Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis

Abstract

Parkinson disease (PD) is associated with progressive loss of dopaminergic neurons in the substantia nigra, as well as with more-widespread neuronal changes that cause complex and variable motor and nonmotor symptoms. Recent rapid advances in PD genetics have revealed a prominent role for mitochondrial dysfunction in the pathogenesis of the disease, and the products of several PD-associated genes, including SNCA, Parkin, PINK1, DJ-1, LRRK2 and HTR2A, show a degree of localization to the mitochondria under certain conditions. Impaired mitochondrial function is likely to increase oxidative stress and might render cells more vulnerable to this and other related processes, including excitotoxicity. The mitochondria, therefore, represent a highly promising target for the development of disease biomarkers by use of genetic, biochemical and bioimaging approaches. Novel therapeutic interventions that modify mitochondrial function are currently under development, and a large phase III clinical trial is underway to examine whether high-dose oral coenzyme Q10 will slow disease progression. In this Review, we examine evidence for the roles of mitochondrial dysfunction and increased oxidative stress in the neuronal loss that leads to PD and discuss how this knowledge might further improve patient management and aid in the development of 'mitochondrial therapy' for PD.

Key Points

  • Defective mitochondrial function and increased oxidative stress have been demonstrated in a subset of people with Parkinson disease (PD)

  • The products of several nuclear genes associated with PD are linked to mitochondrial function

  • Mitochondrial activity can also be affected by environmental factors that possibly contribute to PD pathogenesis

  • Novel therapies that target mitochondrial function and oxidative stress, such as coenzyme Q10, are now in clinical trials to test whether they modify PD progression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial dysfunction affects diverse cellular processes that can culminate in cell death.
Figure 2: Products of PD-associated genes that affect mitochondrial function and oxidative stress.

Similar content being viewed by others

References

  1. Beal MF (2007) Mitochondria and neurodegeneration. Novartis Found Symp 287: 183–192

    CAS  PubMed  Google Scholar 

  2. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7: 97–109

    Article  CAS  PubMed  Google Scholar 

  3. Schapira AH et al. (1990) Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54: 823–827

    Article  CAS  PubMed  Google Scholar 

  4. Parker WD Jr et al. (2008) Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 1189: 215–218

    Article  CAS  PubMed  Google Scholar 

  5. Keeney PM et al. (2006) Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26: 5256–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haas RH et al. (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol 37: 714–722

    Article  CAS  PubMed  Google Scholar 

  7. Penn AM et al. (1995) Generalized mitochondrial dysfunction in Parkinson's disease detected by magnetic resonance spectroscopy of muscle. Neurology 45: 2097–2099

    Article  CAS  PubMed  Google Scholar 

  8. Swerdlow RH et al. (1996) Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 40: 663–671

    Article  CAS  PubMed  Google Scholar 

  9. Gu M et al. (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann Neurol 44: 177–186

    Article  CAS  PubMed  Google Scholar 

  10. Hu MT et al. (2000) Cortical dysfunction in non-demented Parkinson's disease patients: a combined 31P-MRS and 18FDG-PET study. Brain 123: 340–352

    Article  PubMed  Google Scholar 

  11. Rango M et al. (2005) Parkinson's disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 26: 283–290

    Article  CAS  Google Scholar 

  12. Bowen BC et al. (1995) Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. AJNR Am J Neuroradiol 16: 61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Henchcliffe C et al.: Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial function in Parkinson's disease. Ann N Y Acad Sci, in press

  14. Dexter DT et al. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52: 381–389

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J et al. (1999) Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154: 1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perry TL et al. (1986) Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67: 269–274

    Article  CAS  PubMed  Google Scholar 

  17. Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53 (Suppl 3): S26–S36

    Article  CAS  PubMed  Google Scholar 

  18. Bogdanov M et al. (2008) Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 131: 389–396

    Article  PubMed  Google Scholar 

  19. Weisskopf MG et al. (2007) Plasma urate and risk of Parkinson's disease. Am J Epidemiol 166: 561–567

    Article  CAS  PubMed  Google Scholar 

  20. Green DR et al. (2004) The pathophysiology of mitochondrial cell death. Science 305: 626–629

    Article  CAS  PubMed  Google Scholar 

  21. Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis. Ann Neurol 44 (Suppl 1): S110–S114

    Article  CAS  PubMed  Google Scholar 

  22. Langston JW et al. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  CAS  PubMed  Google Scholar 

  23. Betarbet R et al. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3: 1301–1306

    Article  CAS  PubMed  Google Scholar 

  24. Coulom H et al. (2004) Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 24: 10993–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cicchetti F et al. (2005) Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats. Neurobiol Dis 20: 360–371

    Article  CAS  PubMed  Google Scholar 

  26. Greenamyre JT et al. (1994) Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson's disease. Ann Neurol 35: 655–661

    Article  CAS  PubMed  Google Scholar 

  27. Swerdlow RH et al. (1998) Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson's disease family. Ann Neurol 44: 873–881

    Article  CAS  PubMed  Google Scholar 

  28. Wooten GF et al. (1997) Maternal inheritance in Parkinson's disease. Ann Neurol 41: 265–268

    Article  CAS  PubMed  Google Scholar 

  29. Simon DK et al. (1999) Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology 53: 1787–1793

    Article  CAS  PubMed  Google Scholar 

  30. Luoma P et al. (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364: 875–882

    Article  CAS  PubMed  Google Scholar 

  31. Bender A et al. (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38: 515–517

    Article  CAS  PubMed  Google Scholar 

  32. Srivastava S et al. (2005) Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 14: 893–902

    Article  CAS  PubMed  Google Scholar 

  33. Pyle A et al. (2005) Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 57: 564–567

    Article  PubMed  Google Scholar 

  34. Devi L et al. (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283: 9089–9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cole NB et al. (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314: 2076–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shavali S et al. (2008) Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 439: 125–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin LJ et al. (2006) Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26: 41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parihar MS et al. (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65: 1272–1284

    Article  CAS  PubMed  Google Scholar 

  39. Buttner S et al. (2008) Functional mitochondria are required for α-synuclein toxicity in aging yeast. J Biol Chem 283: 7554–7560

    Article  CAS  PubMed  Google Scholar 

  40. Dauer W et al. (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889–909

    Article  CAS  PubMed  Google Scholar 

  41. Song DD et al. (2004) Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158–172

    Article  CAS  PubMed  Google Scholar 

  42. Kuroda Y et al. (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15: 883–895

    Article  CAS  PubMed  Google Scholar 

  43. Greene JC et al. (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100: 4078–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pesah Y et al. (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131: 2183–2194

    Article  CAS  PubMed  Google Scholar 

  45. Palacino JJ et al. (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279: 18614–18622

    Article  CAS  PubMed  Google Scholar 

  46. Muftuoglu M et al. (2004) Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 19: 544–548

    Article  PubMed  Google Scholar 

  47. Poole AC et al. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105: 1638–1643

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silvestri L et al. (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14: 3477–3492

    Article  CAS  PubMed  Google Scholar 

  49. Pridgeon JW et al. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5: e172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoepken HH et al. (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25: 401–411

    Article  CAS  PubMed  Google Scholar 

  51. Clark IE et al. (2006) Drosophila Pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166

    Article  CAS  PubMed  Google Scholar 

  52. Yang Y et al. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105: 7070–7075

    Article  PubMed  PubMed Central  Google Scholar 

  53. Petit A et al. (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280: 34025–34032

    Article  CAS  PubMed  Google Scholar 

  54. Wood-Kaczmar A et al. (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 3: e2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Exner N et al. (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27: 12413–12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonifati V et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256–259

    Article  CAS  PubMed  Google Scholar 

  57. Yokota T et al. (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312: 1342–1348

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L et al. (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14: 2063–2073

    Article  CAS  PubMed  Google Scholar 

  59. Canet-Aviles RM et al. (2004) The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101: 9103–9108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meulener M et al. (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 15: 1572–1577

    Article  CAS  PubMed  Google Scholar 

  61. Park J et al. (2005) Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361: 133–139

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y et al. (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 102: 13670–13675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shendelman S et al. (2004) DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol 2: e362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meulener MC et al. (2005) DJ-1 is present in a large molecular complex in human brain tissue and interacts with α-synuclein. J Neurochem 93: 1524–1532

    Article  CAS  PubMed  Google Scholar 

  65. West AB et al. (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102: 16842–16847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martins LM et al. (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24: 9848–9862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Strauss KM et al. (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 14: 2099–2111

    Article  CAS  PubMed  Google Scholar 

  68. Ravagnan L et al. (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192: 131–137

    Article  CAS  PubMed  Google Scholar 

  69. Plun-Favreau H et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 9: 1243–1252

    Article  CAS  PubMed  Google Scholar 

  70. Simon-Sanchez J et al. (2008) Sequencing analysis of OMI/HTRA2 shows previously reported pathogenic mutations in neurologically normal controls. Hum Mol Genet 17: 1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36: 381–386

    Article  CAS  PubMed  Google Scholar 

  72. McCarthy S et al. (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble coenzyme Q10. Toxicol Appl Pharmacol 201: 21–31

    Article  CAS  PubMed  Google Scholar 

  73. Menke T et al. (2003) Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18: 65–72

    Article  CAS  PubMed  Google Scholar 

  74. Beal MF et al. (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783: 109–114

    Article  CAS  PubMed  Google Scholar 

  75. Horvath TL et al. (2003) Coenzyme Q induces nigral mitochondrial uncoupling and prevents nigral cell loss in a primate model of Parkinson's disease. Endocrinology 144: 2757–2760

    Article  CAS  PubMed  Google Scholar 

  76. Stamelou M et al. (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 23: 942–949

    Article  PubMed  Google Scholar 

  77. Shults CW et al. (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59: 1541–1550

    Article  PubMed  Google Scholar 

  78. The NINDS NET-PD Investigators (2007) A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology 68: 20–28

  79. The NINDS NET-PD Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66: 664–671

  80. Klivenyi P et al. (2006) Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21: 541–548

    Article  CAS  PubMed  Google Scholar 

  81. Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61: 561–566

  82. Lagouge M et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127: 1109–1122

    Article  CAS  PubMed  Google Scholar 

  83. Lu KT et al. (2008) Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 56: 6910–6913

    Article  CAS  PubMed  Google Scholar 

  84. Ko L et al. (2000) Sensitization of neuronal cells to oxidative stress with mutated human α-synuclein. J Neurochem 75: 2546–2554

    Article  CAS  PubMed  Google Scholar 

  85. Ostrerova-Golts N et al. (2000) The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20: 6048–6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith WW et al. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 102: 18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paxinou E et al. (2001) Induction of α-synuclein aggregation by intracellular nitrative insult. J Neurosci 21: 8053–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Darios F et al. (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12: 517–526

    Article  CAS  PubMed  Google Scholar 

  89. Park J et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161

    Article  CAS  PubMed  Google Scholar 

  90. Gandhi S et al. (2006) PINK1 protein in normal human brain and Parkinson's disease. Brain 129: 1720–1731

    Article  CAS  PubMed  Google Scholar 

  91. Taira T et al. (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5: 213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi J et al. (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281: 10816–10824

    Article  CAS  PubMed  Google Scholar 

  93. Menzies FM et al. (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15: 1578–1582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Greta Strong for her outstanding assistance, and Penelope Grossman M.D. for helpful comments on the manuscript. CH acknowledges support of the Daisy and Paul Soros Clinical Scholarship in Neurology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Henchcliffe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henchcliffe, C., Beal, M. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Rev Neurol 4, 600–609 (2008). https://doi.org/10.1038/ncpneuro0924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing