Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders

Abstract

The finding that activation of peroxisome proliferator-activated receptor-γ (PPARγ) suppresses inflammation in peripheral macrophages and in models of human autoimmune disease instigated the evaluation of this salutary action for the treatment of CNS disorders with an inflammatory component. The fact that NSAIDs delay the onset of and reduce the risk of developing Alzheimer's disease (AD), while also binding to and activating PPARγ, led to the hypothesis that one dimension of NSAID protection in AD is mediated by PPARγ. Several lines of evidence from experiments using AD-related transgenic cellular and animal models have supported this hypothesis. The capacity of PPARγ agonists to elicit anti-inflammatory, anti-amyloidogenic and insulin-sensitizing effects might account for their observed protective effects. Several clinical trials employing PPARγ agonists have yielded promising results, and further trials are in preparation. Positive outcomes following PPARγ administration have been obtained in animal models of other neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, both of which are associated with a considerable degree of neuroinflammation. Finally, activation of PPARγ has been found to be protective in several models of multiple sclerosis. The verification of these findings in human cells prompted the initiation of clinical studies evaluating PPARγ activation in patients with multiple sclerosis.

Key Points

  • The evaluation of peroxisome proliferator-activated receptor gamma (PPARγ)-mediated actions for CNS disorders was prompted by experimental findings that showed that PPARγ activation suppresses inflammation in peripheral macrophages and in models of human autoimmune disease

  • Synthetic PPARγ ligands have been approved by the FDA and are currently in clinical use as oral treatments for non-insulin-dependent type 2 diabetes

  • Early clinical trials indicate that patients with Alzheimer's disease might benefit from the anti-amyloidogenic, anti-inflammatory and insulin-sensitizing effects of PPARγ activation

  • Positive outcomes in animal models of amyotrophic lateral sclerosis and Parkinson's disease indicate that patients with these conditions might benefit from PPARγ-activating drugs

  • Consistent with data from animal models, observations in a single patient and from a phase I study indicate a clinical benefit of PPARγ agonists in patients with multiple sclerosis

  • Studies in rodent models of cerebral ischemia showed neuroprotection in response to synthetic PPARγ activators, and a large clinical trial recently reported that a synthetic PPARγ agonist reduces the combined risk of heart attack, stroke and death in high-risk patients with type 2 diabetes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Desvergne B and Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20: 649–688

    CAS  PubMed  Google Scholar 

  2. Daynes RA and Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2: 748–759

    Article  CAS  PubMed  Google Scholar 

  3. Michalik L et al. (2006) International Union of Pharmacology. LXI: peroxisome proliferator-activated receptors. Pharmacol Rev 58: 726–741

    Article  CAS  PubMed  Google Scholar 

  4. Willson TM et al. (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70: 341–367

    Article  CAS  PubMed  Google Scholar 

  5. in t'Veld BA et al. (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N Engl J Med 345: 1515–1521

    Article  CAS  Google Scholar 

  6. Heneka MT et al. (2001) Role for peroxisome proliferator-activated receptor-gamma in Alzheimer's disease. Ann Neurol 49: 276

    Article  CAS  PubMed  Google Scholar 

  7. Heneka MT and O'Banion MK (2007) Inflammatory processes in Alzheimer's disease. J Neuroimmunol 184: 69–91

    Article  CAS  PubMed  Google Scholar 

  8. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12: 1005–1015

    CAS  PubMed  Google Scholar 

  9. Hüll M et al. (2002) Pathways of inflammatory activation in Alzheimer's disease: potential targets for disease modifying drugs. Curr Med Chem 9: 83–88

    Article  PubMed  Google Scholar 

  10. Vodovotz Y et al. (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J Exp Med 184: 1425–1433

    Article  CAS  PubMed  Google Scholar 

  11. Heneka MT et al. (1999) Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol 100: 156–168

    Article  CAS  PubMed  Google Scholar 

  12. Heneka MT et al. (2000) Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 20: 6862–6867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Combs CK et al. (2000) Inflammatory mechanisms in Alzheimer's disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 20: 558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luna-Medina R et al. (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J Biol Chem 280: 21453–21462

    Article  CAS  PubMed  Google Scholar 

  15. Heneka MT et al. (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on Ikappa B and HSP70 expression. J Neurochem 85: 387–398

    Article  CAS  PubMed  Google Scholar 

  16. Maeshiba Y et al. (1997) Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Drug Res 47: 29–35

    CAS  Google Scholar 

  17. Yan Q et al. (2003) Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci 23: 7504–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heneka MT et al. (2005) Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain 128: 1442–1453

    Article  PubMed  Google Scholar 

  19. Sastre M et al. (2006) Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Nat Acad Sci USA 103: 443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sastre M et al. (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J Neurosci 23: 9796–9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. d'Abramo C et al. (2005) Role of peroxisome proliferator-activated receptor γ in amyloid precursor protein processing and amyloid β-mediated cell death. Biochem J 391: 693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camacho IE et al. (2004) Peroxisome proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 24: 10908–10917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pedersen WA et al. (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 199: 265–273

    Article  CAS  PubMed  Google Scholar 

  24. Watson GS et al. (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13: 950–958

    PubMed  Google Scholar 

  25. Risner ME et al. (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J 6: 246–254

    Article  CAS  PubMed  Google Scholar 

  26. Luchsinger JA et al. (2001) Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154: 635–641

    Article  CAS  PubMed  Google Scholar 

  27. Geldmacher D and Landreth G (2004) Pioglitazone in Alzheimer's disease: rationale and clinical trial design. In Proceedings of the 9th International Conference on Alzheimer's Disease and Related Disorders: 2004 17–22 July, Philadelphia. P1: 397

    Google Scholar 

  28. Pedersen WA and Flynn ER (2004) Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis 17: 500–506

    Article  CAS  PubMed  Google Scholar 

  29. Kuusisto J et al. (1997) Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. Br Med J 315: 1045–1049

    Article  CAS  Google Scholar 

  30. Liberatore GT et al. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5: 1403–1409

    Article  CAS  PubMed  Google Scholar 

  31. Breidert T et al. (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem 82: 615–624

    Article  CAS  PubMed  Google Scholar 

  32. Dehmer T et al. (2004) Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88: 494–501

    Article  CAS  PubMed  Google Scholar 

  33. Hunter RL et al. (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100: 1375–1386

    Article  CAS  PubMed  Google Scholar 

  34. Weydt P and Moller T (2005) Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. Neuroreport 16: 527–531

    Article  PubMed  Google Scholar 

  35. Kiaei M et al. (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191: 331–336

    Article  CAS  PubMed  Google Scholar 

  36. Schutz B et al. (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 25: 7805–7812

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park SW et al. (2007) Thiazolidinedione class of peroxisome proliferator-activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320: 1002–1012

    Article  CAS  PubMed  Google Scholar 

  38. Martin R et al. (1992) Immunological aspects of demyelinating diseases. Ann Rev Immunol 10: 153–187

    Article  CAS  Google Scholar 

  39. Pershadsingh HA (2004) Peroxisome proliferator-activated receptor-γ: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 13: 215–228

    Article  CAS  PubMed  Google Scholar 

  40. Niino M et al. (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-γ. J Neuroimmunol 116: 40–48

    Article  CAS  PubMed  Google Scholar 

  41. Diab A et al. (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Δ12,14-prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol 168: 2508–2515

    Article  CAS  PubMed  Google Scholar 

  42. Rossi A et al. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403: 103–108

    Article  CAS  PubMed  Google Scholar 

  43. Feinstein DL et al. (2002) Peroxisome proliferator-activated receptor-γ agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51: 694–702

    Article  CAS  PubMed  Google Scholar 

  44. Charo IF and Ransohoff RM (2006) Mechanisms of disease—the many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621

    Article  CAS  PubMed  Google Scholar 

  45. Bright JJ et al. (2003) Peroxisome proliferator-activated receptor-gamma-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 171: 5743–5750

    Article  CAS  PubMed  Google Scholar 

  46. Raikwar HP et al. (2006) PPARγ antagonists reverse the inhibition of neural antigen-specific Th-1 response and experimental allergic encephalomyelitis by Ciglitazone and 15-deoxy-Δ12,14-prostaglandin J2 . J Neuroimmunol 178: 76–86

    Article  CAS  PubMed  Google Scholar 

  47. Rieckmann P et al. (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing–remitting multiple sclerosis is associated with disease activity. Ann Neurol 37: 82–88

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt S et al. (2004) Anti-inflammatory and antiproliferative actions of PPAR-γ agonists on T lymphocytes derived from MS patients. J Leukoc Biol 75: 478–485

    Article  CAS  PubMed  Google Scholar 

  49. Klotz L et al. (2005) Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor γ levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 175: 4948–4955

    Article  CAS  PubMed  Google Scholar 

  50. Waite KJ et al. (2001) Interferon-γ-induced regulation of peroxisome proliferator-activated receptor γ and STATs in adipocytes. J Biol Chem 276: 7062–7068

    Article  CAS  PubMed  Google Scholar 

  51. Zheng Z and Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 26: 884–892

    Article  CAS  PubMed  Google Scholar 

  52. Perera MN et al. (2006) Inflammation following stroke. J Clin Neurosci 13: 1–8

    Article  CAS  Google Scholar 

  53. Sundararajan S et al. (2005) Peroxisome proliferator-activated receptor-γ ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 130: 685–696

    Article  CAS  PubMed  Google Scholar 

  54. Victor NA et al. (2006) Altered PPARγ expression and activation after transient focal ischemia in rats. Eur J Neurosci 24: 1653–1663

    Article  CAS  PubMed  Google Scholar 

  55. Chen SD et al. (2006) Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun 351: 198–203

    Article  CAS  PubMed  Google Scholar 

  56. Pereira MP et al. (2005) The nonthiazolidinedione PPARγ agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 64: 797–805

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Y et al. (2005) The intracerebral application of the PPARγ-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur J Neurosci 22: 278–282

    Article  PubMed  Google Scholar 

  58. Luo Y et al. (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. J Neurochem 97: 435–448

    Article  CAS  PubMed  Google Scholar 

  59. Pereira MP et al. (2006) Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 26: 218–229

    Article  CAS  PubMed  Google Scholar 

  60. Culman J et al. (2007) PPARγ: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28: 244–249

    Article  CAS  PubMed  Google Scholar 

  61. Tureyen K et al. (2007) Peroxisome proliferator-activated receptor-γ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. J Neurochem 101: 41–56

    Article  CAS  PubMed  Google Scholar 

  62. Dormandy JA et al. (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366: 1279–1289

    Article  CAS  PubMed  Google Scholar 

  63. Lee J and Reding M (2007) Effects of thiazolidinediones on stroke recovery: a case-matched controlled study. Neurochem Res 32: 635–638

    Article  CAS  PubMed  Google Scholar 

  64. Lee BC et al. (2006) Peroxisome proliferator-activated receptor-γ2 Pro12Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neurosci Lett 410: 141–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MT Heneka was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, HE 3350/6-1). GE Landreth was supported by grants from the NIH (AG16740) and the Blanchett Hooker Rockefeller Foundation. This publication is part of the German Research Network on Dementia and was funded by the German Federal Ministry for Education and Research (grant 01 G1 0420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T Heneka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heneka, M., Landreth, G. & Hüll, M. Drug Insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders. Nat Rev Neurol 3, 496–504 (2007). https://doi.org/10.1038/ncpneuro0586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing