Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ghrelin, obesity and diabetes

Abstract

The high prevalence of obesity and diabetes will lead to higher rates of morbidity and mortality. The search for drugs to treat these metabolic disorders has, therefore, intensified. The stomach-derived peptide ghrelin regulates food intake and body weight. Recent work suggests that ghrelin also controls glucose metabolism. In addition, current evidence suggests that most of the actions of ghrelin could contribute to the metabolic syndrome. The ghrelin signaling system is, therefore, a promising target for the development of new drugs for the treatment of obesity and diabetes. Agents that block the ghrelin signaling system might be especially useful targets. This Review summarizes the potential and the limitations of ghrelin as a tool to better understand, prevent and treat obesity and diabetes.

Key Points

  • Ghrelin is a peptide hormone derived from the stomach and gastrointestinal tract that predominantly controls energy balance and glucose homeostasis

  • Ghrelin mainly affects metabolism through the G-protein-coupled growth hormone secretagogue receptor 1a (GHS-R1a) in the brain

  • Pharmacologic ghrelin treatment in rodents leads to sustained gain of fat mass induced by increased food intake, decreased fat oxidation rates, altered nutrient partitioning, increased lipogenesis in adipose tissue and decreased thermogenesis

  • Ghrelin-deficient mouse models possess improved peripheral insulin sensitivity, and descriptive studies in humans and rodents suggest an inverse relationship between plasma ghrelin levels and insulin resistance and type 2 diabetes

  • Constituting a classical combination of a peptide hormone and a G-protein-coupled receptor (with additional ligands and receptors possibly to be discovered), there is reasonable potential to target the ghrelin–GHS-R system pharmacologically, whereas possible GHS-R1a-independent ghrelin effects represent a less defined and more complicated target

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of ghrelin on the CNS, and subsequent glucose, lipid and energy metabolism.

Similar content being viewed by others

References

  1. Heijboer AC et al. (2006) Gut-brain axis: regulation of glucose metabolism. J Neuroendocrinol 18: 883–894

    CAS  PubMed  Google Scholar 

  2. van der Lely AJ et al. (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25: 426–457

    CAS  PubMed  Google Scholar 

  3. Diano S et al. (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9: 381–388

    CAS  PubMed  Google Scholar 

  4. Despres JP and Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444: 881–887

    CAS  PubMed  Google Scholar 

  5. Nogueiras R et al. (2006) Growth hormone secretagogue (ghrelin-) receptors—a complex drug target for the regulation of body weight. CNS Neurol Disord Drug Targets 5: 335–343

    CAS  PubMed  Google Scholar 

  6. Kojima M et al. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656–660

    CAS  PubMed  Google Scholar 

  7. Hosoda H et al. (2003) Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem 278: 64–70

    CAS  PubMed  Google Scholar 

  8. Nishi Y et al. (2005) Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 146: 2255–2264

    CAS  PubMed  Google Scholar 

  9. Camina JP (2006) Cell biology of the ghrelin receptor. J Neuroendocrinol 18: 65–76

    CAS  PubMed  Google Scholar 

  10. Gauna C et al. (2006) Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. Mol Cell Endocrinol 251: 103–111

    CAS  PubMed  Google Scholar 

  11. Granata R et al. (2007) Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic β-cells and human islets: involvement of 3′,5′-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-kinase/Akt signaling. Endocrinology 148: 512–529

    CAS  PubMed  Google Scholar 

  12. Sun Y et al. (2004) Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA 101: 4679–4684

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Holst B et al. (2003) High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist. Mol Endocrinol 17: 2201–2210

    CAS  PubMed  Google Scholar 

  14. Zhang JV et al. (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310: 996–999

    CAS  PubMed  Google Scholar 

  15. Sibilia V et al. (2006) Intracerebroventricular acute and chronic administration of obestatin minimally affect food intake but not weight gain in the rat. J Endocrinol Invest 29: RC31–RC34

    CAS  PubMed  Google Scholar 

  16. Bresciani E et al. (2006) Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J Endocrinol Invest 29: RC16–RC18

    CAS  PubMed  Google Scholar 

  17. Holst B et al. (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148: 13–20

    CAS  PubMed  Google Scholar 

  18. Seoane LM et al. (2006) Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J Endocrinol Invest 29: RC13–RC15

    CAS  PubMed  Google Scholar 

  19. Nogueiras R et al. (2007) Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 148: 21–26

    CAS  PubMed  Google Scholar 

  20. Gourcerol G and Tache Y (2007) Obestatin—a ghrelin-associated peptide that does not hold its promise to suppress food intake and motility. Neurogastroenterol Motil 19: 161–165

    CAS  PubMed  Google Scholar 

  21. Dun SL et al. (2006) Distribution and biological activity of obestatin in the rat. J Endocrinol 191: 481–489

    CAS  PubMed  Google Scholar 

  22. Samson WK et al. (2007) Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol 292: R637–R643

    CAS  PubMed  Google Scholar 

  23. Szentirmai E and Krueger JM (2006) Obestatin alters sleep in rats. Neurosci Lett 404: 222–226

    CAS  PubMed  Google Scholar 

  24. Lauwers E et al. (2006) Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun 351: 21–25

    CAS  PubMed  Google Scholar 

  25. Tolle V et al. (2002) Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology 143: 1353–1361

    CAS  PubMed  Google Scholar 

  26. Cummings DE et al. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714–1719

    CAS  PubMed  Google Scholar 

  27. Tschop M et al. (2000) Ghrelin induces adiposity in rodents. Nature 407: 908–913

    CAS  PubMed  Google Scholar 

  28. Tschop M et al. (2001) Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest 24: RC19–RC21

    CAS  PubMed  Google Scholar 

  29. Overduin J et al. (2005) Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology 146: 845–850

    CAS  PubMed  Google Scholar 

  30. Ariyasu H et al. (2002) Delayed short-term secretory regulation of ghrelin in obese animals: evidenced by a specific RIA for the active form of ghrelin. Endocrinology 143: 3341–3350

    CAS  PubMed  Google Scholar 

  31. Gottero C et al. (2004) Ghrelin: a link between eating disorders, obesity and reproduction. Nutr Neurosci 7: 255–270

    CAS  PubMed  Google Scholar 

  32. Perreault M et al. (2004) Resistance to the orexigenic effect of ghrelin in dietary-induced obesity in mice: reversal upon weight loss. Int J Obes Relat Metab Disord 28: 879–885

    CAS  PubMed  Google Scholar 

  33. Yildiz BO et al. (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci USA 101: 10434–10439

    CAS  PubMed  PubMed Central  Google Scholar 

  34. English PJ et al. (2002) Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 87: 2984

    CAS  PubMed  Google Scholar 

  35. Purnell JQ et al. (2007) Changes in 24-h area-under-the-curve ghrelin values following diet-induced weight loss are associated with loss of fat-free mass, but not with changes in fat mass, insulin levels or insulin sensitivity. Int J Obes (Lond) 31: 385–389

    CAS  Google Scholar 

  36. Sun Y et al. (2003) Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 23: 7973–7981

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence CB et al. (2002) Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 143: 155–162

    CAS  PubMed  Google Scholar 

  38. Chen HY et al. (2004) Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145: 2607–2612

    CAS  PubMed  Google Scholar 

  39. Tschop M et al. (2002) GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology 143: 558–568

    CAS  PubMed  Google Scholar 

  40. Shuto Y et al. (2002) Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 109: 1429–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Egecioglu E et al. (2006) Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab 290: E317–E325

    CAS  PubMed  Google Scholar 

  42. Banks WA et al. (2002) Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302: 822–827

    CAS  PubMed  Google Scholar 

  43. Cowley MA et al. (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37: 649–661

    CAS  PubMed  Google Scholar 

  44. Kineman RD et al. (2007) Identification of a mouse ghrelin gene transcript that contains intron 2 and is regulated in the pituitary and hypothalamus in response to metabolic stress. J Mol Endocrinol 38: 511–521

    CAS  PubMed  Google Scholar 

  45. Horvath TL (2006) Synaptic plasticity in energy balance regulation. Obesity (Silver Spring) 14 (Suppl 5): 228S–233S

    CAS  Google Scholar 

  46. Olszewski PK et al. (2003) Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides 24: 919–923

    CAS  PubMed  Google Scholar 

  47. Currie PJ et al. (2005) Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol 289: R353–R358

    CAS  PubMed  Google Scholar 

  48. Olszewski PK et al. (2003) Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 24: 597–602

    CAS  PubMed  Google Scholar 

  49. Faulconbridge LF et al. (2003) Hyperphagic effects of brainstem ghrelin administration. Diabetes 52: 2260–2265

    CAS  PubMed  Google Scholar 

  50. Naleid AM et al. (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26: 2274–2279

    CAS  PubMed  Google Scholar 

  51. Guan XM et al. (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48: 23–29

    CAS  PubMed  Google Scholar 

  52. Zigman JM et al. (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494: 528–548

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Abizaid A et al. (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116: 3229–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Date Y et al. (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123: 1120–1128

    CAS  PubMed  Google Scholar 

  55. Asakawa A et al. (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120: 337–345

    CAS  PubMed  Google Scholar 

  56. Arnold M et al. (2006) Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 26: 11052–11060

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wortley KE et al. (2004) Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 101: 8227–8232

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Erickson JC et al. (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381: 415–421

    CAS  PubMed  Google Scholar 

  59. Qian S et al. (2002) Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22: 5027–5035

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Theander-Carrillo C et al. (2006) Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116: 1983–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dornonville de la Cour C et al. (2005) Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice. Gut 54: 907–913

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zorrilla EP et al. (2006) Vaccination against weight gain. Proc Natl Acad Sci USA 103: 13226–13231

    CAS  PubMed  PubMed Central  Google Scholar 

  63. St-Pierre DH et al. (2004) Relationship between ghrelin and energy expenditure in healthy young women. J Clin Endocrinol Metab 89: 5993–5997

    CAS  PubMed  Google Scholar 

  64. Yasuda T et al. (2003) Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett 349: 75–78

    CAS  PubMed  Google Scholar 

  65. Tang-Christensen M et al. (2003) Ghrelin induces long lasting changes in food intake and locomotor behaviour. Abstract P3-94 presented at the 85th Annual Meeting of the Endocrine Society: 2003, June 19–22, Philadelphia, PA

    Google Scholar 

  66. Tang-Christensen M et al. (2004) Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 145: 4645–4652

    CAS  PubMed  Google Scholar 

  67. Barazzoni R et al. (2005) Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab 288: E228–E235

    CAS  PubMed  Google Scholar 

  68. McCowen KC et al. (2002) Circulating ghrelin concentrations are lowered by intravenous glucose or hyperinsulinemic euglycemic conditions in rodents. J Endocrinol 175: R7–R11

    CAS  PubMed  Google Scholar 

  69. Saad MF et al. (2002) Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 87: 3997–4000

    CAS  PubMed  Google Scholar 

  70. Purnell JQ et al. (2003) Ghrelin levels correlate with insulin levels, insulin resistance, and high-density lipoprotein cholesterol, but not with gender, menopausal status, or cortisol levels in humans. J Clin Endocrinol Metab 88: 5747–5752

    CAS  PubMed  Google Scholar 

  71. Broglio F et al. (2001) Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86: 5083–5086

    CAS  PubMed  Google Scholar 

  72. Broglio F et al. (2004) Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab 89: 3062–3065

    CAS  PubMed  Google Scholar 

  73. Sun Y et al. (2006) Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab 3: 379–386

    CAS  PubMed  Google Scholar 

  74. Zigman JM et al. (2005) Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 115: 3564–3572

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Date Y et al. (2002) Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion. Diabetes 51: 124–129

    CAS  PubMed  Google Scholar 

  76. Volante M et al. (2002) Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 87: 1300–1308

    CAS  PubMed  Google Scholar 

  77. Wierup N et al. (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107: 63–69

    CAS  PubMed  Google Scholar 

  78. Reimer MK et al. (2003) Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144: 916–921

    CAS  PubMed  Google Scholar 

  79. Salehi A et al. (2004) Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul Pept 118: 143–150

    CAS  PubMed  Google Scholar 

  80. Dezaki K et al. (2006) Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance. Diabetes 55: 3486–3493

    CAS  PubMed  Google Scholar 

  81. Dezaki K et al. (2004) Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in β-cells: implication in the glycemic control in rodents. Diabetes 53: 3142–3151

    CAS  PubMed  Google Scholar 

  82. Dezaki K et al.: Ghrelin employs Gαi2 and activates Kv channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet β-cells: novel signal transduction of ghrelin. Diabetes, in press

  83. Doi A et al. (2006) IA-2β, but not IA-2, is induced by ghrelin and inhibits glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 103: 885–890

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Irako T et al. (2006) Ghrelin prevents development of diabetes at adult age in streptozotocin-treated newborn rats. Diabetologia 49: 1264–1273

    CAS  PubMed  Google Scholar 

  85. Aimaretti G et al. (2004) GHRH and GH secretagogues: clinical perspectives and safety. Pediatr Endocrinol Rev 2 (Suppl 1): 86–92

    PubMed  Google Scholar 

  86. Tschop M et al. (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50: 707–709

    CAS  PubMed  Google Scholar 

  87. Horvath TL et al. (2003) Ghrelin as a potential anti-obesity target. Curr Pharm Des 9: 1383–1395

    CAS  PubMed  Google Scholar 

  88. Wortley KE et al. (2005) Absence of ghrelin protects against early-onset obesity. J Clin Invest 115: 3573–3578

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Grove KL and Cowley MA (2005) Is ghrelin a signal for the development of metabolic systems? J Clin Invest 115: 3393–3397

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cummings DE and Schwartz MW (2003) Genetics and pathophysiology of human obesity. Annu Rev Med 54: 453–471

    CAS  PubMed  Google Scholar 

  91. DelParigi A et al. (2002) High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader–Willi syndrome. J Clin Endocrinol Metab 87: 5461–5464

    CAS  PubMed  Google Scholar 

  92. Isgaard J and Johansson I (2005) Ghrelin and GHS on cardiovascular applications/functions. J Endocrinol Invest 28: 838–842

    CAS  PubMed  Google Scholar 

  93. Nagaya N et al. (2006) Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern Med 45: 127–134

    PubMed  Google Scholar 

  94. Murray CD et al. (2005) Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study. Gut 54: 1693–1698

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R Nogueiras is a recipient of a Marie Curie Outgoing International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias H Tschöp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedmer, P., Nogueiras, R., Broglio, F. et al. Ghrelin, obesity and diabetes. Nat Rev Endocrinol 3, 705–712 (2007). https://doi.org/10.1038/ncpendmet0625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing