated gonadotoxicity and premature ovarian failure: the role of inhibin-A and -B as markers. Mol Cell Endocrinol 187: 93–105

    Article  CAS  PubMed  Google Scholar 

  65. Yong PY et al. (2003) Prospective analysis of the relationships between the ovarian follicle cohort and basal FSH concentration, the inhibin response to exogenous FSH and ovarian follicle number at different stages of the normal menstrual cycle and after pituitary down-regulation. Hum Reprod 18: 35–44

    Article  CAS  PubMed  Google Scholar 

  66. Josso N et al. (1993) Anti-mullerian hormone: the Jost factor. Recent Prog Horm Res 48: 1–59

    CAS  PubMed  Google Scholar 

  67. Bath LE et al. (2003) Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B and ovarian ultrasound. Hum Reprod 18: 2368–2374

    Article  CAS  PubMed  Google Scholar 

  68. Anderson RA et al. (2006) The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod 21: 2583–2592

    Article  CAS  PubMed  Google Scholar 

  69. Thomson AB et al. (2002) Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet 360: 361–367

    Article  CAS  PubMed  Google Scholar 

  70. Agarwal A et al. (2004) Fertility after cancer: a prospective review of assisted reproductive outcome with banked semen specimens. Fertil Steril 81: 342–348

    Article  PubMed  Google Scholar 

  71. Meseguer M et al. (2006) Sperm cryopreservation in oncological patients: a 14-year follow-up study. Fertil Steril 85: 640–645

    Article  PubMed  Google Scholar 

  72. Styer AK et al. (2003) Factors associated with disposition of cryopreserved reproductive tissue. Fertil Steril 80: 584–589

    Article  PubMed  Google Scholar 

  73. Klemetti R et al. (2005) Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril 84: 1300–1307

    Article  PubMed  Google Scholar 

  74. Rimm AA et al. (2004) A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet 21: 437–443

    Article  PubMed  PubMed Central  Google Scholar 

  75. Olson CK et al. (2005) In vitro fertilization is associated with an increase in major birth defects. Fertil Steril 84: 1308–1315

    Article  PubMed  Google Scholar 

  76. Hansen M et al. (2005) Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 20: 328–338

    Article  PubMed  Google Scholar 

  77. Honaramooz A et al. (2002) Sperm from neonatal mammalian testes grafted in mice. Nature 418: 778–781

    Article  CAS  PubMed  Google Scholar 

  78. Jahnukainen K et al. (2001) Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res 61: 706–710

    CAS  PubMed  Google Scholar 

  79. Ogawa T et al. (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6: 29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Radford J et al. (1999) Fertility after treatment for cancer. Questions remain over ways of preserving ovarian and testicular tissue. BMJ 319: 935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jahnukainen K et al. (2006) Clinical potential and putative risks of fertility preservation in children utilizing gonadal tissue or germline stem cells. Pediatr Res 59: 40R–47R

    Article  PubMed  Google Scholar 

  82. Wang JX et al. (2001) Frozen-thawed embryo transfer: influence of clinical factors on implantation rate and risk of multiple conception. Hum Reprod 16: 2316–2319

    Article  CAS  PubMed  Google Scholar 

  83. American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry (2002) Assisted reproductive technology in the United States: 1998 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril 77: 18–31

  84. Lipton JH et al. (1997) Successful pregnancy after allogeneic bone marrow transplant with embryos isolated before transplant. J Clin Oncol 15: 3347–3349

    Article  CAS  PubMed  Google Scholar 

  85. Haie-Meder C et al. (1993) Radiotherapy after ovarian transposition: ovarian function and fertility preservation. Int J Radiat Oncol Biol Phys 25: 419–424

    Article  CAS  PubMed  Google Scholar 

  86. Williams RS et al. (1999) Laparoscopic oophoropexy and ovarian function in the treatment of Hodgkin disease. Cancer 86: 2138–2142

    Article  CAS  PubMed  Google Scholar 

  87. Clough KB et al. (1996) Laparoscopic unilateral ovarian transposition prior to irradiation: prospective study of 20 cases. Cancer 77: 2638–2645

    Article  CAS  PubMed  Google Scholar 

  88. Oktay K et al. (2006) Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril 86: 70–80

    Article  PubMed  Google Scholar 

  89. La Sala GB et al. (2006) Outcome of 518 salvage oocyte-cryopreservation cycles performed as a routine procedure in an in vitro fertilization program. Fertil Steril 86: 1423–1427

    Article  PubMed  Google Scholar 

  90. Sonmezer M and Oktay K (2004) Fertility preservation in female patients. Hum Reprod Update 10: 251–266

    Article  PubMed  Google Scholar 

  91. Falcone T et al. (2004) Ovarian function preservation in the cancer patient. Fertil Steril 81: 243–257

    Article  PubMed  Google Scholar 

  92. Donnez J et al. (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364: 1405–1410

    Article  CAS  PubMed  Google Scholar 

  93. Meirow D et al. (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353: 318–321

    Article  CAS  PubMed  Google Scholar 

  94. Newton H et al. (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11: 1487–1491

    Article  CAS  PubMed  Google Scholar 

  95. Shaw JM et al. (1996) Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod 11: 1668–1673

    Article  CAS  PubMed  Google Scholar 

  96. Silber SJ and Gosden RG (2007) Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med 356: 1382–1384

    Article  CAS  PubMed  Google Scholar 

  97. Ward JA et al. (1990) Protection of spermatogenesis in rats from the cytotoxic procarbazine by the depot formulation of Zoladex, a gonadotropin-releasing hormone agonist. Cancer Res 50: 568–574

    CAS  PubMed  Google Scholar 

  98. Meistrich ML et al. (1999) Hormonal treatment after cytotoxic therapy stimulates recovery of spermatogenesis. Cancer Res 59: 3557–3560

    CAS  PubMed  Google Scholar 

  99. Masala A et al. (1997) Use of testosterone to prevent cyclophosphamide-induced azoospermia. Ann Intern Med 126: 292–295

    Article  CAS  PubMed  Google Scholar 

  100. Johnson DH et al. (1985) Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on posttherapy fertility in male patients with lymphoma: preliminary observations. Blood 65: 832–836

    CAS  PubMed  Google Scholar 

  101. Thomson AB et al. (2002) Investigation of suppression of the hypothalamic-pituitary-gonadal axis to restore spermatogenesis in azoospermic men treated for childhood cancer. Hum Reprod 17: 1715–1723

    Article  CAS  PubMed  Google Scholar 

  102. Blumenfeld Z et al. (1996) Prevention of irreversible chemotherapy-induced ovarian damage in young women with lymphoma by a gonadotrophin-releasing hormone agonist in parallel to chemotherapy. Hum Reprod 11: 1620–1626

    Article  CAS  PubMed  Google Scholar 

  103. Schover LR et al. (2002) Oncologists' attitudes and practices regarding banking sperm before cancer treatment. J Clin Oncol 20: 1890–1897

    Article  PubMed  Google Scholar 

  104. Saito K et al. (2005) Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. Cancer 104: 521–524

    Article  PubMed  Google Scholar 

  105. McQueeney DA et al. (1997) Efficacy of emotion-focused and problem-focused group therapies for women with fertility problems. J Behav Med 20: 313–331

    Article  CAS  PubMed  Google Scholar 

  106. Ethics Committee of the American Society for Reproductive Medicine (2005) Fertility preservation and reproduction in cancer patients. Fertil Steril 83: 1622–1628

  107. British Fertility Society (2003) Multidisciplinary Working Group convened by the British Fertility Society: A strategy for fertility services for survivors of childhood cancer. Hum Fertil (Camb) 6: A1–A39

Download references

Acknowledgements

We thank Christine F Wogan and Donald Norwood, Scientific Editors at the Department of Scientific Publications at MD Anderson Cancer Center for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto T Ueno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, K., Milbourne, A., Schover, L. et al. Gonadal failure after treatment of hematologic malignancies: from recognition to management for health-care providers. Nat Rev Clin Oncol 5, 78–89 (2008). https://doi.org/10.1038/ncponc1016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing