Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural remodeling in atrial fibrillation

Abstract

Atrial fibrillation occurs and maintains itself in the context of a morphologically and functionally altered atrial substrate that can be induced by stressors such as underlying diseases (cardiac or noncardiac) or aging. The resultant structural remodeling is a slow process that progressively affects myocytes and the myocardial interstitium, and takes place from as early as the first days of atrial tachyarrhythmia. The left atrium, and particularly its posterior wall, is the location where remodeling is concentrated to the greatest extent. The mechanisms that underlie the remodeling process in atrial fibrillation have not yet been completely elucidated, although experimental and clinical investigations have indicated a number of signaling systems, inflammation, oxidative stress, atrial stretching and ischemia as factors involved in the cascade of events that leads to atrial fibrillation. The aim of this Review is to provide a comprehensive overview of the morphological changes that characterize the fibrillating atrial myocardium at histological and ultrastructural levels, and the established and hypothetical pathogenetic mechanisms involved in structural remodeling. This article also highlights the emerging therapies being developed to prevent progression of atrial fibrillation.

Key Points

  • Atrial fibrillation (AF) develops and persists in the context of an altered atrial myocardial environment; these alterations are termed 'structural remodeling' and embrace myocyte and interstitial changes

  • Early myocyte changes most likely represent adaptive responses to external stressors, whereas interstitial and late myocyte changes lead to irreversible damage that favors AF maintenance

  • A number of factors, such as the tachyarrhythmia itself, aging, signaling systems, inflammation, oxidative stress, atrial stretching and ischemia, have been indicated as key elements of a self-perpetuating positive feedback mechanism in AF

  • Traditional pharmacological treatments for AF are often ineffective in controlling atrial rhythm, probably because of progressively worsening structural remodeling

  • A challenging potential therapeutic approach to AF could involve the use of drugs that block the vicious cycle of initiation and persistence of AF and thus impede the progression of structural remodeling

  • Catheter ablation is a nonpharmacological treatment for AF that aims to isolate the atrial areas that are most subject to structural remodeling; destruction of myocardial tissue in these areas interrupts the re-entrant circuits that cause AF

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myocardial histopathology of the left atrial posterior wall in a patient affected by atrial fibrillation and mitral valve disease.
Figure 2: Myocardial ultrastructure of the left atrial posterior wall in a patient affected by atrial fibrillation and mitral valve disease.
Figure 3: The main pathogenetic mechanisms involved in atrial structural remodeling.

Similar content being viewed by others

References

  1. Haissaguerre M et al. (2004) Catheter ablation of atrial fibrillation: triggers and substrate. In Cardiac electrophysiology: from cell to bedside, 1028–1038 (Eds Zipes D. et al.) Philadelphia: WB Saunders

    Chapter  Google Scholar 

  2. Pappone C and Rosanio S (2004) Pulmonary vein isolation for atrial fibrillation. In Cardiac electrophysiology: from cell to bedside, 1039–1052 (Eds Zipes D. et al.) Philadelphia: WB Saunders

    Chapter  Google Scholar 

  3. Allessie MA et al. (2001) Pathophysiology and prevention of atrial fibrillation. Circulation 103: 769–777

    Article  CAS  PubMed  Google Scholar 

  4. Carnes CA et al. (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 89: E32–E38

    Article  CAS  PubMed  Google Scholar 

  5. Wijffels MC et al. (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92: 1954–1968

    Article  CAS  PubMed  Google Scholar 

  6. Nattel S (1999) Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res 42: 298–308

    Article  CAS  PubMed  Google Scholar 

  7. Ausma J et al. (2001) Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J Mol Cell Cardiol 33: 2083–2094

    Article  CAS  PubMed  Google Scholar 

  8. Everett TH 4th et al. (2006) Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am J Physiol Heart Circ Physiol 291: H2911–H2923

    Article  CAS  PubMed  Google Scholar 

  9. Kumagai K et al. (1997) Simultaneous multisite mapping studies during induced atrial fibrillation in the sterile pericarditis model. Insights into the mechanism of its maintenance. Circulation 95: 511–521

    Article  CAS  PubMed  Google Scholar 

  10. Li D et al. (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100: 87–95

    Article  CAS  PubMed  Google Scholar 

  11. Morillo CA et al. (1995) Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91: 1588–1595

    Article  CAS  PubMed  Google Scholar 

  12. Ausma J et al. (1997) Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol 151: 985–997

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Skanes AC et al. (1998) Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98: 1236–1248

    Article  CAS  PubMed  Google Scholar 

  14. Nattel S et al. (2005) Mechanisms of atrial fibrillation: lessons from animal models. Prog Cardiovasc Dis 48: 9–28

    Article  CAS  PubMed  Google Scholar 

  15. Verheule S et al. (2003) Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation 107: 2615–2622

    Article  PubMed  PubMed Central  Google Scholar 

  16. Verheule S et al. (2004) Direction-dependent conduction abnormalities in a canine model of atrial fibrillation due to chronic atrial dilatation. Am J Physiol Heart Circ Physiol 287: H634–H644

    Article  PubMed  Google Scholar 

  17. Lin CS et al. (2007) Increased expression of extracellular matrix proteins in rapid atrial pacing-induced atrial fibrillation. Heart Rhythm 4: 938–949

    Article  PubMed  Google Scholar 

  18. Ausma J et al. (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96: 3157–3163

    Article  CAS  PubMed  Google Scholar 

  19. Woodcock-Mitchell J et al. (1988) Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39: 161–166

    Article  CAS  PubMed  Google Scholar 

  20. Ausma J et al. (1998) Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Mol Cell Biochem 186: 159–168

    Article  CAS  PubMed  Google Scholar 

  21. Ausma J et al. (2003) Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation 107: 2051–2058

    Article  PubMed  Google Scholar 

  22. Kerr CR et al. (2005) Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation. Am Heart J 149: 489–496

    Article  PubMed  Google Scholar 

  23. Olgin JE and Verheule S (2002) Transgenic and knockout mouse models of atrial arrhythmias. Cardiovasc Res 54: 280–286

    Article  CAS  PubMed  Google Scholar 

  24. Hong CS et al. (2008) Overexpression of junctate induces cardiac hypertrophy and arrhythmia via altered calcium handling. J Mol Cell Cardiol 44: 672–682

    Article  CAS  PubMed  Google Scholar 

  25. Saba S et al. (2005) Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-α. Am J Physiol Heart Circ Physiol 289: H1456–H1467

    Article  CAS  PubMed  Google Scholar 

  26. Sah VP et al. (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103: 1627–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muller FU et al. (2005) Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J Biol Chem 280: 6906–6914

    Article  PubMed  CAS  Google Scholar 

  28. Xiao HD et al. (2004) Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol 165: 1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verheule S et al. (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ Res 94: 1458–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kannel WB et al. (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82: 2N–9N

    Article  CAS  PubMed  Google Scholar 

  31. Frustaci A et al. (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96: 1180–1184

    Article  CAS  PubMed  Google Scholar 

  32. Haissaguerre M et al. (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339: 659–666

    Article  CAS  PubMed  Google Scholar 

  33. Corradi D et al. (2004) Regional left atrial interstitial remodeling in patients with chronic atrial fibrillation undergoing mitral-valve surgery. Virchows Arch 445: 498–505

    Article  PubMed  Google Scholar 

  34. Corradi D et al. (2005) Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Hum Pathol 36: 1080–1089

    Article  PubMed  Google Scholar 

  35. Allessie M et al. (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54: 230–246

    Article  CAS  PubMed  Google Scholar 

  36. Khan IA (2003) Atrial stunning: determinants and cellular mechanisms. Am Heart J 145: 787–794

    Article  CAS  PubMed  Google Scholar 

  37. Sun H et al. (2001) Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res 49: 751–761

    Article  CAS  PubMed  Google Scholar 

  38. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415: 219–226

    Article  CAS  PubMed  Google Scholar 

  39. Gaspo R et al. (1997) Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96: 4027–4035

    Article  CAS  PubMed  Google Scholar 

  40. Ohkusa T et al. (1999) Alterations in cardiac sarcoplasmic reticulum Ca2+ regulatory proteins in the atrial tissue of patients with chronic atrial fibrillation. J Am Coll Cardiol 34: 255–263

    Article  CAS  PubMed  Google Scholar 

  41. Bosch RF et al. (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44: 121–131

    Article  CAS  PubMed  Google Scholar 

  42. Schoonderwoerd BA et al. (2004) Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate. J Cardiovasc Electrophysiol 15: 1167–1174

    Article  PubMed  Google Scholar 

  43. Suzuki K et al. (1987) Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Lett 220: 271–277

    Article  CAS  PubMed  Google Scholar 

  44. Brundel BJ et al. (2002) Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovasc Res 54: 315–324

    Article  CAS  PubMed  Google Scholar 

  45. Brundel BJ et al. (2004) Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation. Cardiovasc Res 62: 521–528

    Article  CAS  PubMed  Google Scholar 

  46. Savelieva I and John Camm A (2004) Atrial fibrillation and heart failure: natural history and pharmacological treatment. Europace 5 (Suppl 1): S5–S19

    Article  PubMed  Google Scholar 

  47. Satoh T and Zipes DP (1996) Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol 7: 833–842

    Article  CAS  PubMed  Google Scholar 

  48. Assayag P et al. (1997) Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovasc Res 34: 439–444

    Article  CAS  PubMed  Google Scholar 

  49. Olivetti G et al. (1997) Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141

    Article  CAS  PubMed  Google Scholar 

  50. Burstein B and Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51: 802–809

    Article  CAS  PubMed  Google Scholar 

  51. Sadoshima J and Izumo S (1996) Autocrine secretion of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Contrib Nephrol 118: 214–221

    Article  CAS  PubMed  Google Scholar 

  52. Usui M et al. (2000) Important role of local angiotensin II activity mediated via type 1 receptor in the pathogenesis of cardiovascular inflammatory changes induced by chronic blockade of nitric oxide synthesis in rats. Circulation 101: 305–310

    Article  CAS  PubMed  Google Scholar 

  53. Brown NJ and Vaughan DE (2000) Prothrombotic effects of angiotensin. Adv Intern Med 45: 419–429

    CAS  PubMed  Google Scholar 

  54. Schroder D et al. (2006) Angiotensin II stimulates apoptosis via TGF-β1 signaling in ventricular cardiomyocytes of rat. J Mol Med 84: 975–983

    Article  CAS  PubMed  Google Scholar 

  55. Brilla CG et al. (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26: 809–820

    Article  CAS  PubMed  Google Scholar 

  56. Casaclang-Verzosa G et al. (2008) Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. J Am Coll Cardiol 51: 1–11

    Article  PubMed  Google Scholar 

  57. Hanna N et al. (2004) Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 63: 236–244

    Article  CAS  PubMed  Google Scholar 

  58. Nakajima H et al. (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-β1 transgene in the heart. Circ Res 86: 571–579

    Article  CAS  PubMed  Google Scholar 

  59. Schotten U et al. (2003) The role of atrial dilatation in the domestication of atrial fibrillation. Prog Biophys Mol Biol 82: 151–162

    Article  PubMed  Google Scholar 

  60. MacKenna D et al. (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46: 257–263

    Article  CAS  PubMed  Google Scholar 

  61. Yasuda N et al. (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9: 179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kamkin A et al. (2005) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100: 337–345

    Article  CAS  PubMed  Google Scholar 

  63. Polyakova V et al. (2008) Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med 12: 189–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gramley F et al. (2007) Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J Cardiovasc Electrophysiol 18: 1076–1082

    Article  PubMed  Google Scholar 

  65. Abdelhadi RH et al. (2004) Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am J Cardiol 93: 1176–1178

    Article  PubMed  Google Scholar 

  66. Savelieva I and Camm J (2008) Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. Nat Clin Pract Cardiovasc Med 5: 30–41

    Article  CAS  PubMed  Google Scholar 

  67. Mathew JP et al. (2004) A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 291: 1720–1729

    Article  CAS  PubMed  Google Scholar 

  68. Chung MK et al. (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104: 2886–2891

    Article  CAS  PubMed  Google Scholar 

  69. Dernellis J and Panaretou M (2001) C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. Acta Cardiol 56: 375–380

    Article  CAS  PubMed  Google Scholar 

  70. Kallergis EM et al. (2008) The role of the post-cardioversion time course of hs-CRP levels in clarifying the relationship between inflammation and persistence of atrial fibrillation. Heart 94: 200–204

    Article  CAS  PubMed  Google Scholar 

  71. Liu T et al. (2007) Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Am Coll Cardiol 49: 1642–1648

    Article  CAS  PubMed  Google Scholar 

  72. Shiroshita-Takeshita A et al. (2004) Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 110: 2313–2319

    Article  CAS  PubMed  Google Scholar 

  73. Mihm MJ et al. (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104: 174–180

    Article  CAS  PubMed  Google Scholar 

  74. Corradi D et al. (2008) Heme oxygenase-1 expression in the left atrial myocardium of patients with chronic atrial fibrillation related to mitral valve disease: its regional relationship with structural remodeling. Hum Pathol 39: 1162–1171

    Article  CAS  PubMed  Google Scholar 

  75. Korantzopoulos P et al. (2007) The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol 115: 135–143

    Article  PubMed  Google Scholar 

  76. Kostin S et al. (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54: 361–379

    Article  CAS  PubMed  Google Scholar 

  77. Sinno H et al. (2003) Atrial ischemia promotes atrial fibrillation in dogs. Circulation 107: 1930–1936

    Article  PubMed  Google Scholar 

  78. Rivard L et al. (2007) The pharmacological response of ischemia-related atrial fibrillation in dogs: evidence for substrate-specific efficacy. Cardiovasc Res 74: 104–113

    Article  CAS  PubMed  Google Scholar 

  79. Skalidis EI et al. (2008) Isolated atrial microvascular dysfunction in patients with lone recurrent atrial fibrillation. J Am Coll Cardiol 51: 2053–2057

    Article  PubMed  Google Scholar 

  80. Duffy HS and Wit AL (2008) Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol 44: 4–13

    Article  CAS  PubMed  Google Scholar 

  81. Kanagaratnam P et al. (2002) Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol 39: 116–123

    Article  CAS  PubMed  Google Scholar 

  82. Dupont E et al. (2001) The gap-junctional protein connexin 40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 103: 842–849

    Article  CAS  PubMed  Google Scholar 

  83. Kanagaratnam P et al. (2004) Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 15: 206–216

    Article  PubMed  Google Scholar 

  84. Nao T et al. (2003) Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am J Cardiol 91: 678–683

    Article  CAS  PubMed  Google Scholar 

  85. Polontchouk L et al. (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38: 883–891

    Article  CAS  PubMed  Google Scholar 

  86. Severs N et al. (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res [10.1093/cvr/cvn133]

  87. Bauer A et al. (2004) Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure. Cardiovasc Res 61: 764–770

    Article  CAS  PubMed  Google Scholar 

  88. Cardin S et al. (2003) Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res 60: 315–325

    Article  CAS  PubMed  Google Scholar 

  89. Aime-Sempe C et al. (1999) Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 34: 1577–1586

    Article  CAS  PubMed  Google Scholar 

  90. Kajstura J et al. (1997) Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29: 859–870

    Article  CAS  PubMed  Google Scholar 

  91. Miyajima A et al. (2000) Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58: 2301–2313

    Article  CAS  PubMed  Google Scholar 

  92. Rodrigo R et al. (2008) Prevention of atrial fibrillation following cardiac surgery: basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning. Pharmacol Ther 118: 104–127

    Article  CAS  PubMed  Google Scholar 

  93. Anversa P et al. (1992) Chronic coronary artery constriction leads to moderate myocyte loss and left ventricular dysfunction and failure in rats. J Clin Invest 89: 618–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Diwan A et al. (2008) Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation 117: 396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sadler T (1990) Cardiovascular system. I. Langman's Medical Embryology, 179–227 (Eds Langman J) Baltimore: Williams and Wilkins

    Google Scholar 

  96. Cheng W et al. (1995) Stretch-induced programmed myocyte cell death. J Clin Invest 96: 2247–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zipes DP et al. (2006) ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114: e385–484

    Article  PubMed  Google Scholar 

  98. Corley SD et al. (2004) Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study. Circulation 109: 1509–1513

    Article  PubMed  Google Scholar 

  99. Goette A and Lendeckel U (2004) Nonchannel drug targets in atrial fibrillation. Pharmacol Ther 102: 17–36

    Article  CAS  PubMed  Google Scholar 

  100. Shi Y et al. (2002) Enalapril effects on atrial remodeling and atrial fibrillation in experimental congestive heart failure. Cardiovasc Res 54: 456–461

    Article  CAS  PubMed  Google Scholar 

  101. Li D et al. (2001) Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104: 2608–2614

    Article  CAS  PubMed  Google Scholar 

  102. Sakabe M et al. (2004) Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin 43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 43: 851–859

    Article  CAS  PubMed  Google Scholar 

  103. Nakashima H et al. (2000) Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation 101: 2612–2617

    Article  CAS  PubMed  Google Scholar 

  104. Nakashima H and Kumagai K (2007) Reverse-remodeling effects of angiotensin II type 1 receptor blocker in a canine atrial fibrillation model. Circ J 71: 1977–1982

    Article  CAS  PubMed  Google Scholar 

  105. Healey JS et al. (2005) Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol 45: 1832–1839

    Article  CAS  PubMed  Google Scholar 

  106. Murray KT et al. (2004) Inhibition of angiotensin II signaling and recurrence of atrial fibrillation in AFFIRM. Heart Rhythm 1: 669–675

    Article  PubMed  Google Scholar 

  107. Wachtell K et al. (2005) Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol 45: 712–719

    Article  CAS  PubMed  Google Scholar 

  108. Hansson L et al. (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353: 611–616

    Article  CAS  PubMed  Google Scholar 

  109. Hansson L et al. (1999) Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 354: 1751–1756

    Article  CAS  PubMed  Google Scholar 

  110. Savelieva I and Camm J (2007) Is there any hope for angiotensin-converting enzyme inhibitors in atrial fibrillation? Am Heart J 154: 403–406

    Article  CAS  PubMed  Google Scholar 

  111. Brilla CG (2000) Aldosterone and myocardial fibrosis in heart failure. Herz 25: 299–306

    Article  CAS  PubMed  Google Scholar 

  112. Milliez P et al. (2005) Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur Heart J 26: 2193–2199

    Article  CAS  PubMed  Google Scholar 

  113. Fraccarollo D et al. (2003) Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 42: 1666–1673

    Article  CAS  PubMed  Google Scholar 

  114. Zannad F et al. (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102: 2700–2706

    Article  CAS  PubMed  Google Scholar 

  115. Pitt B et al. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348: 1309–1321

    Article  CAS  PubMed  Google Scholar 

  116. Shroff SC et al. (2006) Selective aldosterone blockade suppresses atrial tachyarrhythmias in heart failure. J Cardiovasc Electrophysiol 17: 534–541

    Article  PubMed  Google Scholar 

  117. Fuster V et al. (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114: e257–e354

    Article  PubMed  Google Scholar 

  118. Kumagai K et al. (2004) The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res 62: 105–111

    Article  CAS  PubMed  Google Scholar 

  119. Fauchier L et al. (2008) Antiarrhythmic effect of statin therapy and atrial fibrillation a meta-analysis of randomized controlled trials. J Am Coll Cardiol 51: 828–835

    Article  CAS  PubMed  Google Scholar 

  120. Tveit A et al. (2004) Analysis of pravastatin to prevent recurrence of atrial fibrillation after electrical cardioversion. Am J Cardiol 93: 780–782

    Article  CAS  PubMed  Google Scholar 

  121. Schwartz G et al. (2004) Effect of intensive statin treatment on the occurrence of atrial fibrillation after acute coronary syndrome: an analysis of the MIRACL trial. Circulation 110 (Suppl): S740

    Google Scholar 

  122. Chello M et al. (2006) Effects of atorvastatin on systemic inflammatory response after coronary bypass surgery. Crit Care Med 34: 660–667

    Article  CAS  PubMed  Google Scholar 

  123. Ozaydin M et al. (2006) Effect of atorvastatin on the recurrence rates of atrial fibrillation after electrical cardioversion. Am J Cardiol 97: 1490–1493

    Article  CAS  PubMed  Google Scholar 

  124. Patti G et al. (2006) Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of Myocardial Dysrhythmia After Cardiac Surgery) study. Circulation 114: 1455–1461

    Article  CAS  PubMed  Google Scholar 

  125. Dernellis J and Panaretou M (2005) Effect of C-reactive protein reduction on paroxysmal atrial fibrillation. Am Heart J 150: 1064

    Article  PubMed  CAS  Google Scholar 

  126. Marin F et al. (2006) Statins and postoperative risk of atrial fibrillation following coronary artery bypass grafting. Am J Cardiol 97: 55–60

    Article  CAS  PubMed  Google Scholar 

  127. Calder PC (2006) ω-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83: 1505S–1519S

    Article  CAS  PubMed  Google Scholar 

  128. Ninio DM et al. (2005) Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J Cardiovasc Electrophysiol 16: 1189–1194

    Article  PubMed  Google Scholar 

  129. Mozaffarian D et al. (2004) Fish intake and risk of incident atrial fibrillation. Circulation 110: 368–373

    Article  PubMed  PubMed Central  Google Scholar 

  130. Frost L and Vestergaard P (2005) ω-3 Fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr 81: 50–54

    Article  CAS  PubMed  Google Scholar 

  131. Brouwer IA et al. (2006) Intake of very long-chain ω-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam Study. Am Heart J 151: 857–862

    Article  CAS  PubMed  Google Scholar 

  132. Calò L et al. (2005) ω-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J Am Coll Cardiol 45: 1723–1728

    Article  PubMed  CAS  Google Scholar 

  133. Goldstein RN et al. (2008) Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J Cardiovasc Electrophysiol 19: 74–81

    PubMed  Google Scholar 

  134. Halonen J et al. (2007) Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA 297: 1562–1567

    Article  CAS  PubMed  Google Scholar 

  135. Jahangiri M and Camm AJ (2007) Do corticosteroids prevent atrial fibrillation after cardiac surgery. Nat Clin Pract Cardiovasc Med 4: 592–593

    Article  PubMed  Google Scholar 

  136. Calkins H et al. (2007) HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS) in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace 9: 335–379

    Article  PubMed  Google Scholar 

  137. Al Chekakie MO et al. (2007) The effects of statins and renin–angiotensin system blockers on atrial fibrillation recurrence following antral pulmonary vein isolation. J Cardiovasc Electrophysiol 18: 942–946

    Article  PubMed  Google Scholar 

  138. Deneke T (2007) ARBs, ACE-Is, or statins after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 18: 947–949

    Article  PubMed  Google Scholar 

  139. Lemola K et al. (2005) Effect of left atrial circumferential ablation for atrial fibrillation on left atrial transport function. Heart Rhythm 2: 923–928

    Article  PubMed  Google Scholar 

  140. Verma A et al. (2006) Extensive ablation during pulmonary vein antrum isolation has no adverse impact on left atrial function: an echocardiography and cine computed tomography analysis. J Cardiovasc Electrophysiol 17: 741–746

    Article  PubMed  Google Scholar 

  141. Benser ME et al. (2001) Atrial defibrillation thresholds of electrode configurations available to an atrioventricular defibrillator. J Cardiovasc Electrophysiol 12: 957–964

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor Emilio Macchi, University of Parma, Parma, Italy, for his valuable suggestions. We would also like to express our gratitude to Ms Emilia Corradini for her competent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Corradi.

Ethics declarations

Competing interests

Stefano Benussi is consultant for Estech Inc. and for Atricure Inc. and has received lecture fees from St Jude Medical Inc., Medtronic Inc., Cryocath Inc., Edwards-Lifesciences Inc.

The other authors declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corradi, D., Callegari, S., Maestri, R. et al. Structural remodeling in atrial fibrillation. Nat Rev Cardiol 5, 782–796 (2008). https://doi.org/10.1038/ncpcardio1370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio1370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing