Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical impact of research on the podocyte slit diaphragm

Abstract

This Review summarizes recent research on the podocyte slit diaphragm. A growing number of molecules that function at the slit diaphragm have been identified in patients with inherited and sporadic nephrotic syndromes. Genetic deletion of nearly all of these molecules results in proteinuria and effacement of foot processes. Nephrin, Neph1 and podocin seem to form a multifunctional receptor complex at the slit diaphragm. Most of the other components of the slit diaphragm interact directly with this complex, in many cases coupling slit diaphragm components to the podocyte's actin cytoskeleton. These molecular findings are being applied to patients with glomerular disease. Over the next decade, these data might help to improve disease classification and prediction of which patients will respond to immunosuppressive treatment.

Key Points

  • Mutations of molecules that function at the podocyte slit diaphragm of the glomerular filter have recently been identified in patients with inherited and sporadic nephrotic syndromes

  • Experimental deletion of many slit diaphragm molecules induces the proteinuria and effacement of podocyte foot processes that are characteristic of all glomerular diseases

  • Data indicate that three molecules susceptible to mutation—nephrin, Neph1 and podocin—form a receptor complex at the slit diaphragm that interacts with the podocyte actin cytoskeleton

  • Determining the slit diaphragm genetic profile of patients with glomerular diseases should improve disease classification and tailoring of treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The podocyte and slit diaphragm.
Figure 2: Detailed electron tomograph of the slit diaphragm with wire frame representation of electron density.

Similar content being viewed by others

References

  1. US Renal Data System (2004) USRDS 2004 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

  2. D'Amico G and Bazzi C (2003) Pathophysiology of proteinuria. Kidney Int 63: 809–825.

    Article  CAS  PubMed  Google Scholar 

  3. Tryggvason K and Wartiovaara J (2005) How does the kidney filter plasma? Physiology 20: 96–101

    Article  PubMed  Google Scholar 

  4. Haraldsson B and Sorensson J (2004) Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci 19: 7–10

    PubMed  Google Scholar 

  5. Deen WM et al. (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281: F579–596

    Article  CAS  PubMed  Google Scholar 

  6. Madsen KM and Tisher CC (2004) Brenner and Rector's The Kidney. In The Nephron edn 7 (Ed. Brenner BM) Philadelphia: Elsevier.

    Google Scholar 

  7. Karnovsky MJ and Ainsworth SK (1972) The structural basis of glomerular filtration. Adv Nephrol Necker Hosp 2: 35–60

    CAS  PubMed  Google Scholar 

  8. Kanwar YS et al. (1991) Current status of the structural and functional basis of glomerular filtration and proteinuria. Semin Nephrol 11: 390–413

    CAS  PubMed  Google Scholar 

  9. Caulfield JP and Farquhar MG (1974) The permeability of glomerular capillaries to graded dextrans: identification of the basement membrane as the primary filtration barrier. J Cell Biol 63: 883–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kestila M et al. (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1: 575–582

    Article  CAS  PubMed  Google Scholar 

  11. Ruotsalainen V et al. (1999) Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci USA 96: 7962–7967

    Article  CAS  PubMed  Google Scholar 

  12. Holthofer H et al. (1999) Nephrin localizes at the podocyte filtration slit area and is characteristically spliced in the human kidney. Am J Pathol 155: 1681–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holzman LB et al. (1999) Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int 56: 1481–1491

    Article  PubMed  Google Scholar 

  14. Barletta GM et al. (2003) Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem 278: 19266–19271

    Article  CAS  PubMed  Google Scholar 

  15. Gerke P et al. (2003) Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol 14: 918–926

    Article  CAS  PubMed  Google Scholar 

  16. Tryggvason K et al. (1999) Discovery of the congenital nephrotic syndrome gene discloses the structure of the mysterious molecular sieve of the kidney. Int J Dev Biol 43: 445–451

    CAS  PubMed  Google Scholar 

  17. Wartiovaara J et al. (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114: 1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rossi M et al. (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J 22: 236–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smithies O (2003) Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc Natl Acad Sci USA 100: 4108–4113

    Article  CAS  PubMed  Google Scholar 

  20. Deen WM (2004) What determines glomerular capillary permeability? J Clin Invest 114: 1412–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Donoviel DB et al. (2001) Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol 21: 4829–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sellin L et al. (2003) NEPH1 defines a novel family of podocin interacting proteins. FASEB J 17: 115–117

    Article  CAS  PubMed  Google Scholar 

  23. Boute N et al. (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24: 349–354

    Article  CAS  PubMed  Google Scholar 

  24. Roselli S et al. (2002) Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol 160: 131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salzer U and Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97: 1141–1143

    Article  CAS  PubMed  Google Scholar 

  26. Harder T (2004) Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr Opin Immunol 16: 353–359

    Article  CAS  PubMed  Google Scholar 

  27. Simons K and Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

    Article  CAS  PubMed  Google Scholar 

  28. Simons M et al. (2001) Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159: 1069–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarz K et al. (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 108: 1621–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huber TB et al. (2003) Molecular basis of the functional podocin–nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12: 3397–3405

    Article  CAS  PubMed  Google Scholar 

  31. Shen K and Bargmann CI (2003) The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112: 619–630

    Article  CAS  PubMed  Google Scholar 

  32. Shen K et al. (2004) Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116: 869–881

    Article  CAS  PubMed  Google Scholar 

  33. Bao S and Cagan R (2005) Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell 8: 925–935

    Article  CAS  PubMed  Google Scholar 

  34. Grzeschik NA and Knust E (2005) IrreC/rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 132: 2035–2045

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S et al. (2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14: 1888–1896

    Article  CAS  PubMed  Google Scholar 

  36. Liu G et al. (2003) Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest 112: 209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634

    Article  CAS  PubMed  Google Scholar 

  38. Schnabel E et al. (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111: 1255–1263

    Article  CAS  PubMed  Google Scholar 

  39. Huber TB et al. (2003) The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem 278: 13417–13421

    Article  CAS  PubMed  Google Scholar 

  40. Lehtonen S et al. (2005) Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natl Acad Sci USA 102: 9814–9819

    Article  CAS  PubMed  Google Scholar 

  41. Liu XL et al. (2005) Characterization of the interactions of the nephrin intracellular domain. FEBS J 272: 228–243

    Article  CAS  PubMed  Google Scholar 

  42. Noritake J et al. (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118: 2085–2092

    Article  CAS  PubMed  Google Scholar 

  43. Subauste MC et al. (2005) Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 280: 5676–5681

    Article  CAS  PubMed  Google Scholar 

  44. Lee S et al. (2002) A novel and conserved protein–protein interaction domain of mammalian Lin-2/CASK binds and recruits SAP97 to the lateral surface of epithelia. Mol Cell Biol 22: 1778–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li S et al. (2000) Gastric hyperplasia in mice lacking the putative Cdc42 effector IQGAP1. Mol Cell Biol 20: 697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue T et al. (2001) FAT is a component of glomerular slit diaphragms. Kidney Int 59: 1003–1012

    Article  CAS  PubMed  Google Scholar 

  47. Tanoue T and Takeichi M (2005) New insights into Fat cadherins. J Cell Sci 118: 2347–2353

    Article  CAS  PubMed  Google Scholar 

  48. Ciani L et al. (2003) Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol Cell Biol 23: 3575–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moeller MJ et al. (2004) Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 23: 3769–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanoue T and Takeichi M (2004) Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol 165: 517–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Winn MP et al. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804

    Article  CAS  PubMed  Google Scholar 

  52. Reiser J et al. (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37: 739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rana K et al. (2003) Clinical, histopathologic, and genetic studies in nine families with focal segmental glomerulosclerosis. Am J Kidney Dis 41: 1170–1178

    Article  PubMed  Google Scholar 

  54. Nilius B and Voets T (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 451: 1–10

    Article  CAS  PubMed  Google Scholar 

  55. Zagranichnaya TK et al. (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280: 29559–29569

    Article  CAS  PubMed  Google Scholar 

  56. Hisatsune C et al. (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279: 18887–18894

    Article  CAS  PubMed  Google Scholar 

  57. Lahdenpera J et al. (2003) Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int 64: 404–413

    Article  CAS  PubMed  Google Scholar 

  58. Verma R et al. (2003) Fyn binds to and phosphorylates the kidney slit diaphragm component nephrin. J Biol Chem 278: 20716–20723

    Article  CAS  PubMed  Google Scholar 

  59. Li H et al. (2004) SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol 15: 3006–3015

    Article  PubMed  Google Scholar 

  60. Sechi AS and Wehland J (2004) Interplay between TCR signalling and actin cytoskeleton dynamics. Trends Immunol 25: 257–265

    Article  CAS  PubMed  Google Scholar 

  61. Huber TB et al. (2003) Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol 23: 4917–4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296: 1655–1657

    Article  CAS  PubMed  Google Scholar 

  63. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10: 262–267

    Article  CAS  PubMed  Google Scholar 

  64. Kim YH et al. (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60: 957–968

    Article  CAS  PubMed  Google Scholar 

  65. Dustin ML et al. (1998) A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94: 667–677

    Article  CAS  PubMed  Google Scholar 

  66. Shih NY et al. (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286: 312–315

    Article  CAS  PubMed  Google Scholar 

  67. Kim JM et al. (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300: 1298–1300

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi S et al. (2004) The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J 18: 929–931

    Article  CAS  PubMed  Google Scholar 

  69. Kowanetz K et al. (2003) Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. J Biol Chem 278: 39735–39746

    Article  CAS  PubMed  Google Scholar 

  70. Cormont M et al. (2003) CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 4: 97–112

    Article  CAS  PubMed  Google Scholar 

  71. Welsch T et al. (2005) Association of CD2AP with dynamic actin on vesicles in podocytes. Am J Physiol Renal Physiol 289: F1134–F1143

    Article  CAS  PubMed  Google Scholar 

  72. Tsukaguchi H et al. (2002) NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest 110: 1659–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frishberg Y et al. (2002) Mutations in NPHS2 encoding podocin are a prevalent cause of steroid-resistant nephrotic syndrome among Israeli-Arab children. J Am Soc Nephrol 13: 400–405

    CAS  PubMed  Google Scholar 

  74. Weber S et al. (2004) NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 66: 571–579

    Article  CAS  PubMed  Google Scholar 

  75. Grunkemeyer JA et al. (2005) CD2-associated protein (CD2AP) expression in podocytes rescues lethality of CD2AP deficiency. J Biol Chem 280: 29677–29681

    Article  CAS  PubMed  Google Scholar 

  76. Ruf RG et al. (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15: 722–732

    Article  PubMed  Google Scholar 

  77. Ghiggeri GM et al. (2004) Cyclosporine in patients with steroid-resistant nephrotic syndrome: an open-label, nonrandomized, retrospective study. Clin Ther 26: 1411–1418

    Article  CAS  PubMed  Google Scholar 

  78. Vincenti F and Ghiggeri GM (2005) New insights into the pathogenesis and the therapy of recurrent focal glomerulosclerosis. Am J Transplant 5: 1179–1185

    Article  CAS  PubMed  Google Scholar 

  79. Henger A et al. (2004) Gene expression analysis of human renal biopsies: recent developments towards molecular diagnosis of kidney disease. Curr Opin Nephrol Hypertens 13: 313–318

    Article  CAS  PubMed  Google Scholar 

  80. Schmid H et al. (2003) Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J Am Soc Nephrol 14: 2958–2966

    Article  CAS  PubMed  Google Scholar 

  81. Petermann AT et al. (2003) Podocytes that detach in experimental membranous nephropathy are viable. Kidney Int 64: 1222–1231

    Article  PubMed  Google Scholar 

  82. Szeto CC et al. (2005) Messenger RNA expression of glomerular podocyte markers in the urinary sediment of acquired proteinuric diseases. Clin Chim Acta 361: 182–190

    Article  CAS  PubMed  Google Scholar 

  83. Hoorn EJ et al. (2005) Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton) 10: 283–290

    Article  CAS  Google Scholar 

  84. Ahola H et al. (2003) A novel protein, densin, expressed by glomerular podocytes. J Am Soc Nephrol 14: 1731–1737

    Article  CAS  PubMed  Google Scholar 

  85. Cohen CD et al.: Comparative promoter analysis allows de novo identification of specialized cell junction associated proteins. Proc Natl Acad Sci USA, in press

  86. Kaplan JM et al. (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24: 251–256

    Article  CAS  PubMed  Google Scholar 

  87. Yao J et al. (2004) Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol 2: e167.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ichimura K et al. (2003) Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem 51: 1589–1600

    Article  CAS  PubMed  Google Scholar 

  89. Reiser J et al. (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11: 1–8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank other researchers for their forbearance, as there were many interesting observations that could not be included herein because of limited space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B Holzman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, D., Holzman, L. Clinical impact of research on the podocyte slit diaphragm. Nat Rev Nephrol 2, 271–282 (2006). https://doi.org/10.1038/ncpneph0180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing