Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracellular and extracellular targets of molecular imaging in the myocardium

Abstract

Utilization of molecular imaging has significantly advanced the field of cardiovascular medicine. In addition to the targets currently in use, novel targets are being developed, including those involved in the processes of myocardial metabolism, myocardial injury, cardiac neurotransmission, and interstitial dysregulation. Further development of these imaging targets may lead to improved characterization of disease processes and guide provision of individualized therapies.

Key Points

  • Molecular myocardial imaging is a rapidly evolving field that aims to provide a better understanding of biologic processes that occur in the myocardium

  • Targeted imaging of myocardial metabolism, myocardial injury, cardiac neurotransmission, and interstitial dysregulation continues to develop, with early incorporation into the clinical realm

  • Identification of novel molecular targets, as well as improvement in the techniques to image currently available targets, is ongoing

  • Limitations of molecular myocardial imaging include low spatial resolution and limited availability of radiopharmaceuticals; further development of the technology should reduce the effect of these limitations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging myocardial metabolism.
Figure 2: Imaging myocardial apoptosis.
Figure 3: A schematic representation of cardiac neurotransmission.
Figure 4: Imaging angiogenesis.

Similar content being viewed by others

References

  1. Neely JR et al. (1972) Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 15: 289–329

    Article  CAS  Google Scholar 

  2. Neubauer S (2007) The failing heart: an engine out of fuel. N Engl J Med 356: 1140–1151

    Article  Google Scholar 

  3. Hosokawa R et al. (1997) Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med 38: 1857–1863

    CAS  PubMed  Google Scholar 

  4. Udelson JE (2006) Diagnosis and risk stratification in acute coronary syndromes. In Atlas of Nuclear Cardiology, ch 8 (Eds Dilsizian V and Narula J) Philadelphia: Current Medicine

    Google Scholar 

  5. Kawai Y et al. (2001) Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol 38: 1888–1894

    Article  CAS  Google Scholar 

  6. Wallhaus TR et al. (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103: 2441–2446

    Article  CAS  Google Scholar 

  7. Nowak B et al. (2003) Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 41: 1523–1528

    Article  Google Scholar 

  8. Lindner O et al. (2006) Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy. J Nucl Med 47: 378–383

    PubMed  Google Scholar 

  9. Hofmann M et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111: 2198–2202

    Article  Google Scholar 

  10. Menasche P et al. (2001) Myoblast transplantation for heart failure. Lancet 357: 279–280

    Article  CAS  Google Scholar 

  11. Communal C et al. (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99: 6252–6256

    Article  CAS  Google Scholar 

  12. Hirota H et al. (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97: 189–198

    Article  CAS  Google Scholar 

  13. Olivetti G et al. (1997) Apoptosis in the failing human heart. N Engl J Med 336: 1131–1141

    Article  CAS  Google Scholar 

  14. Koopman G et al. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415–1420

    CAS  PubMed  Google Scholar 

  15. Narula J et al. (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7: 1347–1352

    Article  CAS  Google Scholar 

  16. Hofstra L et al. (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356: 209–212

    Article  CAS  Google Scholar 

  17. Kietselaer BL et al. (2007) Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J Nucl Med 48: 562–567

    Article  CAS  Google Scholar 

  18. Kietselaer BL et al. (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350: 1472–1473

    Article  CAS  Google Scholar 

  19. Hayakawa Y et al. (2003) Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 108: 3036–3041

    Article  CAS  Google Scholar 

  20. Donath S et al. (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113: 1203–1212

    Article  CAS  Google Scholar 

  21. Li Y et al. (2004) Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ Res 95: 627–636

    Article  CAS  Google Scholar 

  22. von Harsdorf R (2004) “Fas-ten” your seat belt: anti-apoptotic treatment in heart failure takes off. Circ Res 95: 554–556

    Article  CAS  Google Scholar 

  23. James TN (1983) Primary and secondary cardioneuropathies and their functional significance. J Am Coll Cardiol 2: 983–1002

    Article  CAS  Google Scholar 

  24. Bristow MR et al. (1992) Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Investig 89: 803–815

    Article  CAS  Google Scholar 

  25. Langer O and Halldin C (2002) PET and SPECT tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 29: 416–434

    Article  CAS  Google Scholar 

  26. Schwaiger M and Bengel FM (2006) Myocardial innervation. In Atlas of Nuclear Cardiology, ch 11 (Eds Dilsizian V and Narula J) Philadelphia: Current Medicine

    Google Scholar 

  27. Fujimoto S et al. (2004) Usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy for predicting the effectiveness of beta-blockers in patients with dilated cardiomyopathy from the standpoint of long-term prognosis. Eur J Nucl Med Mol Imaging 31: 1356–1361

    Article  CAS  Google Scholar 

  28. Merlet P et al. (1999) Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. J Nucl Med 40: 224–231

    CAS  PubMed  Google Scholar 

  29. De Marco T et al. (1995) Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 25: 927–931

    Article  CAS  Google Scholar 

  30. Guertner C et al. (1995) Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and histological examination. Eur J Nucl Med 22: 443–452

    Article  CAS  Google Scholar 

  31. Estorch M et al. (1999) Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 40: 911–916

    CAS  PubMed  Google Scholar 

  32. Goldstein DS et al. (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22: 1961–1971

    Article  CAS  Google Scholar 

  33. Goldstein DS et al. (1997) Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 336: 696–702

    Article  CAS  Google Scholar 

  34. Orimo S et al. (1999) (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson's disease. J Neurol Neurosurg Psychiatry 67: 189–194

    Article  CAS  Google Scholar 

  35. Druschky A et al. (2000) Differentiation of Parkinson's disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 175: 3–12

    Article  CAS  Google Scholar 

  36. Paul M et al. (2006) Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 33: 866–870

    Article  Google Scholar 

  37. Schafers MA et al. (2001) Pulmonary beta adrenoceptor density in arrhythmogenic right ventricular cardiomyopathy and idiopathic tachycardia. Basic Res Cardiol 96: 91–97

    Article  CAS  Google Scholar 

  38. Parthenakis FI et al. (2002) Segmental pattern of myocardial sympathetic denervation in idiopathic dilated cardiomyopathy: relationship to regional wall motion and myocardial perfusion abnormalities. J Nucl Cardiol 9: 15–22

    Article  CAS  Google Scholar 

  39. Lotze U et al. (2001) Recovery of the cardiac adrenergic nervous system after long-term beta-blocker therapy in idiopathic dilated cardiomyopathy: assessment by increase in myocardial 123I-metaiodobenzylguanidine uptake. J Nucl Med 42: 49–54

    CAS  PubMed  Google Scholar 

  40. Matsunari I et al. (2000) Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 101: 2579–2585

    Article  CAS  Google Scholar 

  41. Su H et al. (2005) Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112: 3157–3167

    Article  CAS  Google Scholar 

  42. Lu E et al. (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108: 97–103

    Article  CAS  Google Scholar 

  43. Cai W and Chen X (2007) Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 12: 4267–4279

    Article  CAS  Google Scholar 

  44. Meoli DF et al. (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Investig 113: 1684–1691

    Article  CAS  Google Scholar 

  45. Sadeghi MM et al. (2004) Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 110: 84–90

    Article  CAS  Google Scholar 

  46. Hua J et al. (2005) Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111: 3255–3260

    Article  CAS  Google Scholar 

  47. Cai W et al. (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48: 1862–1870

    Article  CAS  Google Scholar 

  48. Xie X et al. (2007) Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function. Cloning Stem Cells 9: 549–563

    Article  CAS  Google Scholar 

  49. Jackson BM et al. (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40: 1160–1167

    Article  Google Scholar 

  50. Li Z et al. (2002) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116 (Suppl 11): I46–I54

    Google Scholar 

Download references

Acknowledgements

HJC is supported by an SNM Pilot Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, H., Narula, J., Hofstra, L. et al. Intracellular and extracellular targets of molecular imaging in the myocardium. Nat Rev Cardiol 5 (Suppl 2), S33–S41 (2008). https://doi.org/10.1038/ncpcardio1161

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio1161

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing