Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapy Insight: venous-catheter-related thrombosis in cancer patients

Abstract

Central venous catheters (CVCs) have improved the management of patients with cancer substantially, by facilitating chemotherapy and supportive therapy. The use of CVCs is associated with complications such as infection and upper-limb deep vein thrombosis (UL-DVT). The incidence of clinically overt UL-DVT related to the use of CVCs ranges between 2% and 4%. In the most recent study, the incidence of CVC-related thrombosis, as screened by venography, was approximately 18% in the absence of prophylaxis. In cancer patients with CVC-related UL-DVT, the incidence of clinically overt pulmonary embolism was between 15% and 25%, and the incidence of autopsy-proven pulmonary embolism was up to 50%. Pathogenic factors for CVC-related thrombosis include vessel injury caused by the CVC insertion procedure, venous stasis because of the indwelling CVC, and hypercoagulability associated with cancer. Recent studies have not confirmed a benefit for prophylaxis with antithrombotic agents for CVC-related thrombosis. The recommended treatment for CVC-related thrombosis is based on long-term anticoagulant therapy, with or without catheter removal.

Key Points

  • The use of long-term CVCs is associated with major complications, which can occur early (during the insertion procedure) or later (during the catheter dwell). The later complications are infection and upper-limb DVT

  • The incidence of symptomatic catheter-related DVT was recently found to be lower than 5%

  • Recent studies did not confirm a benefit for prophylaxis of CVC-related thrombosis with antithrombotic agents

  • Routine prophylaxis should not be recommended in cancer patients with a CVC

  • Recognition of risk factors associated with CVC-related DVT may help to define the subgroup of cancer patients using CVCs who would benefit from prophylaxis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broviac JW et al. (1973) A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet 36: 602–605

    Google Scholar 

  2. Hickman RO et al. (1979) A modified right atrial catheter for access to the venous system in marrow transplant recipient. Surg Gynecol Obstet 148: 871–875

    CAS  PubMed  Google Scholar 

  3. Niederhuber JE et al. (1982) Totally implanted venous and arterial access system to replace external catheter in cancer treatment. Surgery 92: 706–712

    CAS  PubMed  Google Scholar 

  4. Bregenzer T et al. (1998) Is routine replacement of peripheral intravenous catheters necessary? Arch Intern Med 158: 151–156

    Article  CAS  PubMed  Google Scholar 

  5. Lam S et al. (1994) Peripherally inserted central catheters in an acute-care hospital. Arch Intern Med 154: 1833–1837

    Article  CAS  PubMed  Google Scholar 

  6. Mansfield PF et al. (1994) Complication and failure of subclavian-vein catheterization. N Engl J Med 331: 1735–1738

    Article  CAS  PubMed  Google Scholar 

  7. Hoch JR (1997) Management of the complications of long-term venous access. Semin Vasc Surg 10: 135–143

    CAS  PubMed  Google Scholar 

  8. Xiang DZ et al. (1998) Composition and formation of the sleeve enveloping a central venous catheter. J Vasc Surg Aug 28: 260–271

    Article  CAS  Google Scholar 

  9. Raad II et al. (1994) The relationship between the thrombotic and infectious complications of central venous catheters. JAMA 271: 1014–1016

    Article  CAS  PubMed  Google Scholar 

  10. Burt ME et al. (1981) Prospective evaluation of subclavian vein thrombosis during total parenteral nutrition by contrast venography. Clin Res 29: 264–267

    Google Scholar 

  11. Brismar B et al. (1982) Reduction of catheter-associated thrombosis in parenteral nutrition by intravenous heparin therapy. Arch Surg 117: 1196–1199

    Article  CAS  PubMed  Google Scholar 

  12. Pottecher T et al. (1984) Thrombogenicity of central venous catheters: prospective study of polyethylene, silicone and polyurethane catheters with phlebography or post-mortem examination. Eur J Anaesthesiol 1: 361–365

    CAS  PubMed  Google Scholar 

  13. Bern HM et al. (1990) Very low dose of warfarin can prevent thrombosis in central venous catheters: a randomized, prospective trial. Ann Intern Med 112: 423–428

    Article  CAS  PubMed  Google Scholar 

  14. Balestrieri L et al. (1995) Central venous catheter-related thrombosis in clinically asymptomatic oncologic patients: a phlebographic study. Eur J Radiol 20: 108–111

    Article  Google Scholar 

  15. Monreal M et al. (1996) Upper extremity deep venous thrombosis in cancer patients with venous access devices. Prophylaxis with a low molecular weight heparin (Fragmin). Thromb Haemost 75: 251–253

    CAS  PubMed  Google Scholar 

  16. De Cicco M et al. (1997) Central venous thrombosis: an early and frequent complication in cancer patients bearing long term silastic catheter: a prospective study. Thromb Res 86: 101–113

    Article  CAS  PubMed  Google Scholar 

  17. Frank DA et al. (2000) The treatment and outcome of cancer patients with thromboses on central venous catheters. J Thromb Thrombolysis 10: 271–275

    Article  CAS  PubMed  Google Scholar 

  18. Verso M et al. (2005) Enoxaparin for the prevention of venous thromboembolism associated with central vein catheter: a double-blind, placebo-controlled, randomized study in cancer patients. J Clin Oncol 23: 4057–4062

    Article  CAS  PubMed  Google Scholar 

  19. Cortellezzi A et al. (2005) Incidence of thrombotic complications in patients with haematological malignancies with central venous catheters: a prospective multicentre study. Br J Haem 129: 811–817

    Article  Google Scholar 

  20. Martin C et al. (1999) Upper extremity deep vein thrombosis after central venous catheterization via the axillary vein. Crit Care Med 27: 2626–2629

    Article  CAS  PubMed  Google Scholar 

  21. Trerotola SO et al. (2000) Tunneled infusion catheters: increased incidence of symptomatic venous thrombosis after subclavian versus internal jugular venous access. Radiology 217: 89–93

    Article  CAS  PubMed  Google Scholar 

  22. Duerksen DR et al. (1999) Peripherally inserted central catheters for parenteral nutrition: a comparison with centrally inserted catheters. JPEN J Parenter Enteral Nutr 23: 85–89

    Article  CAS  PubMed  Google Scholar 

  23. Cowl CT et al. (2000) Complications and cost associated with parenteral nutrition delivered to hospitalized patients through either subclavian or peripherally inserted central catheters. Clin Nutr 19: 237–243

    Article  CAS  PubMed  Google Scholar 

  24. Lersch C et al. (1999) Initial experience with Healthport miniMax and other peripheral arm port in patients with advanced gastrointestinal malignancy. Oncology 57: 269–275

    Article  CAS  PubMed  Google Scholar 

  25. Gould JR et al. (1999) Groshong catheter-associated subclavian venous thrombosis. Am J Med 95: 419–423

    Article  Google Scholar 

  26. Pierce CM et al. (2000) Heparin-bonded central venous lines reduce thrombotic and infective complications in critically ill children. Intensive Care Med 26: 967–972

    Article  CAS  PubMed  Google Scholar 

  27. Biffi R et al. (2001) A randomized, prospective trial of central venous ports connected to standard open-ended or Groshong catheters in adult oncology patients. Cancer 92: 1204–1212

    Article  CAS  PubMed  Google Scholar 

  28. Luciani A et al. (2001) Catheter-related upper extremity deep venous thrombosis in cancer patients: a prospective study based on doppler US. Radiology 220: 655–660

    Article  CAS  PubMed  Google Scholar 

  29. Mueller BU et al. (1992) A prospective randomized trial comparing the infectious and noninfectious complications of an externalized catheter versus subcutaneously implanted device in cancer patients. J Clin Oncol 10: 1943–1948

    Article  CAS  PubMed  Google Scholar 

  30. Borow M and Crowley JG (1985) Evaluation of central venous catheter thrombogenicity. Acta Anest Scand Suppl 81: S59–S64

    Article  Google Scholar 

  31. Eastridge BJ and Lefor AT (1995) Complications of indwelling venous access devices in cancer patients. J Clin Oncol 13: 233–238

    Article  CAS  PubMed  Google Scholar 

  32. Grove JR and Pevec WC (2000) Venous thrombosis related to peripherally inserted central catheters. J Vasc Interv Radiol 11: 837–840

    Article  CAS  PubMed  Google Scholar 

  33. Petersen J et al. (2000) Silicone venous access devices positioned with their tip high in the superior vena cava are more likely to malfunction. Am J Surg 178: 78–79

    Google Scholar 

  34. Puel V et al. (1993) Superior vena cava thrombosis related to catheter malposition in cancer chemotherapy given through implanted ports. Cancer 72: 2248–2252

    Article  CAS  PubMed  Google Scholar 

  35. McBride KD et al. (1997) A comparative analysis of radiological and surgical placement of central venous catheters. Cardiovasc Intervent Radiol 20: 17–22

    Article  CAS  PubMed  Google Scholar 

  36. Verso M et al. (2005) Risk factors for CVC-associated thrombosis in cancer patients: Analysis of ETHIC study [abstract #P2188]. J Thromb Haemost 3 (Suppl 1)

  37. McGee WT et al. (1993) Accurate placement of central venous catheters: a prospective, randomized, multicenter trial. Crit Care Med 21: 1118–1123

    Article  CAS  PubMed  Google Scholar 

  38. Lameris JS et al. (1990) Percutaneous placement of Hickman catheters: comparison of sonographically guided and blind techniques. Am J Roentgenol 155: 1097–1099

    Article  CAS  Google Scholar 

  39. Lorenz JM et al. (2001) Radiologic placement of implantable chest ports in pediatric patients. Am J Roentgenol 176: 991–994

    Article  CAS  Google Scholar 

  40. Denys BG et al. (1993) Ultrasound-assisted cannulation of the internal jugular vein: a prospective comparison to the external landmark-guided technique. Circulation 87: 1557–1562

    Article  CAS  PubMed  Google Scholar 

  41. Kraybill WG and Allen BT (1993) Preoperative duplex venous imaging in the assessment of patients with venous access. J Surg Oncol 5: 244–248

    Article  Google Scholar 

  42. Timsit JF et al. (1998) Central vein catheter-related thrombosis in intensive care patients: incidence, risk factors and relationship with catheter-related sepsis. Chest 114: 207–213

    Article  CAS  PubMed  Google Scholar 

  43. Van Rooden CJ et al. (2005) Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J Clin Oncol 23: 2655–2660

    Article  PubMed  Google Scholar 

  44. Francis CW et al. (1997) Thrombin activity associated with indwelling central venous catheters. Thromb Haemost 77: 48–52

    Article  CAS  PubMed  Google Scholar 

  45. Koksoy C et al. (1995) The risk factors in central venous catheter-related thrombosis. Aust N Z J Surg 65: 796–798

    Article  CAS  PubMed  Google Scholar 

  46. De Cicco M et al. (1995) Antithrombin III deficiency as a risk factor for catheter-related central vein thrombosis in cancer patients. Thromb Res 78: 127–137

    Article  CAS  PubMed  Google Scholar 

  47. Riordan M and Weiden PL (1998) Factor V Leiden mutation does not account for central venous catheter-related thrombosis. Am J Hematol 58: 150–152

    Article  CAS  PubMed  Google Scholar 

  48. Wermes C et al. (1999) Clinical relevance of genetic risk factors for thrombosis in paediatric oncology patients with central venous catheters. Eur J Pediatr 158 (Suppl 3): S143–S146

    Article  PubMed  Google Scholar 

  49. Fijnheer R et al. (2002) Factor V Leiden in central venous catheter-associated thrombosis. Br J Haematol 118: 267–270

    Article  CAS  PubMed  Google Scholar 

  50. Van Rooden CJ et al. (2004) The contribution of factor V Leiden and prothrombin G20210A mutation to the risk of central venous catheter-related thrombosis. Haematologica 89: 201–206

    CAS  PubMed  Google Scholar 

  51. Jansen FH et al. (2005) Elevated levels of D-dimer and fragment 1+2 upon central venous catheter insertion and factor V Leiden predict subclavian vein thrombosis. Haematologica 90: 499–504

    CAS  PubMed  Google Scholar 

  52. Brown DF et al. (1997) Mode of chemotherapy does not affect complications with an implantable venous access device. Cancer 80: 966–972

    Article  CAS  PubMed  Google Scholar 

  53. Koksoy C et al. (1995) The diagnostic value of colour Doppler ultrasound in central venous catheter related thrombosis. Clin Radiol 50: 687–689

    Article  CAS  PubMed  Google Scholar 

  54. Shankar KR et al. (2002) Magnetic resonance venography in assessing venous patency after multiple venous catheters. J Pediatr Surg 37: 175–179

    Article  CAS  PubMed  Google Scholar 

  55. Forneris G et al. (2001) Spiral x-ray computed tomography in the diagnosis of central venous catheterization complications [French]. Nephrologie 22: 495–499

    CAS  PubMed  Google Scholar 

  56. Randolph AG et al. (1998) Benefit of heparin in central venous and pulmonary artery catheters: a meta-analysis of randomized controlled trials. Chest 113: 165–171

    Article  CAS  PubMed  Google Scholar 

  57. Karthaus M et al. (2005) Dalteparin for prevention of catheter-related complications in cancer patients with central venous catheters: final results of a double-blind, placebo-controlled phase III trial. Ann Oncol 17: 289–296

    Article  PubMed  Google Scholar 

  58. Couban S et al. (2005) Randomized placebo-controlled study of low-dose warfarin for the prevention of central venous catheter-associated thrombosis in patients with cancer. J Clin Oncol 23: 4063–4069

    Article  CAS  PubMed  Google Scholar 

  59. Buller HR et al. (2004) Antithrombotic therapy for venous thromboembolic disease. Chest 126 (Suppl): S401–S428

    Article  Google Scholar 

  60. Meyer G et al. (2002) Comparison of low-molecular-weight-heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med 162: 1729–1735

    Article  CAS  PubMed  Google Scholar 

  61. Lee YYA et al. (2003) Low molecular weight heparin versus a coumarin for the prevention of the recurrent venous thromboembolism in patients with cancer. N Engl J Med 349: 146–153

    Article  CAS  PubMed  Google Scholar 

  62. Savage KJ et al. (1999) Outpatient use of low molecular weight heparin (dalteparin) for the treatment of deep vein thrombosis of the upper extremity. Thromb Haemost 82: 1008–1010

    Article  CAS  PubMed  Google Scholar 

  63. Spence LD et al. (1999) Acute upper extremity deep venous thrombosis: safety and effectiveness of superior vena caval filters. Radiology 210: 53–58

    Article  CAS  PubMed  Google Scholar 

  64. Ascher E et al. (2000) Lesson learned from a 6-year clinical experience with superior vena cava Greenfield filters. J Vasc Surg 32: 881–887

    Article  CAS  PubMed  Google Scholar 

  65. Blackett RL et al. (1978) A prospective study of subclavian vein catheters used exclusively for the purpose of intravenous feeding. Br J Surg 193: 264–270

    Google Scholar 

  66. Di Costanzo J et al. (1980) Venous thrombosis due to central venous catheters during total parenteral nutrition. JPEN J Parenter Enteral Nutr 4: 439–441

    Google Scholar 

  67. Lokich JJ and Becker B (1983) Subclavian vein thrombosis in patients treated with infusion chemotherapy for advanced malignancy. Cancer 52: 1586–1589

    Article  CAS  PubMed  Google Scholar 

  68. Wagman LD et al. (1984) Venous access: a prospective, randomized study of the Hickman catheter. Surgery 95: 303–308

    CAS  PubMed  Google Scholar 

  69. Raaf JH (1985) Results from use of 826 vascular access devices in cancer patients. Cancer 55: 1312–1321

    Article  CAS  PubMed  Google Scholar 

  70. Cassidy FP Jr et al. (1987) Noninfectious complications of long-term central venous catheters: radiologic evaluation and management. Am J Roentgenol 149: 671–675

    Article  Google Scholar 

  71. Moss JF et al. (1989) Central venous thrombosis related to the silastic Hickman-Broviac catheter in an oncologic population. JPEN J Parenter Enteral Nutr 13: 397–400

    Article  CAS  PubMed  Google Scholar 

  72. Wenke K and Markewitz A (1990) Fully implantable catheter systems: long-term results–complications. Fortschr Med 108: 276–279

    CAS  PubMed  Google Scholar 

  73. Jansen RF et al. (1990) Assessment of insertion techniques and complication rates of dual lumen central venous catheters in patients with hematological malignancies. World J Surg 14: 100–104

    Article  CAS  PubMed  Google Scholar 

  74. Haire WD et al. (1990) Hickman catheter-induced thoracic vein thrombosis: frequency and long-term sequelae in patients receiving high-dose chemotherapy and marrow transplantation. Cancer 66: 900–908

    Article  CAS  PubMed  Google Scholar 

  75. Metz RI et al. (1990) Percutaneous catheterization of the axillary vein in infants and children. Pediatrics 85: 531–533

    CAS  PubMed  Google Scholar 

  76. Rau WS et al. (1991) The implantation of Hickman catheters: a new function of interventional radiology [German]. Radiologe 31: 125–131

    CAS  PubMed  Google Scholar 

  77. Gould JR et al. (1993) Groshong catheter-associated subclavian venous thrombosis. Am J Med 95: 419–423

    Article  CAS  PubMed  Google Scholar 

  78. Torromade JR et al. (1993) The complications of central venous access system: a study of 218 patients. Eur J Surg 159: 323–332

    Google Scholar 

  79. Wesenberg F et al. (1993) Central venous catheter with subcutaneous injection port (port a cath): 8 years clinical follow up with children. Pediatr Hematol Oncol 10: 233–239

    Article  CAS  PubMed  Google Scholar 

  80. Soh LT and Ang PT (1993) Implantable subcutaneous infusion ports. Support Care Cancer 1: 108–110

    Article  CAS  PubMed  Google Scholar 

  81. Anderson AJ et al. (1995) Thrombosis: the major Hickman catheter complication in patients with solid tumor. Chest 95: 71–75

    Article  Google Scholar 

  82. Horne MK III et al. (1995) Venographic surveillance of tunneled venous access devices in adult oncology patients. Ann Surg Oncol 2: 174–178

    Article  PubMed  Google Scholar 

  83. Cunningham MJ et al. (1996) Peripheral infusion ports for central venous access in patients with gynecologic malignancies. Gynecol Oncol 60: 397–399

    Article  CAS  PubMed  Google Scholar 

  84. Dubois J et al. (1997) Peripherally inserted central catheters in infants and children. Radiology 204: 622–626

    Article  CAS  PubMed  Google Scholar 

  85. Nightingale CE et al. (1997) A prospective analysis of 949 long-term central venous catheters for ambulatory chemotherapy in patients with gastrointestinal malignancy. Eur J Cancer 33: 398–403

    Article  CAS  PubMed  Google Scholar 

  86. Wilimas JA et al. (1998) Late vascular occlusion of central lines in pediatric malignancies. Pediatrics 101: E7

    Article  CAS  PubMed  Google Scholar 

  87. Knofler R et al. (1999) Clinical importance of prothrombotic risk factors in pediatric patients with malignancy-impact of central venous lines. Eur J Pediatr 158 (Suppl 3): S147–S150

    Article  PubMed  Google Scholar 

  88. Schwarz RE et al. (2000) Transcutaneously tunneled central venous lines in cancer patients: an analysis of device-related morbidity factors based on prospective data collection. Ann Surg Oncol 7: 441–449

    Article  CAS  PubMed  Google Scholar 

  89. Lagro SW et al. (2000) No effect of nadroparin prophylaxis in the prevention of central catheter (CVC)-associated thrombosis in bone marrow transplant recipients. Bone Marrow Transplant 26: 1103–1106

    Article  CAS  PubMed  Google Scholar 

  90. Hartkamp A et al. (2000) Totally implantable venous access devices: evaluation of complications and a prospective comparative study of two different port systems. Neth J Med 57: 215–223

    Article  CAS  PubMed  Google Scholar 

  91. Povoski SP (2000) A prospective analysis of the cephalic vein cutdown approach for chronic indwelling central venous access in 10 consecutive cancer patients. Ann Surg Oncol 7: 496–502

    Article  CAS  PubMed  Google Scholar 

  92. Coccaro M et al. (2001) Long-term infusional systems: complications in cancer patients. Tumori 87: 308–311

    Article  CAS  PubMed  Google Scholar 

  93. Harter C et al. (2002) Catheter-related infection and thrombosis of the internal jugular vein in hematologic–oncologic patients undergoing chemotherapy: a prospective comparison of silver coated and uncoated catheters. Cancer 94: 245–251

    Article  PubMed  Google Scholar 

  94. Kuriakose P et al. (2002) Risk of deep venous thrombosis associated with chest versus arm central venous subcutaneous port catheters: a 5-year single-institution retrospective study. J Vasc Interv Radiol 13: 179–184

    Article  PubMed  Google Scholar 

  95. Stoney WS et al. (1976) The incidence of venous thrombosis following long-term transvenous pacing. Ann Thorac Surg 22: 166–170

    Article  CAS  PubMed  Google Scholar 

  96. Valerio D et al. (1981) Central vein thrombosis associated with intravenous feeding—a prospective study. JPEN J Parenter Enteral Nutr 5: 240–242

    Article  CAS  PubMed  Google Scholar 

  97. Bozetti F et al. (1983) Subclavian vein thrombosis due to indwelling catheters: a prospective study on 52 patients. JPEN J Parenter Enteral Nutr 7: 560–562

    Article  Google Scholar 

  98. Glaser DW et al. (2001) Catheter-related thrombosis in children with cancer. J Pediatr 138: 255–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Agnelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnelli, G., Verso, M. Therapy Insight: venous-catheter-related thrombosis in cancer patients. Nat Rev Clin Oncol 3, 214–222 (2006). https://doi.org/10.1038/ncponc0458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing