Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Does hemolytic uremic syndrome differ from thrombotic thrombocytopenic purpura?

Abstract

Both hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are characterized by thrombotic microangiopathy (TMA), affecting mainly the kidney and brain, respectively. Diagnosis of HUS or TTP has been complicated by the fact that these disorders share several clinical characteristics, and by the dearth of knowledge regarding the pathogenesis of TMA. Advances in the identification of pathogenic features—deficiency of the metalloprotease ADAMTS13 in TTP and association of mutated complement proteins with atypical HUS—have gone some way towards improving clinicians' ability to distinguish between the two diseases. Here, we pose the following question: is it important to patient management that HUS be distinguished from TTP? By discussing what is known about the pathogenesis, clinical features and treatment of these two conditions we address this question, and propose a new nomenclature for TMA.

Key Points

  • The primary sites of thrombotic microangiopathy (TMA) in hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are the kidney and brain, respectively

  • Distinguishing between HUS and TTP on the basis of simple, dichotomous clinical criteria (HUS, mild thrombocytopenia and a serum creatinine level >200 µmol/l [2.3 mg/dl]; TTP, severe thrombocytopenia and serum creatinine level <120 µmol/l [1.4 mg/dl]) is problematic as there is often overlap in clinical presentation between patients with the two disorders

  • Recent pathogenic insights (association of mutated complement proteins with atypical HUS and deficiency of the metalloprotease ADAMTS13 in TTP) have made it easier to differentiate between HUS and TTP

  • Adopting a new nomenclature—'complement-dysregulation-related TMA' and 'ADAMTS13-deficiency-related TMA', in place of 'TTP' and 'HUS', respectively—might facilitate more-effective clinical management of patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light microscopic images of kidney biopsy tissue from a patient with 'complement-dysregulation-related TMA' (hemolytic uremic syndrome; HUS) and severe renal failure.
Figure 2: Scheme of physiological processes leading to TMA.

Similar content being viewed by others

References

  1. Tarr PI et al. (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073–1086

    CAS  PubMed  Google Scholar 

  2. Furlan M et al. (1998) von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 339: 1578–1584

    Article  CAS  PubMed  Google Scholar 

  3. Levy GG et al. (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413: 488–494

    Article  CAS  PubMed  Google Scholar 

  4. Tsai HM and Lian EC (1998) Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 339: 1585–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moake JL et al. (1982) Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307: 1432–1435

    Article  CAS  PubMed  Google Scholar 

  6. Caprioli J et al. (2006) Genetics of HUS: the impact of MCP, CFH and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108: 1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dragon-Durey MA and Frémeaux-Bacchi V (2005) Atypical haemolytic uraemic syndrome and mutations in complement regulator genes. Springer Semin Immun 27: 359–374

    Article  CAS  Google Scholar 

  8. Uemura M et al. (2005) Localization of ADAMTS13 to the stellate cells of human liver. Blood 106: 922–924

    Article  CAS  PubMed  Google Scholar 

  9. Liu L et al. (2005) Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J Thromb Haemost 3: 2536–2544

    Article  CAS  PubMed  Google Scholar 

  10. Plaimauer B et al. (2002) Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood 100: 3626–3632

    Article  CAS  PubMed  Google Scholar 

  11. Wu JJ et al. (2006) Characterization of a core binding site for ADAMTS-13 in the A2 domain of von Willebrand factor. Proc Natl Acad Sci USA 103: 18470–18474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao W et al. (2006) Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci USA 103: 19099–19104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Cristofaro R et al. (2006) Molecular mapping of the chloride-binding site in von Willebrand factor (VWF): energetics and conformational effects on the VWF/ADAMTS-13 interaction. J Biol Chem 281: 30400–30411

    Article  CAS  PubMed  Google Scholar 

  14. Dong JF (2005) Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 3: 1710–1716

    Article  CAS  PubMed  Google Scholar 

  15. Zheng X et al. (2003) Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem 278: 30136–30141

    Article  CAS  PubMed  Google Scholar 

  16. Veyradier A et al. (2004) Ten candidate ADAMTS13 mutations in six French families with congenital thrombotic thrombocytopenic purpura (Upshaw–Schulman syndrome). J Thromb Haemost 2: 424–429

    Article  CAS  PubMed  Google Scholar 

  17. Furlan M et al. (1998) Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood 91: 2839–2846

    CAS  PubMed  Google Scholar 

  18. Luken BM et al. (2005) The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 93: 267–274

    Article  CAS  PubMed  Google Scholar 

  19. Klaus C et al. (2004) Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood 103: 4514–4519

    Article  CAS  PubMed  Google Scholar 

  20. Miyata T et al. (2005) Measurement of ADAMTS13 activity and inhibitors. Curr Opin Hematol 12: 384–389

    Article  CAS  PubMed  Google Scholar 

  21. Vesely SK et al. (2003) ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients. Blood 102: 60–68

    Article  CAS  PubMed  Google Scholar 

  22. Veyradier A et al. (2001) Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases. Blood 98: 1765–1772

    Article  CAS  PubMed  Google Scholar 

  23. Rieger M et al. (2005) ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 106: 1262–1267

    Article  CAS  PubMed  Google Scholar 

  24. Scheiflinger F et al. (2003) Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood 102: 3241–3243

    Article  CAS  PubMed  Google Scholar 

  25. Banno F et al. (2006) Complete deficiency in ADAMTS13 is prothrombotic, but it alone is not sufficient to cause thrombotic thrombocytopenic purpura. Blood 107: 3161–3166

    Article  CAS  PubMed  Google Scholar 

  26. Coppo P et al. (2004) Severe ADAMTS13 deficiency in adult idiopathic thrombotic microangiopathies defines a subset of patients characterized by various autoimmune manifestations, lower platelet count, and mild renal involvement. Medicine (Baltimore) 83: 233–244

    Article  CAS  Google Scholar 

  27. Amoura Z et al. (2004) Thrombotic thrombocytopenic purpura with severe ADAMTS-13 deficiency in two patients with primary antiphospholipid syndrome. Arthritis Rheum 50: 3260–3264

    Article  PubMed  Google Scholar 

  28. Hirata S et al. (2006) Deficient activity of von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura in the setting of adult-onset Still's disease. Rheumatology (Oxford) 45: 1046–1047

    Article  CAS  Google Scholar 

  29. Matsuda J et al. (2002) Occurrence of thrombotic thrombocytopenic purpura in a systemic lupus erythematosus patient with antiphospholipid antibodies in association with a decreased activity of von Willebrand factor-cleaving protease. Lupus 11: 463–464

    Article  CAS  PubMed  Google Scholar 

  30. Bohm M et al. (2005) The course of ADAMTS-13 activity and inhibitor titre in the treatment of thrombotic thrombocytopenic purpura with plasma exchange and vincristine. Br J Haematol 129: 644–652

    Article  PubMed  Google Scholar 

  31. Zheng XL et al. (2004) Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura. Blood 103: 4043–4049

    Article  CAS  PubMed  Google Scholar 

  32. Coppo P et al. (2006) Prognostic value of inhibitory anti-ADAMTS13 antibodies in adult-acquired thrombotic thrombocytopenic purpura. Br J Haematol 132: 66–74

    Article  CAS  PubMed  Google Scholar 

  33. George JN (2006) Clinical practice: thrombotic thrombocytopenic purpura. N Engl J Med 354: 1927–1935

    Article  CAS  PubMed  Google Scholar 

  34. Fakhouri F et al. (2005) Efficiency of curative and prophylactic treatment with rituximab in ADAMTS13-deficient thrombotic thrombocytopenic purpura: a study of 11 cases. Blood 106: 1932–1937

    Article  CAS  PubMed  Google Scholar 

  35. Thompson RA and Winterborn MH (1981) Hypocomplementaemia due to a genetic deficiency of beta 1H globulin. Clin Exp Immunol 46: 110–119

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Warwicker P et al. (1998) Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int 53: 836–844

    Article  CAS  PubMed  Google Scholar 

  37. Goicoechea de Jorge E et al. (2007) Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci USA 104: 240–245

    Article  CAS  PubMed  Google Scholar 

  38. Esparza-Gordillo J et al. (2006) Insights into hemolytic uremic syndrome: segregation of three independent predisposition factors in a large, multiple affected pedigree. Mol Immunol 43: 1769–1775

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez de Cordoba S et al. (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41: 355–367

    Article  CAS  PubMed  Google Scholar 

  40. Saunders RE et al. (2006) The interactive factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and factor I mutations with structural models. Hum Mutat 28: 222–234

    Article  Google Scholar 

  41. Venables JP et al. (2006) Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med 3: e431

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dragon-Durey MA et al. (2004) Heterozygous and homozygous factor H deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol 15: 787–795

    Article  CAS  PubMed  Google Scholar 

  43. Richards A et al. (2007) Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol 44: 111–122

    Article  CAS  PubMed  Google Scholar 

  44. Frémeaux-Bacchi V et al. (2006) Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J Am Soc Nephrol 17: 2017–2025

    Article  PubMed  Google Scholar 

  45. Frémeaux-Bacchi V et al. (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41: e84

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kavanagh D et al. (2005) Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 16: 2150–2155

    Article  CAS  PubMed  Google Scholar 

  47. Dragon-Durey MA et al. (2005) Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 16: 555–563

    Article  CAS  PubMed  Google Scholar 

  48. Hosler GA et al. (2003) Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities: a review of 56 autopsy cases. Arch Pathol Lab Med 127: 834–839

    PubMed  Google Scholar 

  49. Motto DG et al. (2005) Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 115: 2752–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nolasco LH et al. (2005) Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood 106: 4199–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noris M et al. (2005) Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J Am Soc Nephrol 16: 1177–1183

    Article  CAS  PubMed  Google Scholar 

  52. Davin JC et al. (2006) Complement factor H-associated atypical hemolytic uremic syndrome in monozygotic twins: concordant presentation, discordant response to treatment. Am J Kidney Dis 47: e27–e30

    Article  PubMed  Google Scholar 

  53. Cataland SR et al. (2007) Rapid determination of ADAMTS13 activity improves clinical decision-making. Am J Hematol 82: 251

    Article  PubMed  Google Scholar 

  54. Rick ME et al. (2004) Clinical usefulness of a functional assay for the von Willebrand factor cleaving protease (ADAMTS 13) and its inhibitor in a patient with thrombotic thrombocytopenic purpura. Am J Hematol 75: 96–100

    Article  CAS  PubMed  Google Scholar 

  55. Wu JJ et al. (2006) A rapid enzyme-linked assay for ADAMTS-13. J Thromb Haemost 4: 129–136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Fakhouri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakhouri, F., Frémeaux-Bacchi, V. Does hemolytic uremic syndrome differ from thrombotic thrombocytopenic purpura?. Nat Rev Nephrol 3, 679–687 (2007). https://doi.org/10.1038/ncpneph0670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing