Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenic inhibitors: a new therapeutic strategy in oncology

Abstract

Angiogenesis is a multistep, complex and tightly regulated process that is necessary for tumor growth and metastasis. Based on data of preclinical models, several antiangiogenic compounds has been shown to modify activated tumor endothelium, which suggests that these compounds can improve cytotoxic drug delivery. Such agents have entered clinical trials as single agents or in combination with cytotoxic drugs, and have shown promising antitumor activity. The pharmacodynamic and pharmacokinetic characteristics of antiangiogenic drugs are reviewed here. Most of the early clinical testing of these agents was conducted in patients with advanced disease resistant to standard therapies. Phase III trials compared the efficacy of standard chemotherapy alone with standard chemotherapy in combination with an experimental angiogenesis inhibitor. Although some of these studies were negative or controversial, recent studies validated in large clinical trials with an anti-vascular endothelial growth factor antibody demonstrated significant clinical benefit and renewed enthusiasm for this therapeutic strategy. This review describes the clinical studies of antiangiogenic agents and highlights the challenges related to choosing appropriate strategies for the selection of patients, study design and choice of appropriate endpoints for the studies' development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation and function of vascular endothelial growth factor.
Figure 2: Mechanisms of tumor angiogenesis.
Figure 3: Classification of angiogenesis inhibitors.

Similar content being viewed by others

References

  1. Bergers G and Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J and Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138: 745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Longo R et al. (2002) Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 5: 237–256

    Article  CAS  PubMed  Google Scholar 

  4. St Croix B et al. (2000) Genes expressed in human tumor and endothelium. Science 289: 1197–1202

    Article  CAS  PubMed  Google Scholar 

  5. Pepper MS (2001) Role of the matrix metalloproteinases and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thrombovasc Biol 21: 1104–1117

    Article  CAS  Google Scholar 

  6. Stupack DG and Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64: 207–238

    Article  CAS  PubMed  Google Scholar 

  7. Rini BI and Small EJ (2005) Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J Clin Oncol 23: 1028–1043

    Article  CAS  PubMed  Google Scholar 

  8. Hicklin DJ and Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011–1027

    Article  CAS  PubMed  Google Scholar 

  9. Scappaticci FA (2002) Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 20: 3906–3927

    Article  CAS  PubMed  Google Scholar 

  10. Nyberg P et al. (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65: 3967–3979

    Article  CAS  PubMed  Google Scholar 

  11. Jain RK et al. (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62

    Article  CAS  PubMed  Google Scholar 

  12. Vermeulen PB et al. (1995) Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. Ann Oncol 6: 59–64

    Article  CAS  PubMed  Google Scholar 

  13. Gasparini G and Harris AL (1995) Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13: 765–782

    Article  CAS  PubMed  Google Scholar 

  14. Brown LF et al. (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5: 1041–1056

    CAS  PubMed  Google Scholar 

  15. Folkman J (2002) Looking for a good endothelial address. Cancer Cell 3: 113–115

    Article  Google Scholar 

  16. Kerbel RS (2001) Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results. J Clin Oncol 19 (Suppl 18): S45–S51

    Google Scholar 

  17. Yu JL et al. (2002) Effect of p53 status on tumor response to anti-angiogenic therapy. Science 295: 1526–1528

    Article  CAS  PubMed  Google Scholar 

  18. Tran J et al. (2002) A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A 99: 4349–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu JL et al. (2001) Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 158: 1325–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carmeliet P et al. (1998) Role of HIF-1 alpha in hypoxic-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490

    Article  CAS  PubMed  Google Scholar 

  21. Ferrara N et al. (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803

    Article  CAS  PubMed  Google Scholar 

  22. Ferrara N et al. (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3: 391–400

    Article  CAS  PubMed  Google Scholar 

  23. Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 19 (Suppl 3): S7–S16

    Google Scholar 

  24. Kabbinavar F et al. (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cencer. J Clin Oncol 21: 60–65

    Article  CAS  PubMed  Google Scholar 

  25. Hurwitz H et al. (2004) Bevacizumab plus irinotecan, fluorouracil and leucovorin for colorectal cancer. N Engl J Med 350: 2335–2342

    Article  CAS  PubMed  Google Scholar 

  26. Johnson DH et al. (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22: 2184–2191

    Article  CAS  PubMed  Google Scholar 

  27. Miller KD et al. (2005) Randomized phase III trial of Capecitabine compared with Bevacizumab plus Capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23: 792–799

    Article  CAS  PubMed  Google Scholar 

  28. Yang JC et al. (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349: 427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sandler AB et al. (2005) Randomized phase II/III trial of paclitaxel (P) plus carboplatin with or without bevacizumab (NSC#704865) in patients with advanced non-squamous non-small cell lung cancer (NSCLC): an Eastern Cooperative Oncology Group (ECOG) trial- E 4599 [abstract #4]. J Clin Oncol 23 (Suppl 16S)

  30. Giantonio BJ et al. (2005) High-dose bevacizumab improves survival when combined with FOLFOX-4 in previously treated advanced colorectal cancer: Results from the Eastern Cooperative Oncology Group (ECOG) study E3200 [abstract #2]. Proc Am Cancer Soc 23

  31. Kuenen BC et al. (2002). Dose-finding and pharmacokinetics study of cisplatin, gemcitabine and SU5416 in patients with solid tumors. J Clin Oncol 20: 1657–1667

    Article  CAS  PubMed  Google Scholar 

  32. Harris AL (2000) Von Hippel-Landau syndrome: target for anti-vascular endothelial growth factor (VEGF) receptor therapy. Oncologist 5 (Suppl 1): S32–S36

    Article  Google Scholar 

  33. Raymond E et al. (2003) Final results of a phase I and pharmacokinetic study of SU11248, a novel multi-targeted tyrosine kinase inhibitor, in patients with advanced cancers [abstract #769]. Proc Am Soc Clin Oncol 22

  34. Manning WC et al. (2003) Pharmacokinetic and pharmacodynamic evaluation of SU11248 in a phase I clinical trial of patients (pts) with imatinib-resistant gastrointestinal stromal tumor (GIST) [abstract #768]. Proc Am Soc Clin Oncol 22

  35. O'Farrell A-M et al. (2003) Analysis of biomarkers of SU11248 action in an exploratory study in patients with advanced malignancies [abstract #939]. Proc Am Soc Clin Oncol 22

  36. Toner GC et al. (2003) PET imaging study of SU11248 in patients with advanced malignancies [abstract #767]. Proc Am Soc Clin Oncol 22

  37. Motzer RJ et al. (2005) Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC) [abstract #4508]. Proc Am Soc Clin Oncol 23

  38. Steward WP et al. (2003) Extended phase I study of the oral vascular endothelial growth factor (VEGF) receptor inhibitor PTK787/ZK222584 in combination with oxaliplatin/5-fluorouracil (5-FU)/leucovorin as first line treatment for metastatic colorectal cancer [abstract #1098]. Proc Am Soc Clin Oncol 22

  39. Trarbach T et al. (2003) Phase I study of the oral vascular endothelial growth factor (VEGF) receptor inhibitor PTK787/ZK222584 (PTK/ZK) in combination with irinotecan/5-fluorouracil/leucovorin in patients with metastatic colorectal cancer [abstract #1144]. Proc Am Soc Clin Oncol 22

  40. George D et al. (2003) Phase I study of PTK787/ZK222584 (PTK/ZK) in metastatic renal cell carcinoma [abstract #1548]. Proc Am Soc Clin Oncol 22

  41. Hecht JR et al. (2005) A randomized, double-blind, placebo-controlled, phase III study in patients (pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK 787/ZK 222584 or placebo (CONFIRM-1) [abstract #3]. Proc Am Cancer Soc 23

  42. Minami H et al. (2003) A phase I study of an oral VEGF receptor tyrosine kinase inhibitor ZD6474, in Japanese patients with solid tumors [abstract]. Proc Am Soc Clin Oncol 22: 778

    Google Scholar 

  43. Miller KD et al. (2005) A multicenter phase II trial of ZD 6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 11: 3369–3376

    Article  CAS  PubMed  Google Scholar 

  44. Strumberg D et al. (2005) Phase I clinical and pharmacokinetic study of the novel raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23: 965–972

    Article  CAS  PubMed  Google Scholar 

  45. Wilhelm SM et al. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinase involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109

    Article  CAS  PubMed  Google Scholar 

  46. Ratain MJ et al. (2005) Final findings from a phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC) [abstract #4544]. Proc Am Soc Clin Oncol 23

  47. Ahmad T et al. (2004) BAY 43-9006 in patients with advanced melanoma [abstract #7506]. Proc Am Soc Clin Oncol 22

  48. Bergsland EK (2004) Update on clinical trials targeting vascular endothelial growth factor in cancer. Am J Health Syst Pharm 61 (Suppl 5): S12–S20

    Article  CAS  PubMed  Google Scholar 

  49. Dupont J et al. (2003) Phase I study of VEGF Trap in patients with solid tumors and lymphoma [abstract #194]. Proc Am Soc Clin Oncol 22

  50. Dupont J et al. (2005) Safety and pharmacokinetics of intravenous VEGF Trap in a phase I clinical trial of patients with advanced solid tumors. [abstract]. Proc Am Soc Clin Oncol 23: 3029

    Article  Google Scholar 

  51. Coussens LM et al. (2002) Matrix metalloproteinase inhibitors and cancer trials and tribulations. Science 295: 2387–2392

    Article  CAS  PubMed  Google Scholar 

  52. Leighl NB et al. (2005) Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada–Clinical Trials Group Study BR.18. J Clin Oncol 23: 2831–2839

    Article  CAS  PubMed  Google Scholar 

  53. Eder JP et al. (2002) Phase I clinical trial of recombinant human Endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20: 3772–3784

    Article  CAS  PubMed  Google Scholar 

  54. Herbst RS et al. (2002) Phase I study of recombinant human Endostatin in patients with advanced solid tumors. J Clin Oncol 20: 3792–3803

    Article  CAS  PubMed  Google Scholar 

  55. Thomas JP et al. (2003) A Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 21: 223–231

    Article  CAS  PubMed  Google Scholar 

  56. Heymach J et al. (2003) Circulating endothelial cells as a surrogate marker of antiangiogenic activity in patients treated with endostatin [abstract #979]. Proc Am Soc Clin Oncol 22

  57. Kulke M et al. (2003) A phase II, open-label, safety, pharmacokinetic and efficacy study of recombinant human endostatin in patients with advanced neuroendocrine tumors [abstract #958]. Proc Am Soc Clin Oncol 22

  58. Eisterer W et al. (2002) Unfulfilled promise of endostatin in a gene therapy–xenotransplant model of human acute lymphocytic leukemia. Mol Ther 5: 352–359

    Article  CAS  PubMed  Google Scholar 

  59. Tjin Tham Sjin RM et al. (2005) A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity. Cancer Res 65: 3656–3663

    Article  PubMed  Google Scholar 

  60. Morbidelli L et al. (2003) Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin Cancer Res 9: 5358–5369

    CAS  PubMed  Google Scholar 

  61. Wickstrom SA et al. (2004) An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J Biol Chem 279: 20178–20185

    Article  PubMed  CAS  Google Scholar 

  62. Kuo CJ et al. (2001) Oligomerization-dependent regulation of motility and morphogenesis by collagen XVIII NC1/endostatin domain. J Cell Biol 152: 1233–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gasparini G et al. (2001) Thalidomide: an old sedative-hypnotic with anticancer activity? Current Opin Invest Drugs 2: 1302–1308

    CAS  Google Scholar 

  64. Morabito A et al. (2005) Thalidomide is inactive in heavily pretreated metastatic breast cancer patients. Cancer J 11: 243–246

    Article  Google Scholar 

  65. Singhal S et al. (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341: 1565–1571

    Article  CAS  PubMed  Google Scholar 

  66. Barlogie B et al. (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase-2 study of 169 patients. Blood 98: 492–494

    Article  CAS  PubMed  Google Scholar 

  67. Chang W J et al. (2005) Targeted therapy in multiple myeloma. Cancer Control 12: 91–104

    Article  Google Scholar 

  68. Rajkumar SV et al. (2001) Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia 15: 1274–1276

    Article  CAS  PubMed  Google Scholar 

  69. Rajkumar SV et al. (2003) Thalidomide as initial therapy for early-stage myeloma. Leukemia 17: 775–779

    Article  CAS  PubMed  Google Scholar 

  70. Weber D et al. (2003) Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 21: 16–19

    Article  CAS  PubMed  Google Scholar 

  71. Motzer RJ et al. (2002) Phase II trial of thalidomide for patients with advanced renal cell carcinoma. J Clin Oncol 20: 302–306

    Article  CAS  PubMed  Google Scholar 

  72. Morabito A et al. (2004) Thalidomide prolongs disease stabilization after conventional therapy in patients with recurrent glioblastoma. Oncol Rep 11: 93–95

    CAS  PubMed  Google Scholar 

  73. Drake MJ et al. (2003) An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer. Br J Cancer 88: 822–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tseng JE et al. (2001) Phase II study of the antiangiogenesis agent thalidomide in recurrent or metastatic squamous cell carcinoma of the head and neck. Cancer 92: 2364–2373

    Article  CAS  PubMed  Google Scholar 

  75. Fine HA et al. (2003) Phase II trial of Thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 21: 2299–2304

    Article  CAS  PubMed  Google Scholar 

  76. Hwu WJ et al. (2002) Temozolomide plus thalidomide in patients with advanced melanoma: results of a dose-finding trial. J Clin Oncol 20: 2610–2605

    Article  CAS  PubMed  Google Scholar 

  77. Lenz HJ et al. (2005) Antiangiogenic agents in cancer therapy. Oncology 19 (Suppl 3): S17–S25

    Google Scholar 

  78. Richardson P (2004) Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol 22: 3212–3114

    Article  CAS  PubMed  Google Scholar 

  79. List A et al. (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352: 549–557

    Article  CAS  PubMed  Google Scholar 

  80. Gasparini G et al. (2003) COX-2 inhibitors (Coxibs): A new class of anticancer agents? Lancet Oncol 4: 605–615

    Article  CAS  PubMed  Google Scholar 

  81. Altorki NK et al. (2003) Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 21: 2645–2650

    Article  CAS  PubMed  Google Scholar 

  82. Gasparini G et al. The combined therapy with weekly irinotecan, infusional 5-fluorouracil and the selective anti-COX-2 rofecoxib is a safe and effective second-line treatment in metastatic colorectal cancer. Oncologist, in press

  83. Gasparini G et al. (2005) The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: a phase II study with biological correlates. Cancer J 11: 209–216

    Article  CAS  PubMed  Google Scholar 

  84. Bresalier RS et al. (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352: 1092–1102

    Article  CAS  PubMed  Google Scholar 

  85. Solomon S et al. (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352: 1071–1080

    Article  CAS  PubMed  Google Scholar 

  86. Nussmeir NA et al. (2005) Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 352: 1081–1091

    Article  Google Scholar 

  87. Dittaldi R et al. (2001) Validation of blood collection procedures for the determination of circulating vascular endothelial growth factor (VEGF) in different blood compartments. Int J Biol Markers 16: 87–96

    Article  Google Scholar 

  88. Beaudry P et al. (2005) Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD 6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as surrogate marker of antiangiogenic activity. Clin Cancer Res 11: 3514–3522

    Article  CAS  PubMed  Google Scholar 

  89. Shaked Y et al. (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of angiogenesis. Cancer Cell 7: 101–111

    CAS  PubMed  Google Scholar 

  90. Schneider M et al. (2005) A surrogate marker to monitor angiogenesis at last. Cancer Cell 7: 3–4

    Article  CAS  PubMed  Google Scholar 

  91. Betensky RA et al. (2002) Influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol 20: 2495–2499

    Article  PubMed  Google Scholar 

  92. Fox E et al. (2002) Clinical trial design for target-based therapy. Oncologist 7: 401–409

    Article  CAS  PubMed  Google Scholar 

  93. Gasparini G and Gion M (2000) Molecular-targeted anticancer therapy: challenges related to study-design and choice of proper end-points. Cancer J 6: 117–131

    CAS  PubMed  Google Scholar 

  94. Bertolini F et al. (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63: 4342–4346

    CAS  PubMed  Google Scholar 

  95. Hobson B and Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hudis CA et al. (2005) Clinical implications of antiangiogenic therapies. Oncology 19 (Suppl 3): S26–S31

    Google Scholar 

  97. Klement G et al. (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105: R15–R24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia AA et al. (2005) Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: A Californian Cancer Consortium Trial. [abstract #5000]. Proc Am Soc Clin Oncol 23

  99. Pennacchietti S et al. (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3: 347–361

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Studies supported in part by the Associazione Italiano per le Terapie Biologiche Innovative (AITBI), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampietro Gasparini.

Ethics declarations

Competing interests

Napoleone Ferrara is an employer and shareholder of Genentech Inc, which manufactures bevacizumab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparini, G., Longo, R., Toi, M. et al. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Rev Clin Oncol 2, 562–577 (2005). https://doi.org/10.1038/ncponc0342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing