Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: in utero programming in the pathogenesis of hypertension

Abstract

Nutritional and other environmental cues during development can permanently alter the structure, homeostatic systems, and functions of the body. This phenomenon has been referred to as 'programming'. Epidemiological and animal studies show that programmed effects operate within the normal range of growth and development, and influence the risk of chronic disease in adult life. We review the evidence that these effects include reduced nephron number and compensatory adaptations, which might lead to hypertension, and perhaps accelerate the decline in renal function that accompanies aging. These processes might be exacerbated by programmed changes in vascular structure and function, and alterations in endocrine and metabolic homeostasis. Programmed effects might be initiated as early as the periconceptual phase of development, and could involve epigenetic changes in gene expression or altered stem cell allocation. Better understanding of these processes could lead to the development of novel diagnostic and preventive measures, and to early detection of at-risk individuals. By monitoring blood pressure, weight, and renal function in children, it might be possible to reduce the risk of cardiovascular and renal disease in later life.

Key Points

  • According to the 'fetal origins hypothesis', different forms of cardiovascular disease and type 2 diabetes originate from 'developmental plasticity', in response to undernutrition during fetal life and infancy

  • Mechanisms through which the path of development initiates hypertension include allocation of stem cells and alteration of gene expression in the embryo; changes in renal growth; and alterations in homeostatic set-points that control blood pressure

  • These changes can make affected systems more vulnerable to disruptive influences in postnatal life including obesity, environmental stress, oxidative stress, and high salt intake

  • By monitoring blood pressure, weight, diet, and renal function in children, it might be possible to reduce the risk of cardiovascular and renal disease in later life

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of 1,404 boys and girls who later developed hypertension in a cohort of 8,760 children born in Helsinki, Finland.

Similar content being viewed by others

References

  1. Barker DJP et al. (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2: 577–580

    Article  CAS  PubMed  Google Scholar 

  2. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311: 171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. West-Eberhard MJ (2003) Developmental Plasticity and Evolution. Oxford: Oxford University Press

    Google Scholar 

  4. Hinchliffe SA et al. (1992) The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 99: 296–301

    Article  CAS  PubMed  Google Scholar 

  5. Mackenzie HS et al. (1995) Fewer nephrons at birth; a missing link in the etiology of essential hypertension? Am J Kidney Dis 26: 91–98

    Article  CAS  PubMed  Google Scholar 

  6. Widdowson EM and McCance RA (1963) The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc R Soc Lond B Biol Sci 158: 329–342

    Article  CAS  PubMed  Google Scholar 

  7. Kwong WY et al. (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127: 4195–4202

    CAS  PubMed  Google Scholar 

  8. Khan I et al. (2004) Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 110: 1097–1102

    Article  CAS  PubMed  Google Scholar 

  9. Bateson P (2001) Fetal experience and good adult design. Int J Epidemiol 5: 928–934

    Article  Google Scholar 

  10. Bertram CE and Hanson MA (2001) Animal models and programming of the metabolic syndrome. Br Med Bull 60: 103–121

    Article  CAS  PubMed  Google Scholar 

  11. Bateson P et al. (2004) Developmental plasticity and human health. Nature 430: 419–421

    Article  CAS  PubMed  Google Scholar 

  12. Gluckman PD et al. (2004) Living with the past: evolution, development, and patterns of disease. Science 305: 1733–1736

    Article  CAS  PubMed  Google Scholar 

  13. Barker DJ et al. (2002) Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J Hypertens 20: 1951–1956

    Article  CAS  PubMed  Google Scholar 

  14. Barker DJP et al. (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31: 1235–1239

    Article  CAS  PubMed  Google Scholar 

  15. McCance RA (1962) Food, growth and time. Lancet 2: 621–626

    Article  CAS  PubMed  Google Scholar 

  16. Harding JE (2001) The nutritional basis of the fetal origins of adult disease. Int J Epidemiol 30: 15–23

    Article  CAS  PubMed  Google Scholar 

  17. Langley-Evans SC et al. (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64: 965–974

    Article  CAS  PubMed  Google Scholar 

  18. Ozaki T et al. (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530: 141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woods LL et al. (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65: 1339–1348

    Article  PubMed  Google Scholar 

  20. Hanson MA et al. (2005) Developmental processes and the induction of cardiovascular function: conceptual aspects. J Physiol 565: 27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lane N et al. (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35: 88–93

    Article  CAS  PubMed  Google Scholar 

  22. Lillycrop K et al. (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135: 1382–1386

    Article  CAS  PubMed  Google Scholar 

  23. Pham TD et al. (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285: R962–R970

    Article  CAS  PubMed  Google Scholar 

  24. Watkins A et al. (2006) The influence of mouse Ped gene expression on postnatal development. J Physiol 15: 211–220

    Article  CAS  Google Scholar 

  25. Luycrx VA (2005) Low birth weight, nephron number, and kidney disease. Kidney Int 97 (Suppl): S68–S77

    Google Scholar 

  26. Gubhaju L et al. (2005) The baboon as a good model for studies of human kidney development. Ped Res 58: 505–509

    Article  Google Scholar 

  27. Hughson M et al. (2003) Glomerular number and size in autopsy kidneys: the relationship to birthweight. Kidney Int 63: 2113–2122

    Article  PubMed  Google Scholar 

  28. Brenner BM and Chertow GM (1993) Congenital oligonephropathy: an inborn cause of adult hypertension and progressive renal injury? Curr Opin Nephrol Hypertens 2: 691–695

    Article  CAS  PubMed  Google Scholar 

  29. Woods LL et al. (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49: 460–467

    Article  CAS  PubMed  Google Scholar 

  30. Vehaskari VM et al. (2001) Prenatal programming of adult hypertension in the rat. Kidney Int 59: 238–245

    Article  CAS  PubMed  Google Scholar 

  31. Lelievre-Pegorier M et al. (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54: 1455–1462

    Article  CAS  PubMed  Google Scholar 

  32. Merlet-Benichou C et al. (1994) Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol 8: 175–180

    Article  CAS  PubMed  Google Scholar 

  33. Spencer J et al. (2001) Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis 37: 915–920

    Article  CAS  PubMed  Google Scholar 

  34. Silver LE et al. (2003) Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am J Obstet Gynecol 188: 1320–1325

    Article  PubMed  Google Scholar 

  35. Manalich R et al. (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58: 770–773

    Article  CAS  PubMed  Google Scholar 

  36. Konje JC et al. (1997) A cross sectional study of changes in fetal renal size with gestation in appropriate- and small-for-gestational age fetuses. Ultrasound Obstet Gynaecol 9: 22–26

    Article  Google Scholar 

  37. Praga M et al. (2000) Influence of obesity on the appearance of proteinuria and renal insuffiency after unilateral nephrectomy. Kidney Int 58: 2111–2118

    Article  CAS  PubMed  Google Scholar 

  38. Huxley R et al. (2002) Unravelling the fetal origins hypothesis. Lancet 360: 2074–2075

    Article  Google Scholar 

  39. Keller G et al. (2003) Nephron number in patients with primary hypertension. N Engl J Med 348: 101–108

    Article  PubMed  Google Scholar 

  40. Ingelfinger JR (2003) Is microanatomy destiny? N Engl J Med 348: 99–100

    Article  PubMed  Google Scholar 

  41. Gossmann J et al. (2005) Long-term consequences of live kidney donation follow-up in 93% of living kidney donors in a single transplant center. Am J Transplant 5: 2417–2424

    Article  PubMed  Google Scholar 

  42. Smith S et al. (1985) Long-term effect of uninephrectomy on serum creatinine concentration and arterial blood pressure. Am J Kidney Disease 6: 143–148

    Article  CAS  Google Scholar 

  43. Hoy WE et al. (1999) A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int 56: 1072–1077

    Article  CAS  PubMed  Google Scholar 

  44. Sanders MW et al. (2005) High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats. Hypertension 46: 71–75

    Article  CAS  PubMed  Google Scholar 

  45. Regina S et al. (2001) Intrauterine food restriction as a determinant of nephrosclerosis. Am J Kidney Dis 37: 467–476

    Article  CAS  PubMed  Google Scholar 

  46. Lackland DT et al. (2000) Low birth weights contribute to high rates of early-onset chronic kidney failure in the Southeastern United States. Arch Intern Med 160: 1472–1476

    Article  CAS  PubMed  Google Scholar 

  47. Mathews SG (2002) Early programming of the hypothalmo pituitary-adrenal axis. Trends Endocrinol Metab 13: 363–408

    Article  Google Scholar 

  48. Phillips DI and Jones A (2006) Fetal programming of autonomic and HPA function: do people who were small babies have enhanced stress responses? J Physiol 572: 45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark PM et al. (1996) Size at birth and adrenocortical function in childhood. Clin Endocrinol 45: 721–726

    Article  CAS  Google Scholar 

  50. Economides DL et al. (1988) Plasma cortisol and adrenocorticotrophin in appropriate and small gestational age fetuses. Fetal Ther 3: 158–164

    Article  CAS  PubMed  Google Scholar 

  51. Spassov L et al. (1994) Heart rate and heart rate variability during sleep in small-for-gestational age newborns. Pediatr Res 35: 500–505

    Article  CAS  PubMed  Google Scholar 

  52. Phillips DIW et al. (1997) Association between low birthweight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabetic Med 14: 673–677

    Article  CAS  PubMed  Google Scholar 

  53. Alexander B et al. (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45: 754–758

    Article  CAS  PubMed  Google Scholar 

  54. Pladys P et al. (2004) Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res 55: 1042–1049

    Article  CAS  PubMed  Google Scholar 

  55. Matthews KA et al. (2004) Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation 110: 74–78

    Article  PubMed  Google Scholar 

  56. Allen MT et al. (1997) Cardiovascular reactivity to stress and left ventricular mass in youth. Hypertension 30: 782–787

    Article  CAS  PubMed  Google Scholar 

  57. Everson SA et al. (1997) Interaction of workplace demands and cardiovascular reactivity in progression of carotid atherosclerosis: population based study. BMJ 314: 553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leeson CP et al. (1997) Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation 96: 2233–2238

    Article  CAS  PubMed  Google Scholar 

  59. Martin H et al. (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 102: 2739–2744

    Article  CAS  PubMed  Google Scholar 

  60. Brawley L et al. (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 54: 83–90

    Article  CAS  PubMed  Google Scholar 

  61. Palinski W et al. (2002) The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J 16: 1348–1360

    Article  CAS  PubMed  Google Scholar 

  62. Ahokas RA et al. (1983) Cardiac output and uteroplacental blood flow in diet-restricted and diet-repleted rats. Am J Obstet Gynaecol 146: 6–13

    Article  CAS  Google Scholar 

  63. Itoh S et al. (2002) Vasodilation to vascular endothelial growth factor in the uterine artery of the pregnant rat is blunted by low dietary protein intake. Pediatr Res 51: 485–491

    Article  PubMed  Google Scholar 

  64. Torrens C et al. (2002) Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J Physiol 547: 77–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chapman N et al. (1997) Retinal vascular network architecture in low-birth-weight men. J Hypertens 15: 14449–14453

    Article  Google Scholar 

  66. Kistner A et al. (2002) Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr Res 51: 675–680

    Article  PubMed  Google Scholar 

  67. Pladys P et al. (2005) Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low-protein diet in utero. Am J Physiol 298: R1580–R1588

    Google Scholar 

  68. Hales CN and Barker DJ (1992) Type 2 (non-insulin dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetalogia 35: 595–601

    Article  CAS  Google Scholar 

  69. Phillips DIW et al. (1996) Insulin resistance as a programmed response to fetal undernutrition. Diabetologia 39: 1119–1122

    Article  CAS  PubMed  Google Scholar 

  70. Vehaskari VM et al. (2004) Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol 287: F262–F267

    Article  CAS  PubMed  Google Scholar 

  71. Sahajpal V and Ashton N (2005) Increased glomerular angiotensin II binding in rats exposed to a maternal low protein diet in utero. J Physiol 15: 193–201

    Article  CAS  Google Scholar 

  72. Sahajpal V and Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104: 607–614

    Article  CAS  Google Scholar 

  73. McMullen S et al. (2004) Prenatal programming of angiotensin II type 2 receptor expression in the rat. Brit J Nutr 91: 133–140

    Article  CAS  PubMed  Google Scholar 

  74. Tufro-McReddie A et al. (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 269: F110–F115

    Article  CAS  PubMed  Google Scholar 

  75. Gribouval O et al. (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37: 964–968

    Article  CAS  PubMed  Google Scholar 

  76. Reviere G et al. (2005) Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to undernutrition-programmed hypertension in the adult rat. Hypertension 46: 1169–1174

    Article  CAS  Google Scholar 

  77. Langley-Evans SC et al. (1999) Intrauterine programming of hypertension: the role of the renin-angiotensin system. Biochem Soc Trans 27: 88–93

    Article  CAS  PubMed  Google Scholar 

  78. Thomson SC et al. (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 286: F8–F15

    Article  CAS  PubMed  Google Scholar 

  79. Yliharsila H et al. (2003) Self-perpetuating effects of birth size on blood pressure levels in elderly people. Hypertension 41: 441–450

    Article  CAS  Google Scholar 

  80. Koupil I et al. (2005) Birthweight hypertension and 'white coat' hypertension: size at birth in relation to office and 24-hour ambulatory blood pressure. J Human Hypertens 19: 635–642

    Article  CAS  Google Scholar 

  81. Hardy R et al. (2003) Birthweight, childhood social class, and change in adult blood pressure in the 1946 British birth cohort. Lancet 362: 1178–1183

    Article  PubMed  Google Scholar 

  82. Lackland DT et al. (2002) Associations between birthweight and antihypertensive medication in black and white medicaid recipients. Hypertension 39: 179–183

    Article  CAS  PubMed  Google Scholar 

  83. Eriksson JG et al. Fetal, infant and childhood growth and hypertension in later life: longitudinal study. BMJ, in press

  84. Barker DJ et al. The maternal and social origins of hypertension. BMJ, in press

Download references

Acknowledgements

DJP Barker and MA Hanson received support from the British Heart Foundation. SP Bagby is supported by NIH National Institute of Child Health & Human Development grant RO1HD042570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David JP Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, D., Bagby, S. & Hanson, M. Mechanisms of Disease: in utero programming in the pathogenesis of hypertension. Nat Rev Nephrol 2, 700–707 (2006). https://doi.org/10.1038/ncpneph0344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing