Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anemia and anemia correction: surrogate markers or causes of morbidity in chronic kidney disease?

Abstract

Observational studies have shown a strong positive correlation between the severity of anemia and the risk of poor outcomes in patients with chronic kidney disease (CKD). This observation was initially taken to imply that adverse outcomes in CKD are caused by anemia. However, the assumption of causality ignores the possibility that anemia and adverse outcomes might be unrelated and that both are caused by underlying inflammation, oxidative stress and comorbid conditions. Randomized clinical trials of anemia correction have revealed an increased risk of adverse cardiovascular outcomes in patients assigned to normal, rather than subnormal, hemoglobin targets. As a result, correction of anemia is now considered potentially hazardous in patients with CKD. Notably, individuals who did not reach the target hemoglobin level in the clinical trials, despite receiving high doses of erythropoietin and iron, experienced a disproportionately large share of the adverse outcomes. These observations point to overdose of erythropoietin and iron, rather than anemia correction per se, as the likely culprit. This Review explores the reasons for the apparent contradiction between the findings of observational studies and randomized clinical trials of anemia treatment in CKD. I have focused on data from basic and translational studies, which are often overlooked in the design and interpretation of clinical studies and in the formulation of clinical guidelines.

Key Points

  • Contrary to common perception, the observational association of anemia with cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD) does not necessarily reflect causality; rather, anemia and adverse outcomes are both caused by inflammation and oxidative stress

  • In addition to their well-known erythropoietic functions, erythropoietin and iron have many other actions that are essential when these agents are at physiological levels, but they are potentially hazardous when at high levels

  • The increased risk of adverse outcomes observed in patients with CKD assigned to higher hemoglobin targets in randomized clinical trials is probably a result of the extra-erythropoietic actions of erythropoietin and/or iron that result from excessive dosing, as opposed to anemia correction per se

  • The range of 'safe' hemoglobin levels varies widely among patients with CKD; consequently, the blanket application of arbitrary hemoglobin targets to all patients with CKD, as called for by clinical guidelines, is impractical and potentially harmful

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The contribution of oxidative stress and inflammation to adverse cardiovascular outcomes and anemia in patients with chronic kidney disease.

Similar content being viewed by others

References

  1. Besarab A (2001) Anemia of renal disease. In Diseases of the Kidney and Urinary Tract, edn 7, 2719–2734 (Ed. Schrier RW) Philadelphia: Lippincott, Williams & Wilkins

    Google Scholar 

  2. Stenvinkel P (2001) The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant 16: 36–40

    Article  CAS  PubMed  Google Scholar 

  3. Locatelli F et al. (2006) Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol Dial Transplant 21: 991–998

    Article  CAS  PubMed  Google Scholar 

  4. Attallah N et al. (2006) Effect of intravenous ascorbic acid in hemodialysis patients with EPO-hyporesponsive anemia and hyperferritinemia. Am J Kidney Dis 47: 644–654

    Article  CAS  PubMed  Google Scholar 

  5. Lin CL et al. (2003) Low dose intravenous ascorbic acid for erythropoietin-hyporesponsive anemia in diabetic hemodialysis patients with iron overload. Ren Fail 25: 445–453

    Article  CAS  PubMed  Google Scholar 

  6. Himmelfarb J et al. (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62: 1524–1538

    Article  CAS  PubMed  Google Scholar 

  7. Himmelfarb J and Hakim RM (2003) Oxidative stress in uremia. Curr Opin Nephrol Hypertens 12: 593–598

    Article  CAS  PubMed  Google Scholar 

  8. Stenvinkel P (2006) Inflammation in end-stage renal disease: the hidden enemy. Nephrology (Carlton) 11: 36–41

    Article  Google Scholar 

  9. Lim PS et al. (2002) Mitochondrial DNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. J Biomed Sci 9: 549–560

    Article  CAS  PubMed  Google Scholar 

  10. Vaziri ND (2004) Oxidative stress in uremia: nature, mechanisms and potential consequences. Semin Nephrol 24: 469–473

    Article  CAS  PubMed  Google Scholar 

  11. Vaziri ND (2004) Roles of oxidative stress and antioxidant therapy in chronic renal disease and hypertension. Curr Opin Nephrol Hypertens 13: 93–99

    Article  CAS  PubMed  Google Scholar 

  12. Vaziri ND et al. (2007) Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation and progressive injury in renal mass reduction. J Pharmacol Exp Ther 323: 85–93

    Article  CAS  PubMed  Google Scholar 

  13. Yoon JW et al. (2007) Spontaneous leukocyte activation and oxygen-free radical generation in end stage renal disease. Kidney Int 71: 167–172

    Article  CAS  PubMed  Google Scholar 

  14. Vaziri ND et al. (2003) Oxidative stress and dysregulation of superoxide dismutase and NAD(P)H oxidase in renal insufficiency. Kidney Int 63: 179–185

    Article  CAS  PubMed  Google Scholar 

  15. Vaziri ND et al. (2002) Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension 39: 135–141

    Article  CAS  PubMed  Google Scholar 

  16. Quiroz Y et al. (2008) Melatonin ameliorates oxidative stress, inflammation, proteinuria and progression of renal damage in rats with renal mass reduction. Am J Physiol Renal Physiol 294: F336–F344

    Article  CAS  PubMed  Google Scholar 

  17. Herrera J et al. (2001) Melatonin prevents oxidative stress resulting from iron and erythropoietin administration. Am J Kidney Dis 37: 750–757

    Article  CAS  PubMed  Google Scholar 

  18. Chen HC et al. (1997) Recombinant human erythropoietin enhances superoxide production by FMLP-stimulated polymorphonuclear leukocytes in hemodialysis patients. Kidney Int 52: 1390–1394

    Article  CAS  PubMed  Google Scholar 

  19. Scalera F et al. (2005) Erythropoietin increases asymmetric dimethylarginine in endothelial cells: role of dimethylarginine dimethylaminohydrolase. J Am Soc Nephrol 16: 892–898

    Article  CAS  PubMed  Google Scholar 

  20. Lim CS and Vaziri ND (2004) Iron and oxidative stress in renal insufficiency. Am J Nephrol 24: 569–575

    Article  CAS  PubMed  Google Scholar 

  21. Lim CS and Vaziri ND (2004) The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure. Kidney Int 65: 1802–1809

    Article  CAS  PubMed  Google Scholar 

  22. Lim PS et al. (1999) Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy. Nephrol Dial Transplant 14: 2680–2687

    Article  CAS  PubMed  Google Scholar 

  23. Galleano M and Puntarulo S (1995) Role of antioxidants on the erythrocytes resistance to lipid peroxidation after acute iron overload in rats. Biochim Biophys Acta 1271: 321–326

    Article  PubMed  Google Scholar 

  24. Bishu K and Agarwal R (2006) Acute injury with intravenous iron and concerns regarding long-term safety. Clin J Am Soc Nephrol 1 (Suppl 1): S19–S23

    Article  CAS  PubMed  Google Scholar 

  25. Ma JZ et al. (1999) Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol 10: 610–619

    CAS  PubMed  Google Scholar 

  26. Xia H et al. (1999) Hematocrit levels and hospitalization risks in hemodialysis patients. J Am Soc Nephrol 10: 1309–1316

    CAS  PubMed  Google Scholar 

  27. Collins AJ et al. (2001) Death, hospitalization, and economic associations among incident hemodialysis patients with hematocrit values of 36 to 39%. J Am Soc Nephrol 12: 2465–2473

    CAS  PubMed  Google Scholar 

  28. Li S and Collins AJ (2004) Association of hematocrit value with cardiovascular morbidity and mortality in incident hemodialysis patients. Kidney Int 65: 626–633

    Article  PubMed  Google Scholar 

  29. Ofsthun N et al. (2003) The effects of higher hemoglobin levels on mortality and hospitalization in hemodialysis patients. Kidney Int 63: 1908–1914

    Article  PubMed  Google Scholar 

  30. Li S et al. (2004) Anemia, hospitalization, and mortality in patients receiving peritoneal dialysis in the United States. Kidney Int 65: 1864–1869

    Article  PubMed  Google Scholar 

  31. Robinson BM et al. (2005) Anemia and mortality in hemodialysis patients: accounting for morbidity and treatment variables updated over time. Kidney Int 68: 2323–2330

    Article  PubMed  Google Scholar 

  32. Locatelli F et al. (2004) Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant 19: 121–132

    Article  PubMed  Google Scholar 

  33. Wolfe RA et al. (2005) Improvements in dialysis patient mortality are associated with improvements in urea reduction ratio and hematocrit, 1999 to 2002. Am J Kidney Dis 45: 127–135

    Article  PubMed  Google Scholar 

  34. [No authors listed] (2001) IV. NKF-K/DOQI clinical practice guidelines for anemia of chronic kidney disease: update 2000. Am J Kidney Dis 37 (Suppl 1): S182–S238

  35. KDOQI (2006) KDOQI clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am J Kidney Dis 47 (Suppl 3): S11–S145

  36. Besarab A et al. (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590

    Article  CAS  PubMed  Google Scholar 

  37. Drueke TB et al. (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355: 2071–2084

    Article  CAS  PubMed  Google Scholar 

  38. Singh AK et al. (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355: 2085–2098

    Article  CAS  PubMed  Google Scholar 

  39. Phrommintikul A et al. (2007) Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 369: 381–388

    Article  CAS  PubMed  Google Scholar 

  40. Strippoli GF et al. (2004) Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol 15: 3154–3165

    Article  PubMed  Google Scholar 

  41. Volkova N and Arab L (2006) Evidence-based systematic literature review of hemoglobin/hematocrit and all-cause mortality in dialysis patients. Am J Kidney Dis 47: 24–36

    Article  PubMed  Google Scholar 

  42. Parfrey PS (2006) Target hemoglobin level for EPO therapy in CKD. Am J Kidney Dis 47: 171–173

    Article  PubMed  Google Scholar 

  43. Pisoni RL et al. (2004) Anemia management and outcomes from 12 countries in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 44: 94–111

    Article  PubMed  Google Scholar 

  44. KDOQI (2007) KDOQI clinical practice guideline and clinical practice recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kidney Dis 50: 471–530

  45. Deng G et al. (2001) Increased tyrosine nitration of the brain in chronic renal insufficiency: reversal by antioxidant therapy and angiotensin-converting enzyme inhibition. J Am Soc Nephrol 12: 1892–1899

    CAS  PubMed  Google Scholar 

  46. Vaziri ND et al. (1998) Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int 53: 1748–1754

    Article  CAS  PubMed  Google Scholar 

  47. Sindhu RK et al. (2004) Effect of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Biochim Biophys Acta 1690: 231–237

    Article  CAS  PubMed  Google Scholar 

  48. Sindhu RK and Vaziri ND (2003) Upregulation of cytochrome P450 1A2 in chronic renal failure: does oxidized tryptophan play a role? Adv Exp Med Biol 527: 401–407

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Iturbe B et al. (2005) Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int 68: 2131–2142

    Article  CAS  PubMed  Google Scholar 

  50. Vaziri ND and Khan M (2007) Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead-induced hypertension. Clin Exp Pharmacol Physiol 34: 920–925

    Article  CAS  PubMed  Google Scholar 

  51. Schiffrin EL et al. (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116: 85–97

    Article  PubMed  Google Scholar 

  52. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685–1695

    Article  CAS  PubMed  Google Scholar 

  53. Libby P (2002) Inflammation in atherosclerosis. Nature 420: 868–874

    Article  CAS  PubMed  Google Scholar 

  54. Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41 (Suppl): S15–S22

    Article  CAS  Google Scholar 

  55. Aikawa M and Libby P (2004) The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 13: 125–138

    Article  PubMed  Google Scholar 

  56. Vaziri ND and Rodríguez-Iturbe B (2006) Mechanisms of Disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2: 582–593

    Article  CAS  PubMed  Google Scholar 

  57. Yoon JW et al. (2006) Naïve and central memory T cell lymphopenia in end-stage renal disease. Kidney Int 70: 371–376

    Article  CAS  PubMed  Google Scholar 

  58. Ansell BJ et al. (2007) The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol 18: 427–434

    Article  CAS  PubMed  Google Scholar 

  59. Navab M et al. (2006) Mechanisms of Disease: proatherogenic HDL—an evolving field. Nat Clin Pract Endocrinol Metab 2: 504–511

    Article  CAS  PubMed  Google Scholar 

  60. Kalantar-Zadeh K et al. (2007) HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int 72: 1149–1156

    Article  CAS  PubMed  Google Scholar 

  61. Ganz T (2007) Molecular control of iron transport. J Am Soc Nephrol 18: 394–400

    Article  CAS  PubMed  Google Scholar 

  62. Hardee ME et al. (2006) Erythropoietin biology in cancer. Clin Cancer Res 12: 332–339

    Article  CAS  PubMed  Google Scholar 

  63. Vaziri ND (1999) Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis 33: 821–828

    Article  CAS  PubMed  Google Scholar 

  64. Vaziri ND (2001) Cardiovascular effects of erythropoietin and anemia correction. Curr Opin Nephrol Hypertens 10: 633–637

    Article  CAS  PubMed  Google Scholar 

  65. Lebel M et al. (1998) Hemodynamic and hormonal changes during erythropoietin therapy in hemodialysis patients. J Am Soc Nephrol 9: 97–104

    CAS  PubMed  Google Scholar 

  66. Vaziri ND et al. (1996) Role of nitric oxide resistance in erythropoietin-induced hypertension in rats with chronic renal failure. Am J Physiol Endocrinol Metab 271: E113–E122

    Article  CAS  Google Scholar 

  67. Vaziri ND et al. (1995) In vivo and in vitro pressor effects of erythropoietin in rats. Am J Physiol 269: F838–F845

    CAS  PubMed  Google Scholar 

  68. Neusser M et al. (1993) Erythropoietin increases cytosolic free calcium concentration in vascular smooth muscle cells. Cardiovasc Res 27: 1233–1236

    Article  CAS  PubMed  Google Scholar 

  69. Kaupke CJ et al. (1994) Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance erythropoietin therapy. J Am Soc Nephrol 4: 1874–1878

    CAS  PubMed  Google Scholar 

  70. Takahashi K et al. (1993) Plasma concentrations of immunoreactive-endothelin in patients with chronic renal failure treated with recombinant human erythropoietin. Clin Sci 84: 47–50

    Article  CAS  Google Scholar 

  71. Bode-Böger SM et al. (1996) Recombinant human erythropoietin enhances vasoconstrictor tone via endothelin-1 and constrictor prostanoids. Kidney Int 50: 1255–1261

    Article  PubMed  Google Scholar 

  72. Carlini RG et al. (1993) Recombinant human erythropoietin (rHuEPO) increases endothelin-1 release by endothelial cells. Kidney Int 43: 1010–1014

    Article  CAS  PubMed  Google Scholar 

  73. Carlini RG et al. (1995) Endothelin-1 release by erythropoietin involves calcium signaling in endothelial cells. J Cardiovasc Pharmacol 26: 889–892

    Article  CAS  PubMed  Google Scholar 

  74. Lebel M et al. (1998) Plasma and blood vessel endothelin-1 concentrations in hypertensive uremic rats treated with erythropoietin. Clin Exp Hypertens 20: 939–951

    Article  CAS  PubMed  Google Scholar 

  75. Katoh K et al. (1994) Direct evidence for erythropoietin-induced release of endothelin from peripheral vascular tissue. Life Sci 54: 253–259

    Article  Google Scholar 

  76. Brochu E et al. (1999) Differential effects of endothelin-1 antagonists on erythropoietin-induced hypertension in renal failure. J Am Soc Nephrol 10: 1440–1446

    CAS  PubMed  Google Scholar 

  77. Eggena P et al. (1991) Influence of recombinant human erythropoietin on blood pressure and tissue renin-angiotensin systems. Am J Physiol 261: E642–E646

    Article  CAS  PubMed  Google Scholar 

  78. Barrett JD et al. (1998) Erythropoietin upregulates angiotensin receptors in cultured rat vascular smooth muscle cells. J Hypertens 16: 1749–1757

    Article  CAS  PubMed  Google Scholar 

  79. Kuriyama S et al. (2001) Association of angiotensinogen gene polymorphism with erythropoietin-induced hypertension: a preliminary report. Hypertens Res 24: 501–505

    Article  CAS  PubMed  Google Scholar 

  80. Lebel M et al. (2006) Antihypertensive and renal protective effects of renin–angiotensin system blockade in uremic rats treated with erythropoietin. Am J Hypertens 19: 1286–1292

    Article  CAS  PubMed  Google Scholar 

  81. Rodrigue ME et al. (2003) Relationship between eicosanoids and endothelin-1 in the pathogenesis of erythropoietin-induced hypertension in uremic rats. J Cardiovasc Pharmacol 41: 388–395

    Article  CAS  PubMed  Google Scholar 

  82. Rodrigue ME et al. (2005) Cyclooxygenase inhibition with acetylsalicylic acid unmasks a role for prostacyclin in erythropoietin-induced hypertension in uremic rats. Can J Physiol Pharmacol 83: 467–475

    Article  CAS  PubMed  Google Scholar 

  83. Anagnostou A et al. (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci U S A 87: 5978–5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nagai T et al. (1995) Effects of rHuEpo on cellular proliferation and endothelin-1 production in cultured endothelial cells. Nephrol Dial Transplant 10: 1814–1819

    CAS  PubMed  Google Scholar 

  85. Carlini RG et al. (1999) Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 55: 546–553

    Article  CAS  PubMed  Google Scholar 

  86. Wang XQ and Vaziri ND (1999) Erythropoietin depresses nitric oxide synthase expression by human endothelial cells. Hypertension 33: 894–899

    Article  PubMed  Google Scholar 

  87. Gogusev J et al. (1994) Effect of erythropoietin on DNA synthesis, proto-oncogene expression and phospholipase C activity in rat vascular smooth muscle cells. Biochem Biophys Res Commun 199: 977–983

    Article  CAS  PubMed  Google Scholar 

  88. Ammarguellat F et al. (1996) Direct effect of erythropoietin on rat vascular smooth-muscle cell via a putative erythropoietin receptor. Nephrol Dial Transplant 11: 687–692

    Article  CAS  PubMed  Google Scholar 

  89. Akimoto T et al. (2001) Involvement of erythropoietin-induced cytosolic free calcium mobilization in activation of mitogen-activated protein kinase and DNA synthesis in vascular smooth muscle cells. J Hypertens 19: 193–202

    Article  CAS  PubMed  Google Scholar 

  90. Carlini RG et al. (1995) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47: 740–745

    Article  CAS  PubMed  Google Scholar 

  91. Satoh K et al. (2006) Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113: 1442–1450

    Article  CAS  PubMed  Google Scholar 

  92. Yatsiv I et al. (2005) Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J 19: 1701–1703

    Article  CAS  PubMed  Google Scholar 

  93. van der Meer P et al. (2004) Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail 6: 853–859

    Article  CAS  PubMed  Google Scholar 

  94. Vaziri ND et al. (1994) Erythropoietin enhances recovery from cisplatin-induced acute renal failure. Am J Physiol 266: F360–F366

    Article  CAS  PubMed  Google Scholar 

  95. Zhu X and Perazella MA (2006) Nonhematologic complications of erythropoietin therapy. Semin Dial 19: 279–284

    Article  PubMed  Google Scholar 

  96. Kase S et al. (2007) Expression of erythropoietin receptor in human epiretinal membrane of proliferative diabetic retinopathy. Br J Ophthalmol 91: 1376–1378

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nagarajan S et al. (2007) Transplant reno-vascular stenoses associated with early erythropoietin use. Clin Transplant 21: 597–608

    Article  PubMed  Google Scholar 

  98. Bittorf T et al. (2001) Activation of the transcription factor NF-kappaB by the erythropoietin receptor: structural requirements and biological significance. Cell Signal 13: 673–681

    Article  CAS  PubMed  Google Scholar 

  99. Chen HC et al. (1997) Recombinant human erythropoietin enhances superoxide production by FMLP-stimulated polymorphonuclear leukocytes in hemodialysis patients. Kidney Int 52: 1390–1394

    Article  CAS  PubMed  Google Scholar 

  100. Kaupke CJ et al. (1996) Effect of recombinant human erythropoietin on platelet production in dialysis patients. J Am Soc Nephrol 3: 1672–1679

    Google Scholar 

  101. Stohlawetz PJ et al. (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95: 2983–2989

    CAS  PubMed  Google Scholar 

  102. Zhou XJ and Vaziri ND (2002) Defective calcium signalling in uraemic platelets and its amelioration with long-term erythropoietin therapy. Nephrol Dial Transplant 17: 992–997

    Article  CAS  PubMed  Google Scholar 

  103. Kahraman S et al. (2005) Impact of rHuEPO therapy initiation on soluble adhesion molecule levels in haemodialysis patients. Nephrology (Carlton) 10: 264–269

    Article  CAS  Google Scholar 

  104. Nagai T et al. (1996) rHuEPO enhances the production of plasminogen activator inhibitor-1 in cultured endothelial cells. Kidney Int 50: 102–107

    Article  CAS  PubMed  Google Scholar 

  105. Borawski J et al. (2002) Tissue factor and thrombomodulin in hemodialysis patients: associations with endothelial injury, liver disease, and erythropoietin therapy. Clin Appl Thromb Hemost 8: 359–367

    Article  CAS  PubMed  Google Scholar 

  106. Fusté B et al. (2002) Erythropoietin triggers a signaling pathway in endothelial cells and increases the thrombogenicity of their extracellular matrices in vitro. Thromb Haemost 88: 678–685

    Article  PubMed  Google Scholar 

  107. Wang XQ and Vaziri ND (1999) Erythropoietin depresses nitric oxide synthase expression by human endothelial cells. Hypertension 33: 894–899

    Article  PubMed  Google Scholar 

  108. Ni Z et al. (1998) Nitric oxide metabolism in erythropoietin-induced hypertension: effect of calcium channel blockade. Hypertension 32: 724–729

    Article  CAS  PubMed  Google Scholar 

  109. Zager RA et al. (2002) Parenteral iron formulations: a comparative toxicologic analysis and mechanisms of cell injury. Am J Kidney Dis 40: 90–103

    Article  CAS  PubMed  Google Scholar 

  110. Tovbin D et al. (2002) Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation. Am J Kidney Dis 40: 1005–1012

    Article  CAS  PubMed  Google Scholar 

  111. Carlini RG et al. (2006) Apoptotic stress pathway activation mediated by iron on endothelial cells in vitro. Nephrol Dial Transplant 21: 3055–3061

    Article  CAS  PubMed  Google Scholar 

  112. Rooyakkers TM et al. (2002) Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. Eur J Clin Invest 32 (Suppl 1): 9–16

    Article  CAS  PubMed  Google Scholar 

  113. Drueke T et al. (2002) Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 106: 2212–2217

    Article  PubMed  Google Scholar 

  114. Zhou XJ et al. (2000) Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest 80: 1905–1914

    Article  CAS  PubMed  Google Scholar 

  115. Agarwal R et al. (2004) Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int 65: 2279–2289

    Article  CAS  PubMed  Google Scholar 

  116. Patruta SI and Hörl WH (1999) Iron and infection. Kidney Int Suppl 69: S125–S130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaziri, N. Anemia and anemia correction: surrogate markers or causes of morbidity in chronic kidney disease?. Nat Rev Nephrol 4, 436–445 (2008). https://doi.org/10.1038/ncpneph0847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing