Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: current understanding and future challenges in Brugada syndrome

Abstract

Brugada syndrome is a clinical entity characterized by ST-segment elevation in the right precordial leads (V1–V3) and an episode of ventricular fibrillation in the absence of structural heart disease. Data regarding genotype–phenotype relationships are limited, since SCN5A, the gene encoding the α subunit of the sodium channel, is as yet the only gene linked to Brugada syndrome. Studies of SCN5A mutations responsible for the Brugada phenotype have shown the presence of functional defects in the sodium-channel current. Experimental studies employing arterially perfused right-ventricular wedge preparations have elucidated cellular mechanisms for this phenotype. Data indicate that an accentuated action-potential notch, mediated by a prominent transient outward current and loss of the action-potential dome in the epicardium (but not in the endocardium) of the right ventricle give rise to a transmural voltage gradient, resulting in ST-segment elevation and the induction of ventricular fibrillation. On the basis of cellular mechanisms, it might be possible to normalize the Brugada phenotype by use of therapeutic agents or interventions that decrease net outward currents by decreasing the transient outward current or outward potassium currents, or increasing the L-type inward calcium current or fast sodium current. Interventions that increase net outward currents through raising the transient outward current or outward potassium currents or decreasing the L-type inward calcium current or fast sodium current might aggravate or unmask the Brugada phenotype, resulting in an acquired form of this syndrome. In this review, we discuss future challenges relating to risk stratification, genetic heterogeneity, sex and ethnic differences in Brugada syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coved-type ST-segment elevation and subsequent nonsustained polymorphic ventricular tachycardia caused by premature beats induced by phase 2 re-entry in a Brugada model, employing an arterially perfused canine right-ventricular wedge preparation.
Figure 2: Snapshots of a color isopotential optical movie of the epicardial surface at the beginning of polymorphic ventricular tachycardia, and a repolarization map of the epicardial surface just before ventricular fibrillation.

Similar content being viewed by others

References

  1. Brugada P and Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol 20: 1391–1396

    Article  CAS  Google Scholar 

  2. Brugada J et al. (1998) Right bundle-branch block and ST-segment elevation in leads V1 through V3. A marker for sudden death in patients without demonstrable structural heart disease. Circulation 97: 457–460

    Article  CAS  Google Scholar 

  3. Gussak I et al. (1999) The Brugada syndrome: clinical, electrophysiological and genetic aspects. J Am Coll Cardiol 33: 5–15

    Article  CAS  Google Scholar 

  4. Alings M and Wilde A (1999) “Brugada” syndrome: Clinical data and suggested pathophysiological mechanism. Circulation 99: 666–673

    Article  CAS  Google Scholar 

  5. Antzelevitch C et al. (1999) Clinical Approaches to Tachyarrhythmias: Vol. 10 The Brugada Syndrome, p1–99 (ed Camm AJ) New York: Futura

    Google Scholar 

  6. Antzelevitch C et al. (2002) Brugada syndrome. A decade of progress. Circ Res 91: 1114–1118

    Article  CAS  Google Scholar 

  7. Priori SG et al. (2002) Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 105: 1342–1347

    Article  Google Scholar 

  8. Wilde AA et al. (2002) Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 106: 2514–2519

    Article  Google Scholar 

  9. Brugada J et al. (2002) Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 105: 73–78

    Article  Google Scholar 

  10. Brugada J et al. (2003) Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 108: 3092–3096

    Article  Google Scholar 

  11. Antzelevitch C et al. (2005) Brugada Syndrome. Report of the Second Consensus Conference. Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111: 659–670

    Article  Google Scholar 

  12. Nademanee K et al. (1997) Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 96: 2595–2600

    Article  CAS  Google Scholar 

  13. Miyazaki T et al. (1996) Autonomic and antiarrhythmic drug modulation of ST-segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 27: 1061–1070

    Article  CAS  Google Scholar 

  14. Vatta M et al. (2002) Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet 11: 337–345

    Article  CAS  Google Scholar 

  15. Matsuo K et al. (1998) Dynamic changes of 12-lead electrocardiograms in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 9: 508–512

    Article  CAS  Google Scholar 

  16. Atarashi H et al. (2001) Three-year follow-up of patients with right bundle branch block and ST segment elevation in the right precordial leads: Japanese Registry of Brugada Syndrome. Idiopathic Ventricular Fibrillation Investigators. J Am Coll Cardiol 37: 1916–1920

    Article  CAS  Google Scholar 

  17. Brugada R et al. (2000) Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101: 510–515

    Article  CAS  Google Scholar 

  18. Shimizu W et al. (2000) Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol 11: 1320–1329

    Article  CAS  Google Scholar 

  19. Shimizu W et al. (2000) Body surface distribution and response to drugs of ST segment elevation in the Brugada syndrome: Clinical implication of 87-leads body surface potential mapping and its application to 12-leads electrocardiograms. J Cardiovasc Electrophysiol 11: 396–404

    Article  CAS  Google Scholar 

  20. Kanda M et al. (2002) Electrophysiologic characteristics and implication of induced ventricular fibrillation in symptomatic patients with Brugada syndrome. J Am Coll Cardiol 39: 1799–1805

    Article  Google Scholar 

  21. Eckardt L et al. (2005) Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111: 257–263

    Article  Google Scholar 

  22. Chen Q et al. (1998) Genetic basis and molecular mechanisms for idiopathic ventricular fibrillation. Nature 392: 293–296

    Article  CAS  Google Scholar 

  23. Weiss R et al. (2002) Clinical and molecular heterogeneity in the Brugada syndrome. A novel gene locus on chromosome 3. Circulation 105: 707–713

    Article  CAS  Google Scholar 

  24. Smits JP et al. (2002) Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 40: 350–356

    Article  CAS  Google Scholar 

  25. Tan HL et al. (2003) Genetic control of sodium channel function. Cardiovasc Res 57: 961–973

    Article  CAS  Google Scholar 

  26. Bezzina C et al. (1999) A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ Res 85: 1206–1213

    Article  CAS  Google Scholar 

  27. Kyndt F et al. (2001) Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 104: 3081–3086

    Article  CAS  Google Scholar 

  28. Viswanathan PC et al. (2001) Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 104: 1200–1205

    Article  CAS  Google Scholar 

  29. Baroudi G et al. (2002) Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome. Circ Res 90: E11–E16

    Article  CAS  Google Scholar 

  30. Viswanathan PC et al. (2003) A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 111: 341–346

    Article  CAS  Google Scholar 

  31. Makielski JC et al. (2003) A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ Res 93: 821–828

    Article  CAS  Google Scholar 

  32. Wang DW et al. (2002) Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation 105: 341–346

    Article  CAS  Google Scholar 

  33. Priori SG et al. (2000) The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 102: 945–947

    Article  CAS  Google Scholar 

  34. Yan GX and Antzelevitch C (1996) Cellular basis for the electrocardiographic J wave. Circulation 93: 372–379

    Article  CAS  Google Scholar 

  35. Yan GX and Antzelevitch C (1999) Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation 100: 1660–1666

    Article  CAS  Google Scholar 

  36. Litovsky SH and Antzelevitch C (1988) Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 62: 116–126

    Article  CAS  Google Scholar 

  37. Wettwer E et al. (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75: 473–482

    Article  CAS  Google Scholar 

  38. Krishnan SC and Antzelevitch C (1993) Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation 87: 562–572

    Article  CAS  Google Scholar 

  39. Aiba T et al. (2004) Steep repolarization gradient is required for development of phase 2 reentry and subsequent ventricular tachyarrhythmias in a model of the Brugada syndrome: High-resolution optical mapping study. Circulation 110: III [Abstract #318]

    Google Scholar 

  40. Alings M et al. (2001) Quinidine induced electrocardiographic normalization in two patients with Brugada syndrome. PACE 24: 1420–1422

    Article  CAS  Google Scholar 

  41. Hermida JS et al. (2004) Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol 43: 1853–1860

    Article  CAS  Google Scholar 

  42. Belhassen B et al. (2004) Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation 110: 1731–1737

    Article  Google Scholar 

  43. Shimizu W and Kamakura S (2001) Catecholamines in children with congenital long QT syndrome and Brugada syndrome. J Electrocardiol 34: 173–175

    Article  Google Scholar 

  44. Tsuchiya T et al. (2002) Prevention of ventricular fibrillation by cilostazol, an oral phosphodiesterase inhibitor, in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 13: 698–701

    Article  Google Scholar 

  45. Suzuki H et al. (2000) Infant case with a malignant form of Brugada syndrome. J Cardiovasc Electrophysiol 11: 1277–1280

    Article  CAS  Google Scholar 

  46. Morita H et al. (2003) Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol 42: 1624–1631

    Article  CAS  Google Scholar 

  47. Shimizu W (2004) Acquired Forms of Brugada Syndrome. In The Brugada Syndrome: From bench to bedside p166–177 (ed Antzelevitch C) UK: Blackwell, Futura

    Google Scholar 

  48. Goldgran-Toledano D et al. (2002) Overdose of cyclic antidepressants and the Brugada syndrome. N Engl J Med 346: 1591–1592

    Article  Google Scholar 

  49. Myers GB (1950) Other QRS-T patterns that may be mistaken for myocardial infarction IV: alterations in blood potassium; myocardial ischemia; subepicardial myocarditis; distortion associated with arrhythmias. Circulation 2: 75–93

    Article  CAS  Google Scholar 

  50. Kataoka H (2000) Electrocardiographic patterns of the Brugada syndrome in right ventricular infarction/ischemia. Am J Cardiol 86: 1056

    Article  CAS  Google Scholar 

  51. Nogami A et al. (2003) Enhancement of J-ST-segment elevation by the glucose and insulin test in Brugada syndrome. PACE 26: 332–337

    Article  Google Scholar 

  52. Antzelevitch C and Brugada R (2002) Fever and Brugada syndrome. PACE 25: 1537–1539

    Article  Google Scholar 

  53. Noda T et al. (2003) Prominent J wave and ST segment elevation: serial electrocardiographic changes in accidental hypothermia. J Cardiovasc Electrophysiol 14: 223

    Article  Google Scholar 

  54. Shimizu W (2004) Gender difference and drug challenge in Brugada syndrome. J Cardiovasc Electrophysiol 15: 70–71

    Article  Google Scholar 

  55. Di Diego JM et al. (2002) Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 106: 2004–2011

    Article  Google Scholar 

  56. Matsuo K et al. (2003) Disappearance of the Brugada-type electrocardiogram after surgical castration: a role for testosterone and an explanation for the male preponderance. PACE 26: 1551–1553

    Article  Google Scholar 

  57. Shimizu W et al. (2004) Role of testosterone on male predominance in Brugada syndrome [Abstract #500]. Circulation 110 III

    Google Scholar 

  58. Splawski I et al. (2002) Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297: 1333–1336

    Article  CAS  Google Scholar 

  59. Pfeufer A et al. (2004) A common haplotype in the 5' region of the SCN5A gene is strongly associated with ventricular conduction impairment [Abstract #229]. Circulation 110: III

    Google Scholar 

Download references

Acknowledgements

We thank Ichiro Hidaka, Department of Cardiovascular Dynamics, Research Institute, National Cardiovascular Center, Japan, for expert technical assistance. W Shimizu was supported by the Hoansha Research foundation, the Mitsubishi Pharma Research Foundation, the Vehicle Racing Commemorative Foundation, and health sciences research grants from the Ministry of Health, Labour and Welfare, and a research grant for cardiovascular diseases (15C-6) from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Shimizu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

ITO

A transient outward potassium current that activates rapidly and underlies the early (phase 1) action-potential repolarization

IK

An outward potassium current that determines the late phase (phase 3) of action-potential repolarization

FAST INA

An inward sodium current that mainly contributes to the upstroke of action-potential depolarization (phase 0)

L-TYPE ICA

An inward calcium current that is activated by membrane depolarization and contributes to the plateau phase of action potential

AUTOSOMAL DOMINANT

A pattern of Mendelian inheritance whereby an affected individual possesses one copy of a mutant allele and one normal allele

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, W., Aiba, T. & Kamakura, S. Mechanisms of Disease: current understanding and future challenges in Brugada syndrome. Nat Rev Cardiol 2, 408–414 (2005). https://doi.org/10.1038/ncpcardio0268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing