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Increased intensity lymphodepletion and adoptive 
immunotherapy—how far can we go?
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INTRODUCTION
Experiments in both mice and humans have 
established that the immune system can damage 
and in some cases destroy even very large estab-
lished tumors. Treatment with interleukin (IL-)2 
has been effective in approximately 10–20% of 
patients with melanoma1–4 or renal cell carci-
noma.2 Unfortunately, clinical trials of tumor-
specific active immunotherapy (i.e. vaccination) 
have so far been disappointing, with objec-
tive response rates of 5% or less regardless of 
histology.5 Effective therapeutic vaccination 
has been limited by many factors, including 
absence or low frequency and low avidity of 
antigen-specific T-cell precursors directed 
against self-antigens as a result of thymic nega-
tive selection,6,7 and various peripheral inhibi-
tory mechanisms.7–10 Tumor outgrowth is 
clearly not prevented even when large numbers 
of specific T cells are generated in high-risk 
cancer patients without clinical or radiological 
evidence of disease at the initiation of immu-
nization.11 At the same time, it has become 
evident that the use of immunotherapy based 
on adoptive cell transfer (ACT) can overcome 
many of the hurdles that hinder current vaccine-
based approaches. Using ACT, large numbers of 
in vitro expanded and activated tumor-specific 
T cells can be delivered rapidly into the patient’s 
immune system.12,13 Unfortunately, multiple 
factors, including tumor immune evasion, 
homeostasis and induction of tolerance, as well 
as suboptimal quality of transferred T cells, have 
hampered the otherwise promising attempts at 
driving tumor rejection.14–16

Recently a 50% response rate according to 
RECIST criteria was reported in patients with 
metastatic melanoma treated with in vitro 
expanded tumor-infiltrating lymphocytes 
(TILs) and IL-2 following a lymphodepleting 
non myeloablative preparative regimen of cyclo-
phosphamide and fludarabine.17,18 This signif-
icant achievement was attributed to the key 
realization that the host’s immune system needs 
to be properly conditioned, in order to create an 
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REVIEW CRITERIA
The PubMed and MEDLINE databases were searched for articles published 
until April 2006. Electronic early-release publications were also included. 
Only articles published in English were considered. The search terms used 
included “adoptive cell transfer”, “lymphodepletion”, “lymphopenia”, “TBI”, 
“homeostatic proliferation”, “allogeneic transplant”, “syngeneic transplant”, “IPS” 
and “treatment related mortality”. Full articles were obtained and references 
were checked for additional material when appropriate. References were chosen 
based on the best clinical or laboratory evidence, especially if data had been 
corroborated by published work from other centers. Priority was given to studies 
in high-impact-factor journals when available.
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appropriate ‘lymphoid space’ that is devoid of 
regulatory mechanisms. Thus, lymphodepletion 
enables the host to accommodate transferred T 
lymphocytes and gives these cells an advantage 
over other competing cellular populations.19,20 

Immunodepletion and ACT have not yet been 
tested in randomized studies, but the results of 
recent clinical trials using these methods are 
notable for their unprecedented response rates 
and the fact that the patients studied had previ-
ously failed other modes of immunotherapy 
including high-dose IL-2 and ACT;17 however, 
success of the current approaches is primarily 
limited to patients with melanoma and we are 
still far from offering a cure for the majority of 
patients. More effort needs to be aimed at devel-
oping treatment regimens that are reliably effec-
tive, easily implemented and accessible, and yet 
maintain acceptable safety and toxicity profiles. 
Here we discuss recent advances in clinical appli-
cations of adoptive immune therapy, including 
the theoretical and preclinical bases of lympho-
depleting conditioning. We hypothesize, based 
on animal data, that causing more immune 
ablation in patients could potentially lead to the 
further augmentation of the antitumor effect. 
We will also discuss the safety issues related to 
the development of this new strategy, applying 
experience from the related field of allogeneic 
and auto logous stem-cell transplantation.

ADOPTIVE CELL TRANSFER THERAPY—
RECENT CLINICAL EXPERIENCES
ACT has been conceived as a means of providing 
high numbers of tumor-specific T cells that are 
expanded and activated in vitro. In some earlier 
trials, CD8+ T-cell clones specific for the mela-
noma antigens MART-1 and gp100 could be 
consistently generated from patients, but the 
T-cell clones declined rapidly after ACT and 
the patients failed to produce meaningful clin-
ical response.15,16 Another approach was to use 
TILs obtained from surgically resected tumors, 
which were activated and expanded in vitro 
utilizing allogeneic feeder cells, OKT-3 mono-
clonal antibody and IL-2.21 These cultured 
cells were highly reactive against human leuko-
cyte antigen (HLA) A2 melanoma cell lines 
and autologous tumor, but demonstrated only 
moderate success after ACT and treatment with 
high-dose IL-2 (720,000 IU/kg every 8 h; overall 
response rate 34%). A preconditioning regimen 
of cyclo phosphamide (25 mg/kg) alone did not 
measurably add to the overall response rate.

On the basis of animal data, it has been 
postulated that lymphodepletion may enhance 
the effectiveness of adoptively transferred 
T cells, and that a manipulation of the recip-
ient immune environment might improve 
the treatment outcome.22 This hypothesis 
has been clinically tested in the setting of 
hematologic malignancy in a series of heavily 
pretreated patients with refractory non-
Hodgkin lymphoma, who received infusions 
of auto logous lymphocytes ex vivo cultured 
with anti-CD3 and anti-CD28  following 
high-dose chemotherapy and auto logous 
CD34+ stem-cell transplant. Rapid recovery 
of lymphocyte compartment was observed 
and in some cases significant delayed lympho-
cytosis occurred.20 A similar approach has been 
utilized in patients with metastatic melanoma 
refractory to conventional treatments.17 The 
patients received a highly lymphodepleting 
conditioning regimen consisting of cyclo-
phosphamide (60 mg/kg for 2 days) and fluda-
rabine (25 mg/m2 for 5 days) before adoptive 
transfer of TILs. Patients were subsequently 
treated with high-dose IL-2. Some patients also 
received a second infusion of T cells. Objective 
responses according to RECIST criteria23 were 
seen in 6 out of 13 patients treated (47%), with 
mixed responses with decrease at only some 
sites of the disease in 4 additional patients. 
The majority of responders demonstrated anti-
melanocyte autoimmunity, including vitiligo 
and uveitis. Molecular analysis and in vitro 
functional data showed for the first time that 
some patients developed striking post-transfer 
clonal lymphocytosis (up to 21,000 cells/μl 
on day 7 in one case) with robust long-term 
persistence and significant skewing of the 
T-cell repertoire towards the adoptively infused 
tumor-reactive population.16 These findings 
were in sharp contrast to previously published 
highly discouraging observations of persistence 
of adoptively transferred T cells, which were 
undetectable by polymerase chain reaction 
after only several hours or days.16,24

A follow-up study to the same protocol was 
published 2 years later.25 This trial included 
a total of 35 patients with an overall objective 
response of 51%—3 complete responses and 
15 partial responses. As expected, observed 
toxicities were due to high-dose IL-2 infusions 
and myelosuppression. All patients recovered 
from these initial toxicities with supportive 
care. One patient died of Epstein–Barr virus 
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(EBV) lymphoproliferative disease. The nadir 
of peripheral lymphocyte count occurred at a 
median of 17 cells/μl on the day of transfer. In 
some patients transient lympho cytosis was seen 
within the first week after transfer, even before 
the earliest evidence of monocyte recovery. The 
CD4+ T-cell counts were significantly dimin-
ished for a minimum of 1 year after treatment, 
while numbers of CD8+ cells were slightly 
increased and gradually normalized.25

RATIONALE FOR IMMUNODEPLETION
The notion that the lymphopenic state enhances 
the efficacy of adoptively transferred T cells has 
been known for more than 20 years, although for 
a long time the mechanisms were not clear. In 
the early 1980s it was demonstrated that ACT of 
tumor-sensitized lymphocytes was effective only 
if the recipient was T-cell-deficient by thymec-
tomy and irradiation.26 In another model, CD8+ 
T cells isolated from tumor-draining lymph nodes 
of mice bearing MCA 205 sarcoma actively prolif-
erated and rejected the pulmonary meta stases 
after total body irradiation (TBI).27

We have explored the role of lymphodepletion 
using a transgenic mouse model expressing the 
pmel-1 T-cell receptor (TCR), which is specific 
for the murine gp100 melanoma-associated 
antigen.28 Surprisingly, these mice are not 
protected against growth of B16 melanoma in 
spite of a very high frequency of tumor-specific 
CD8+ T cells (>90%). Treatment of tumor-
bearing C57B6 mice is possible with adoptive 
transfer of pmel-1 T cells, but successful therapy 
also requires administration of IL-2 and effec-
tive vaccination with an altered (human gp100) 
peptide ligand vaccine.28 Gattinoni et al. have 
recently shown the striking effect of lympho-
depletion on the utility of ACT in this model.21 
Even though a response to treatment was 
observed in nonirradiated recipients, improve-
ment of the therapy in sublethally irradiated 
(5 Gy) recipients was highly significant. 

Multiple mechanisms explain the above 
observations (Figure 1). The size of the 
lymphoid compartment is tightly controlled 
by homeostatic factors, including access to 
antigen-presenting cells (APCs) and major 
histocompatibility complex (MHC) and self 
and antigenic peptides, and direct influence of 
different host T lymphocytes including regula-
tory cells CD4+CD25+FOXP3+ Treg, as well as 
the competition for cytokines such as IL-2, IL-7, 
IL-15 and IL-21.29–36 T cells, particularly those 

of a naive phenotype, undergo a process called 
homeostatic expansion (lymphopenia-induced 
homeostatic proliferation) after transfer into the 
lymphopenic host. This expansion is thought to 
be driven by homeostatic cytokines and expo-
sure to self-peptides and other antigens. During 
this process, naive T cells change their pheno-
type into activated/effector cells (e.g. CD44high, 
CD62Llow and CD122high) and acquire effector 
abilities, as manifested by in vitro production of 
interferon-γ and cytolytic function.37–40 This 
activation of T cells driven by homeostatic factors 
might lead to autoimmunity in a lymphopenic 
host (e.g. development of colitis41 or diabetes 
mellitus in nonobese diabetic mice42) or para-
doxically promote graft rejection.43 Similarly, it 
has been shown that CD8+ T cells can acquire 
antitumor characteristics when transferred into 
immunodeficient mice.44

Mere expansion of tumor-reactive T-cell 
numbers after a lymphodepleting preparative 
regimen does not seem to have had a critical role 
in our mouse model of cancer treatment.20 In 
fact, in the pmel-1 model the absolute number 
of tumor-specific T cells present in lymph 
nodes, spleen, blood and tumor recovered 
from treated mice was not different between 
irradiated and nonirradiated hosts. Significant 
differences were observed in the functional 
capacity of these T lymphocytes recovered 
from the irradiated host, and after antigen 
re stimulation these cells produced greater 
amounts of the cytokines interferon-γ, IL-2, 
granulocyte-macrophage colony- stimulating 
factor, and tumor necrosis factor-α.22 Taken 
together, these observations suggest that the 
lymphopenic environment is associated with an 
overall decrease in T-cell activation threshold, 
and a bias towards autoimmunity. 

Lymphodepletion with TBI also reduces 
CD4+CD25+FOXP3+ Treg, which probably 
contributes to the decrease in activation threshold 
of effector T cells.45 Treg have been shown to play 
a role in immune tolerance against tumors in 
both mouse systems and humans.46–48 Adoptive 
transfer of CD4+ T-helper cells selectively 
depleted of CD25+ populations indeed proved 
to increase antitumor response in the pmel-1 
mouse model, while the infusion of CD4+CD25+ 
T cells (containing the FOXP3+ Treg population) 
had a profound negative impact on the efficacy 
of treatment.49

In addition to regulatory CD4+ lympho-
cytes, other cellular elements also influence the 
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effective ness of ACT. Surprisingly, in the work 
from Gattinoni et al.22 an already effective 
response in genetically lymphopenic RAG–/– 
mice (which do not have any T cells, including 
Treg) could still be enhanced by sublethal irra-
diation. Similar effects in the same hosts were 
achieved by the selective depletion of abundant 
natural killer cells using monoclonal antibodies. 
This finding suggests that elimination of poten-
tial competitor cells or ‘homeostatic sinks’ may 
influence the availability of cytokines critical 
for function of antitumor effectors.

TBI may not only lead to an increased 
lymphodepletion, but also affect T-cell traf-
ficking, adhesion and costimulation. For 
example, in a murine model of graft versus host 
disease (GVHD), radiation caused upregulation 
of VCAM1, ICAM1, and B7-2, providing early 
costimulatory signals leading to priming of allo-
geneic T cells in the intestine.50 TBI could signif-
icantly alter the function of APCs. In a murine 
model of allogeneic transplant, TBI caused host 
dendritic cells (DCs) to undergo a rapid acti-
vation with upregulation of MHC class II and 
costimulatory molecules and secretion of IL-12, 
which is known to direct T-cell function towards 
cytotoxic type 1 phenotype and function.51 Even 
though host DC numbers were dramatically 
decreased following TBI, their initial transient 
activation was sufficient to cause allogeneic 
T-cell priming and an increase in the severity 
of GVHD. Similarly, radiation and chemo-
therapeutic agents are known to modulate 
immunogenicity of murine and human tumor 
cells.52 Local irradiation (10–20 Gy) has been 
shown to cause upregulation of MHC class I, 
FAS, CEA1, mucin 1 and other proteins in 21 out 
of 23 human carcinoma cell lines.53 In another 
recent report, ionizing radiation not only 
elevated initial expression of MHC class I, but 
also caused an increase in the pool of peptides 
available for presentation, further augmenting 
synthesis of new MHC class I complexes. The 
peptide pool was derived from initially damaged 
cellular structures as well as subsequent repair 
processes, which led to the generation of novel 
and unique sequences and an increase in tumor 
recognition.54 The importance of this local 
effect, however, remains unclear, as in our own 
model shielding the tumor during TBI did not 
affect the treatment outcome.22

An additional intriguing aspect of lympho-
depletion is the possibility of combining 
this technique with vaccination strategies. 

Antigenic stimuli in the lymphopenic state may 
effectively shift the T-cell repertoire towards the 
anti gen-specific cells.55 In a mouse model, 
the frequency of antimelanoma T cells was 
four times higher after vaccination of lympho-
depleted animals with an actively expanding 
T-cell population than it was in lympho replete 
hosts, and these cells also had a higher cyto-
toxic potential both in vitro and in vivo.56 In 
another model, DCs pulsed with breast tumor 
lysate were more effective at producing a 
response when administered to lymphopenic 
mice with a homeostatically expanding T-cell 
population.57 The clinical relevance of this 
phenomenon was recently demonstrated in a 
randomized clinical trial in which high-dose 
chemotherapy and autologous stem-cell trans-
plantation caused rapid and effective reconsti-
tution of specific antimicrobial immunity after 
the early infusion of in vivo primed and in vitro 
expanded T cells.58

The above examples show how partial 
lymphoablation before ACT appears to improve 
treatment. Emerging experimental data indicate 
that increased-intensity conditioning or even 
complete (lethal) myeloablation followed by 
autologous (or syngeneic) hematopoetic stem-
cell rescue might further enhance treatment effi-
cacy.59 In our pmel-1 model, administration of a 
lethal dose of radiation overcomes the previous 
sine qua non requirement for a vaccine admin-
istration, an observation of significant clinical 
importance as currently we transfer TILs of 
unknown specificity for which clinical-grade 
vaccines are not available.60 The exact mecha-
nism of this effect is still under investigation. 
More complete removal of Treg and depletion 
of ‘cytokine sinks’ and perhaps other regulatory 
elements play a role. Immune reconstitution 
after myeloablative conditioning and infusion 
of T-cell-depleted stem cells is relatively slow, 
particularly in the CD4+ compartment.61–63

It seems likely that full ablation can lead to an 
even more favorable ratio of effectors:inhibitory 
elements, thus removing an important obstacle 
to effector cell function.60 Another potential 
explanation for the success of full ablation is 
that high-dose TBI could simply lead to diffuse 
tissue injury and a generalized inflammatory 
reaction, which drives T-cell responses. Tissue 
injury generates ‘danger signals’,64 leading to the 
activation of DCs and other APCs. In the gastro-
intestinal tract TBI causes mucosal damage, 
leading to bacterial translocation and release of 
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lipopolysaccharide, which might act via Toll-
like receptors, further enhancing the function 
of APCs and promoting T-cell activation and 
expansion.65–67

DEVELOPING A SAFE LYMPHODEPLETING 
REGIMEN FOR FUTURE TRIALS
Nonmyeloablative lymphodepleting precondi-
tioning with cyclophosphamide and fludarabine 
illustrated the importance of reducing the host 
lymphocyte pool prior to adoptive transfer of 
TILs.17 The above-described animal data may 
give a compelling reason to investigate a truly 
‘lymphomyeloablative’ TBI-based regimen as a 
basis for further enhancement of ACT therapy. 
While it may be true that lymphodepletion can 
be of critical importance for the optimal func-
tion of transferred cells in the ACT setting, 
we need to consider the risks of this approach 
when applied to human subjects. Selection of 
an appropriate conditioning method appears 
to be crucial, as dose intensification increases 
regimen- associated toxicities.68–70 Drawing 
direct analogies with the regimens used for 
treating hematologic malignancies might not be 
optimal, as the goal of immune ablation prior 
to ACT for solid tumors is different. In fact, the 
aim of complete myeloablation for hema tologic 
disease is not only the creation of appropriate 
conditions for engraftment, but also the direct 
elimination of the malignant population, 
whereas in ACT for solid tumors the objective 
is to induce lymphodepletion and perhaps an 
inflammatory state. Experience from auto-stem 
and allo-stem-cell transplantation in the setting 
of hematologic malignancy68,71 or autoimmune 

disease72 clearly demonstrates that high- intensity 
conditioning can be associated with multiple 
toxicities, including prolonged neutropenia and 
the associated risk of infection, mucositis, graft 
failure, engraftment syndrome, and early and late 
effects of irradiation (e.g. diffuse alveolar hemor-
rhage, interstitial pneumonitis (IP), bronchiolitis 
obliterans, secondary myelodysplastic syndrome, 
secondary malignancy, cataracts, renal insuffi-
ciency, etc). TBI-related pulmonary complica-
tions are of significant concern and represent a 
major cause of mortality.73,74 It is possible that 
pulmonary toxicity after ACT and autologous 
myelo ablative transplantation should be lower 
than after allogeneic transplants, but variable 
data have been reported regarding the risk of IP 
in autologous settings.75,76

The effects of TBI with cyclophosphamide 
and fludarabine in combination with IL-2 
administration are unknown. Moreover, the safe 
and optimal dose of irradiation in the setting 
of stem-cell transplantation is still debatable. 
Toxicities frequently overlap, and combined 
effects of chemotherapy and radiotherapy are 
difficult to estimate; however, escalation of 
conditioning intensity can increase treatment-
related morbidities. The addition of fraction-
ated radiation (8.5–13.5 Gy) to a chemotherapy 
regimen used for autologous transplantation 
in patients with multiple myeloma resulted in  
treatment-related mortality (TRM) comparable 
to that with chemotherapy alone (2% versus 
5%); however, the radiation group suffered 
90% grade III–IV nonhematologic toxicity, 
compared with 65% in the non irradiated 
group.77 Similarly, administration of TBI in 

Figure 1 The rationale for lymphodepletion. (A) In immunoreplete hosts, endogenous cells can inhibit 
adoptively transferred T cells by at least three mechanisms. (1) T cells, B cells and NK cells compete for 
homeostatic and activating cytokines such as IL-2, IL-7 and IL-15. (2) Treg and possibly NK cells and 
other immune cell populations (e.g. macrophages) display suppressive activity either by direct cell-to-cell 
contact or release of suppressive cytokines. (3) Immature DCs might fail to activate or might even anergize 
adoptively transferred T cells, limiting the antitumor response. (4) The tumor itself might act as a negative 
regulator of T-cell activation by actively producing regulatory molecules and by expressing only limited 
numbers of major histocompatibility complex–peptide complexes, rendering tumor recognition difficult.8 
(B) Partial (nonmyeloablated) immuno depletion of the host with chemotherapy or total body irradiation 
before adoptive cell transfer reduces competing ‘cytokine sinks’ as well as regulatory elements. (C) Further 
increases of immunodepletion to levels that are myeloablative causes profound diminution of inhibitory 
elements and endogenous ‘cytokine sinks’. The proinflammatory environment activates immature DCs, 
although their numbers are further reduced. Moreover, conditioning regimen might also alter the tumor itself, 
promoting the expression of major histocompatibility complex–peptide complexes, increasing the pool of 
peptides available for presentation and the number of various costimulatory molecules.54 Thus, alteration of 
the host environment can lead to an enhanced activation of the transferred T cells, better recognition of the 
tumor, and ultimately more-efficient tumor destruction. Abbreviations: DC, dendritic cell; IL, interleukin; 
NK cells, natural killer cells; Treg, regulatory T cells.
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some autoimmune diseases (e.g. scleroderma) 
has been associated with excessive toxicity, 
precluding further use of this method in this 
setting.78 The mean dose of radiation to the 
lung might have an independent predictive 
value with regard to pulmonary-toxicity-related 
mortality in the setting of both autologous and 
allogeneic stem-cell trans plantation.76 Lung 
shielding appears to be relatively effective at 
reducing incidence of pulmonary toxicities, 
but its value is still in question.79 Shielding 
may prevent ablation of mediastinal immune 
organs, and may adversely impact the effi-
cacy of treatment in hematologic malignan-
cies, but this is likely to be less significant in 
the setting of solid tumors such as melanoma 
for which the primary goal of TBI is not direct 
tumor killing.

A retrospective analysis of the dose-response 
effect of 26 conditioning regimens on pulmonary 

toxicity from 20 reported studies that included 
1,090 patients was recently reported.80 The 
authors identified a dose-response effect for 
both cyclophosphamide, and radiation dose 
and fractionation (Figure 2). They estimated 
that 120 mg/kg cyclophosphamide alone would 
be associated with a 3–4% risk of developing 
IP. A single radiation dose of 8.8 Gy with cyclo-
phosphamide would be associated with 50% risk 
for IP, while a single dose of 5.1 Gy was estimated 
to carry a risk of less than 5%. A total irradia-
tion dose of 12 Gy in 6 daily fractions would be 
associated with an 11% incidence of IP. Lung 
shielding of 50% could theoretically reduce the 
IP risk to 2.8%. Unfortunately, this model of 
logistic regression did not accommodate twice-
daily fractionation, which is commonly used to 
further reduce pulmonary toxicity.

A protocol utilizing cyclophosphamide and 
fludarabine with TBI has been successfully 
used at the Hematology Branch of the National 
Heart Lung and Blood Institute (NHLBI) as a 
conditioning regimen for myeloablative T-cell-
depleted allogeneic stem-cell transplantation 
for hematologic malignancy,79 and could serve 
as a potential platform for adoptive immuno-
therapy for solid tumors. Initially, this protocol 
consisted of 13.6 Gy of TBI and 120 mg/kg cyclo-
phosphamide; in its latest iteration the protocol 
was modified to include 120 mg/kg cyclo-
phosphamide, and 125 mg/m2 fludarabine with 
12.0 Gy of TBI in 8 fractions with lung shielding 
(lung dose 9.0 Gy reduced later to 6.0 Gy). Since 
1997, the TRM among 146 patients treated at 
the NHLBI with this regimen has been relatively 
low at 16% (n = 18). The majority of regimen-
related fatalities occurred as a result of pulmo-
nary transplant-related mortality (PTRM; 
10.5%, n = 14). Causes of death were IP (n = 6), 
acute respiratory distress syndrome (n = 4), 
pneumonia (n = 4), cytomegalovirus (n = 2), 
respiratory syncytial virus (n = 1) and bacterial 
infection (n = 1). Of note, there was no PTRM 
reported in a series of 26 patients after 50% lung 
shielding was introduced into the regimen.79 A 
similar TBI dose was used in the setting of auto-
logous hema topoetic stem-cell transplantation 
in 21 patients with advanced multiple sclerosis, 
for which the preparative regimen included 
120 mg/kg cyclophosphamide and 12 Gy of 
TBI fractionated into 150 cGy twice daily with 
50% lung shielding. No procedure-related 
mortality was observed; however, improvement 
in underlying disease was marginal.81
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Figure 2 Dose–response functions using a mathematical model described 
by Sampath et al. based on data collected from clinical trials of bone marrow 
transplant.80 Dose–response functions are shown for 1, 2, and 4 fractions 
combined with 120 mg/kg Cy given over 2 days. A single-dose dose–response 
function without any Cy is also shown. The arrows highlight the doses of 5.5 Gy 
and 12 Gy. As shown in the graph, fractionation greatly decreases the incidence 
of IP at any given dose; in this mathematical model either a 5.5 Gy single 
dose or a 12 Gy fractionated dose appears to be associated with acceptable 
IP incidence. Lung shielding is expected to further decrease the risk of IP. 
Adapted from Elsevier Ltd © Sampath S et al. (2005) Int J Radiat Oncol 
Biol Phys 63: 876–884. Abbreviations: cy, cyclophosphamide; fx, fraction; 
IP, interstitial pneumonitis.
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Alternatively, the reduced-intensity condi-
tioning regimen can utilize a single 5.5 Gy dose 
of radiation delivered at a high rate (30 cGy/
min).82 This regimen was designed with the 
intention of minimizing procedure-related 
toxicity in high-risk patients, while still allowing 
for efficient engraftment, as studies have demon-
strated that an unfractionated single dose of 
radiation might be more immuno suppressive 
than a comparable dose administered at a slow 
rate or in fractions.83,84 In a matched related 
allogeneic transplant setting, overall TRM was 
7–19% at 2 years, depending on the risk group.82 
In another high-risk cohort of 110 matched 
unrelated graft recipients, grade IV end-organ 
toxicities occurred in 5 patients;85,86 overall 
TRM was 30% at 1 year, and 29 patients died of 
infection and 6 of GVHD.

The above data suggest that a protocol 
involving either a single 5.5 Gy dose of TBI or 
a fractionated dose of 10–12 Gy with 50% lung 
shielding and autologous CD34-selected stem-
cell support might be relatively safe in terms 
of acute or subacute toxicity. It is possible, 
however, that other methods of irradiation 
(e.g. total lymphoid irradiation or its combi-
nation with TBI) could be equally immuno-
suppressive and safer. It is also not clear whether 
the co administration of IL-2 immediately after 
such an irradiation is safe. It may be of concern 
that TBI and IL-2 affect endothelial perme-
ability,78,87 which could potentiate toxicities. 
Current experience from our institution demon-
strates that lymphodepletion greatly improves 
tolerance to subsequent treatment with IL-2.88 
Other, unexpected toxicities might occur at 
various organs compromised by radiation and 
neutropenia and could be further compounded 
by the cytokine and immune response. These 
adverse events may in particular affect patients 
previously exposed to other treatments for their 
underlying disease.

It will be crucial to perform appropriate 
initial screening of patients enrolled into 
such an aggressive protocol,89 but prediction 
of morbidity and mortality could be diffi-
cult.74 Exclusion criteria should be based on 
the criteria applied to allogeneic stem-cell 
trans plantation candidates. Baseline diffu-
sion capacity of the lung for carbon monoxide 
(DLCO <85% predicted) has been demon-
strated to be the single most predictive factor 
for PTRM;79,90 therefore, patients should 
undergo pulmonary function testing and be 

evaluated for history of tobacco use. In addi-
tion, extensive metastatic disease involving 
vital organs appears to pose additional risk of 
serious complications (e.g. bowel perforation, 
cardiac tamponade, or intracranial hemor-
rhage). Following administration of myelo-
ablative chemoradiotherapy and transfer of T 
cells and stem cells, patients will require consid-
erable supportive care and careful monitoring, 
as well as aggressive prevention and treatment 
of infectious and noninfectious complications, 
using protocols developed in the setting of 
hematopoetic stem-cell transplantation. 

A PLATFORM FOR A NEW GENERATION 
OF ADOPTIVE IMMUNOTHERAPIES 
Administration of nonmyeloablative regimens 
before ACT has been shown in animal models 
and patients to substantially improve the tumor 
treatment efficacy of transferred tumor- reactive 
T cells.22 If an adoptive immunotherapy 
regimen employing ablative immunosuppressive 
pre conditioning is translated successfully and 
safely from animal models into human patients, 
it could serve as a testing ground to explore a 
new generation of immune therapies by facili-
tating the use of alternative sources of effector 
cells, and would therefore help in addressing 
some key limitations that are associated with 
current TIL treatment. Autologous effector 
cells need to be generated from each patient’s 
tumor and expanded in vitro.21 This method 
greatly limits the number of patients that can 
be treated. Furthermore, the in vitro generation 
and expansion of TILs can be unsuccessful. 
Even if patients receive adequate infusion of 
cells, responses may fail to occur in a significant 
fraction of the treated patients. While many of 
the objective responses observed with current 
immuno therapies offer significant palliation 
to patients, partial responses are generally not 
durable or curative. One of the reasons for the 
failure could be that the autologous repertoire 
of T cells lack TCRs with high avidity towards 
self-antigens as a result of central tolerance.6 It 
is also clear that the cells used for ACT need 
to display certain characteristics to be effective 
in vivo, and the process of in vitro expansion 
might result in cell senescence. In our pmel-1 
model the antitumor effectiveness of the trans-
ferred T cells correlated with the functional 
status; paradoxically, cells that were more acti-
vated and differentiated in vitro displayed less 
in vivo therapeutic efficiency then more-naive 
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cells.91 A recent report in patients with meta-
static melanoma showed that the persistence 
of the transferred cells is related to the length of 
the telomeres before transfer;92 ‘older’ cells are 

less likely to persist and to be therapeutically 
effective than ‘younger’ cells. In the light of these 
findings it might be difficult to produce optimal 
cells from everyone.

 Tumor
excision

 Tumor
excision

B. Allogeneic
Test against
tumor and

rapid expansion

Allorestricted
tumor-specific

T cells

A. Autologous

C. Engineered
TCR cloning

TIL isolation

Cytokines

Preconditioning:
irradiation/chemotherapy

TILs

PBL

Humanized xenogenic donor

Viral vector

Transduction of:
PBL
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Figure 3 Possible applications of adoptive cell transfer using a preconditioning lymphodepleting 
regimen consisting of chemoradiotherapy and the use of different types of donor T cells in conjunction 
with administration of exogenous cytokines. (A) The approach used by Dudley et al. in their recent trial.17 
Autologous TILs were isolated from the tumor samples harvested from the patient, tested, expanded and 
reinfused. (B) The allogeneic cells transferred into the patient could be derived from TILs harvested from 
another patient (a good responder to autologous adoptive cell transfer) or generated in vitro from peripheral 
blood lymphocytes of an allogeneic healthy donor and selected for their ability to recognize tumor epitopes 
in the context of the recipient’s major histocompatibility complex. (C) Effector T cells generated by gene 
therapy methods using lentiviral or retroviral vectors. TCR sequences can be derived from either allogeneic 
or xenogenic sources.109,112 In the case of xenogenic source, donor animals must express human restriction 
element (i.e. human leukocyte antigen allele presents in the patient) in order to be able to recognize human 
antigens on human tissues. Xenogenic donors have a T-cell repertoire not influenced by negative selection 
against human self-peptide; thus, it may be easier to generate cells with high-avidity TCR for human tumor 
antigens. In the case of an allogeneic donor a clone expressing a TCR reactive against the patient’s tumor can 
be generated either in vitro from a healthy donor (i.e. allogeneic allorestricted tumor-specific T cells) or from 
the TILs of another patient (see B). After isolation of tumor-reactive cells, the TCR is cloned and inserted into 
a viral vector and used to transduce either autologous or allogeneic PBL, peripheral or cord blood HSC,113 
or even an immortalized T-cell line; the cells are then selected, matured and expanded as needed, and 
reinfused. In all these scenarios it is also possible to further manipulate cells before transfer by genetic means. 
This process may include insertion of sequences encoding for cytokines (e.g. interleukins 2 or 15), adhesion 
molecules, antiapoptotic or suicide genes, and so on.108 Abbreviations: HSC, hematopoietic stem cells; PBL, 
peripheral blood lymphocytes; TCR, T-cell receptor; TIL, tumor-infiltrating lymphocyte.
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One could envision that the availability of 
‘off-the-shelf ’ third-party tumor-specific T cells 
could significantly simplify therapy, making 
ACT-based regimens much more effective 
and accessible.93 Allogeneic cells are, however, 
rapidly and efficiently rejected in immuno-
competent hosts, limiting the survival of the 
transferred lymphocytes. In some studies 
the mean survival of white blood cells in patients 
receiving multiple transfusions was 2 days.94,95 
Administration of an aggressive lympho depleting 
regimen before the transfer can prolong the 
persistence of these allogeneic lymphocytes. 
For example, haplo identical natural killer cells 
can expand to a detectable level in the periph-
eral blood only in patients treated with the most 
aggressive conditioning regimen (i.e. high-dose 
cyclo phosphamide and fludarabine).96

Third-party effector lymphocytes could be 
generated by various methods; the simplest 
would be obtaining TILs from one patient (pref-
erably a very good, complete responder) and 
using them for treatment of a different patient. 
Lymphocytes could be only partially matched in 
terms of HLA compatibility to ensure their func-
tion via recognition of restriction elements on 
APCs and tumor. This idea could evolve further 
into the use of allo-restricted tumor-specific cells 
generated from unrelated or related donors.97,98 
Mouse model data showed that such cells were 
relatively easy to obtain.99 Potentially, a library 
of T-cell clones against common cancer antigens 
could be developed and those cells rapidly tested 
against patients’ tumors and used for treatment 
(Figure 3).

The feasibility of this approach has been 
demonstrated in eight solid organ recipients 
with refractory transplant-related EBV lympho-
proliferative disease100,101 who received third-
party in vitro generated partially matched 
tumor-specific lymphocytes selected from an 
available library. There were four objective 
responses, including three complete remis-
sions, and GVHD was not observed. Similarly, 
several clinical trials were performed in EBV-
related diseases (naso pharyngeal carcinoma 
and Hodgkin’s disease) and in the bone 
marrow transplant setting using infusion of 
donor virus-specific T cells to prevent CMV 
infection.102–104

The potential risk of GVHD with allogeneic 
antitumor cells is likely to be less than in the 
case of nonspecific donor lymphocyte infusion, 
because ex vivo expanded tumor-specific T-cell 

preparations are likely to have T-cell clonotypes 
that are primarily directed against a some-
what limited set of ‘self ’ tumor epitopes.105,106 
Furthermore, as an additional safety measure, 
autologous stem cells and lymphocytes could be 
used to rescue the host and eliminate transferred 
allogeneic cells should GVHD occur.

‘Off-the-shelf ’ lymphocytes could also be 
entirely constructed in vitro by gene therapy 
methods.107–109 Effector cells could be trans-
duced with lentiviral or retroviral constructs 
encoding for tumor-reactive TCRs. This tech-
nique would allow the use of engineered TCRs 
generated in vitro by phage display or in vivo 
in an allogeneic or even xenogeneic setting.110 
For example, mice transgenic for human HLA 
molecules with a repertoire not influenced by 
negative selection in the thymus could contain 
high-avidity T cells with strong reactivity 
against human epitopes—and could be highly 
effective in therapeutic applications. Not only 
can melanoma-specific TCRs be obtained by 
this approach, but also a wide variety of tumor 
antigens can be targeted. For example, Sherman 
and colleagues have obtained TCR specific for 
human p53 by immunizing mice transgenic 
for the HLA-A*0201 molecule.111,112 Since 
the transduced mature T cells already express 
endogenous α and β chains, the delivered α and β 
chain will mis-pair with these TCRs and thereby 
reduce their expression on the cell surface. One 
solution would be the in vitro maturation of 
T cells generated de novo from TCR-transduced 
peripheral or cord blood stem cells,113,114 so 
that the expression of the endogenous TCRs 
would be reduced or prevented by allelic exclu-
sion. The naive phenotype of very ‘young’ cells 
would facilitate their migration into the lymph 
nodes and tumor sites; these cells would have 
long telomeres and much greater proliferative 
capacity than the senescent memory cells used 
currently, and their persistence and therapeutic 
effectiveness would, therefore, most likely be 
enhanced.22,92

CONCLUSIONS
Many questions regarding the future of immune 
therapy remain unanswered, but our under-
standing of immune regulation is growing 
continuously. Multiple redundant homeo-
static mechanisms maintain a tight balance 
between responsiveness and tolerance, thereby 
protecting the host from uncontrolled immune 
responses against pathogens and potentially 
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harmful autoimmunity. Changing the equilib-
rium of various immune system populations by 
inducing lymphopenia may result in a selective 
advantage being given to adoptively transferred 
T cells. Animal data demonstrating the benefit 
of lymphodepleting conditioning is dramatic 
and convincing.22 Recent clinical results using 
a nonmyeloablative preparative regimen 
confirmed the importance of lympho depletion 
prior to ACT.17 New experimental data suggest 
that more-profound immune depletion might 
further augment the efficacy of ACT therapy.60

Obviously, increasing the intensity of the 
conditioning regimen goes against a recent trend 
established by the transplant community, which 
has focused on reducing treatment- related 
adverse effects by using a nonmyelo ablative 
approach.72 One will never know a priori 
whether performing myelo ablation would only 
add toxicity with significant morbidity and 
mortality without providing clinical benefit. 
Perhaps other, less toxic and more selective 
methods of lymphoid ablation not discussed in 
this Review could be explored and developed. 
Once we have a better understanding of all the 
mechanisms involved, we should be able to selec-
tively influence arms of the immune response to 
achieve the desired clinical effect.115,116

One might also argue that the use of optimal 
effector cells is crucial for the outcome of any 
immunotherapy, and that their lack is the 
main factor limiting the efficacy of therapy. 
The ideal T cell should display high avidity for 
its target antigen and be relatively ‘young’, to 
be able to proliferate and traffic to its target. 
It is quite possible that only improvements 
in all these aspects are required to lead us 
to significant progress. A strategy for more 
profound lymphodepletion could prove to be 
the new standard approach for ACT therapy 
and could enable the use of cellular effectors 
derived from novel sources, but it is obligatory 
to strike the right balance between effectiveness 
and tolerability, and safety and toxicity, of new 
therapies. Morgan et al. have recently reported 
that adoptive transfer of auto logous T cells that 
were genetically modified with tumor-specific 
TCR resulted in significant durable persistence 
in 15 patients. Two recipients experienced an 
objective clinical response and in both of them 
high levels of transduced lymphocytes were 
observed 12 months after the infusion, thus 
strongly suggesting potential therapeutic value 
of this approach.110
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