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Satisfying the Einstein–Podolsky–Rosen criterion
with massive particles
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In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum

mechanics by devising a quantum state of two massive particles with maximally correlated

space and momentum coordinates. The EPR criterion qualifies such continuous-variable

entangled states, where a measurement of one subsystem seemingly allows for a prediction

of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-

variable EPR correlations have only been created with photons, while the demonstration of

such strongly correlated states with massive particles is still outstanding. Here we report on

the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble.

The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the

threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the

underlying many-particle quantum state. The state presents a resource for tests of quantum

nonlocality and a wide variety of applications in the field of continuous-variable quantum

information and metrology.
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I
n their original publication1, Einstein, Podolsky and Rosen
describe two particles A and B with correlated position
xB¼ xAþ x0 and anti-correlated momentum pB¼ � pA

(Fig. 1a). When coordinates xA and pA are measured in
independent realizations of the same state, the correlations
allow for an exact prediction of xB and pB. EPR assumed that such
exact predictions necessitate an ‘element of reality’, which
predetermines the outcome of the measurement. Quantum
mechanics, however, prohibits the exact knowledge of two
noncommuting variables like xB and pB, since their
measurement uncertainties are subject to the Heisenberg
relation DxBDpB � 1

2. EPR thus concluded that quantum
mechanics is incomplete—under their assumptions that are
today known as ‘local realism’. Later, the notion of EPR
correlations was generalized to a more realistic scenario,
yielding a criterion2,3 for the uncertainties DxinfB , DpinfB of the
inferred predictions for xB and pB. The EPR criterion is met if
these uncertainties violate the Heisenberg inequality for the
inferred uncertainties DxinfB DpinfB � 1

2. The EPR criterion also
certifies steering, a concept termed by Schrödinger4,5 in response
to EPR, which has attracted a lot of interest in the past years6. An
experimental realization of states satisfying the EPR criterion is
not only desirable in the context of the fundamental questions
raised by EPR, but also provides a valuable resource for many
quantum information tasks, including dense coding, quantum
teleportation7 and quantum metrology8. Some quantum
information tasks specifically require the strong type of
entanglement that is tested by the EPR criterion, as for example
one-sided device independent entanglement verification9.

Up to now, the creation of continuous-variable entangled states
satisfying the EPR criterion was only achieved in optical systems.
In a seminal publication10, the EPR criterion was met by a two-
mode squeezed vacuum state generated by optical parametric
down-conversion. In this experiment, and in more recent
investigations11,12, continuous variables are represented by
amplitude xA/B and phase pA/B quadratures, satisfying the
commutation relation [xA/B, pA/B]¼ i. These quadratures can be
measured accurately by optical homodyning. The correlations are
captured by the four two-mode variances V �

x ¼ Var xA � xBð Þ
and V �

p ¼ Var pA � pBð Þ. These variances were proven to fulfil a
symmetric form of Reid’s inequality3 V �

x �V þ
p o 1

4, which is a

sufficient EPR criterion since V �
x ¼ ðDxinfB Þ2 and V þ

p ¼ ðDpinfB Þ2.
In recent years, continuous-variable entangled optical states have
been applied for proof-of-principle quantum computation and
communication tasks7. Despite these advances with optical
systems, an experimental realization of EPR correlations with
massive particles is desirable, because of the similarity to the
original EPR proposal and since massive particles may be more
tightly bound to the concept of local realism2,3.

Entangled states of massive particles have been generated in
neutral atomic ensembles, promising fruitful applications in
precision metrology due to the large achievable number of
entangled atoms13–16. They have been created by atom–light
interaction at room temperature14,17, in cold samples18–22 and by
collisional interactions in Bose–Einstein condensates13,16,23–25.
For Gaussian states of two collective atomic modes, the
inseparability criterion26,27 V �

x þV þ
p o2 has been used to

demonstrate entanglement14,17,28, but the strong correlations
necessary to meet the more demanding EPR criterion
V �
x �V þ

p o 1
4 have not been achieved so far.

Here we report on the creation of an entangled state from a
spinor Bose–Einstein condensate (BEC), which meets the EPR
criterion. We exploit spin-changing collisions to generate a two-
mode squeezed vacuum state in close analogy to optical
parametric down-conversion. The phase and amplitude quad-
ratures are accessed by atomic homodyning. Their correlations
yield an EPR entanglement parameter of 0.18(3), which is 2.4 s.d.
below the threshold 1/4 of the EPR criterion. Finally, we deduce
the density matrix of the underlying many-particle state from a
maximum likelihood reconstruction.

Results
Two-mode squeezed vacuum. In our experiments, a BEC with
2� 104 87Rb atoms in the Zeeman level (F, mF)¼ (1, 0) generates
atom pairs in the levels (1, ±1) due to spin-changing collisions
(Fig. 1b), ideally yielding the two-mode squeezed state

xj i ¼
X1
n¼0

� i tanh xð Þn

cosh x
n; nj i; ð1Þ

where x¼Ot is the squeezing parameter, which depends on the
spin dynamics rate O¼ 2p� 5.1Hz and the spin dynamics
duration t¼ 26ms. The notation n;mj i represents a two-mode
Fock state in the two Zeeman levels (1, ±1). The generated
two-mode squeezed state can be characterized by the quadratures
xA=B ¼ 1ffiffi

2
p ðawA=B þ aA=BÞ and pA=B ¼ iffiffi

2
p ðawA=B � aA=BÞ for the two

levels (1, ±1). These exhibit EPR correlations, since the variances
V �
x ¼ V þ

p ¼ e� 2x are squeezed, while the conjugate variances
V þ
x ¼ V �

p ¼ e2x are anti-squeezed. The state fulfills Reid’s EPR
criterion for x4 1

2 ln 2ð Þ � 0:35 which corresponds to a spin
dynamics duration of411ms. In the limit of large squeezing, our
set-up presents an exact realization of the perfect correlations
with massive particles envisioned by EPR.

Quadratures and the EPR criterion. The quadratures in the two
modes are simultaneously detected in our experiments by unba-
lanced homodyne detection (see Methods). Atomic homodyne
detection was first demonstrated in ref. 28, and later applied to
discriminate between vacuum and few-atom states in a quantum
Zeno scenario29. A small radiofrequency pulse couples 15%
of the BEC in the level (1, 0) (the local oscillator) symmetrically
to the two modes (1, ±1). The local oscillator phase is
represented by the BEC phase relative to the phase sum of the
two ensembles in (1, ±1). It can be varied in our experiments by
shifting the energy of the level (1, � 1) for an adjustable
time. From the measured number of atoms in both levels,

pA

NA

xA x0

xA/B = (a† 
A/B + aA/B)/√2

–

pA/B = i(a† 
A/B – aA/B)/√2

–

xB = xA + x0

NB

pB = –pA

Figure 1 | Einstein–Podolsky–Rosen correlations. (a) EPR’s original work

describes two particles A and B with maximally correlated position and

momentum coordinates xA/B and pA/B. (b) Spin dynamics in a Bose–Einstein

condensate can be used to create EPR correlations between NA/B atoms in

two different Zeeman levels A and B. The correlations appear in amplitude

xA/B and phase pA/B quadratures that are defined as a function of the
creation and annihilation operators awA=B and aA/B in the two modes.
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we obtain a linear combination of the quadratures according to
XA=B yð Þ ¼ xA=Bcos y� p

4

� �
þ pA=Bsin y� p

4

� �
. Figure 2a shows

two-dimensional histograms of these measurements for y ¼ 3
4p

and y ¼ 5
4 p, corresponding to the x- and p-quadratures. The

histograms demonstrate the strong correlation and
anticorrelation of these two quadratures, as expected for the
EPR case. The variances along the two diagonals, represented by
V �
X yð Þ ¼ Var XA yð Þ � XB yð Þð Þ, are shown in Fig. 2b and reveal

the expected two-mode squeezing behaviour. From these
measurements, we quantify the EPR entanglement by Reid’s
criterion, yielding V þ

x �V �
p ¼ 0:18 3ð Þ, which is 2.4 s.d. below

the limit of 1
4. In addition, the data also fulfil the inseparability

criterion as V þ
x þV �

p ¼ 0:85 8ð Þ, which is 15 s.d. below the
classical limit of 2 (Fig. 2d), and meets the criterion for a
symmetric (‘two-way’) steering between the systems6. We
estimate that the product value could be reduced to V þ

x �V �
p ¼

0:13 3ð Þ if the radiofrequency intensity noise was eliminated by
stabilization or postcorrection. The experimental creation of
entangled massive particles that satisfy the continuous-variable
EPR criterion presents the main result of this publication.

Squeezing dynamics. Figure 3 shows the squeezing dynamics due
to the spin-changing collisions. For these measurements, we fix
the local oscillator phase to the values yE3p/4 and yE5p/4 to
record only the x- and p-variances. As a function of the evolution
time, the variances V �

x ;V þ
p are squeezed below the vacuum

reference of 1, while the variances V þ
x ;V �

p exhibit an anti-
squeezing behaviour (Fig. 3a,b). From these data, we extract the
EPR parameter V �

x �V þ
p , as a function of evolution time

(Fig. 3c). The EPR parameter is quickly pushed below 1 and
follows the prediction for an ideal-squeezed state. It eventually
reaches a minimum at the optimal squeezing time of 26ms, as

used for the data in Fig. 2. The data were well reproduced by a
simple noise model, which includes a radiofrequency intensity
noise of 0.4% and a local oscillator phase noise of 0.044p (see
Methods).
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Figure 2 | Quadrature distributions. (a) Recorded probability distributions of the quadratures (first row). Distributions of the quadratures according to the

reconstructed state (second row, see below for details on reconstruction). Ideal distributions of the quadratures of a two-mode squeezed state with the

reconstructed squeezing parameter xfit¼0.63 (third row). (b) Two-mode variances V þ
X yð Þ and V �

X yð Þ as a function of the local oscillator phase y. (c) EPR

parameter V þ
X yð Þ�V �

Xðyþ p
2Þ
as a function of the local oscillator phase y. Data points below the dashed line meet the EPR criterion and therefore violate the

Heisenberg inequality for inferred uncertainties. At the same time, the EPR criterion also certifies inseparability12. (d) The weaker inseparability parameter

V þ
X yð Þ þV �

Xðyþ p
2Þ
as a function of the local oscillator phase y. The dotted line indicates inseparability of the underlying quantum state. The dashed line is a

sufficient condition for the EPR criterion. The error bars indicate the statistical uncertainty (one s.d.).
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Full state reconstruction. The total of 2,864 homodyne mea-
surements obtained for different local oscillator phases at the
optimal evolution time allow for a full reconstruction of the
underlying many-particle state. Previously, tomography of an
atomic state was demonstrated either by reconstruction of the
Wigner function30 or the Husimi Q-distribution21,25. However,
both methods yield a characterization of the state’s projection on
the fully symmetric subspace only. The well-developed methods
in quantum optics31 allowed for a full reconstruction of an optical
two-mode squeezed state by homodyne tomography11,32. Despite
the beautiful tomography data, the optical state reconstruction
assumed either Gaussian states or averaged over all phase
relations, such that the coherence properties could not be
resolved.

In contrast, we obtain an unbiased, positive semidefinite
density matrix by maximum likelihood reconstruction31,33 of the
experimental data, free of any a priori hypothesis. This represents
the second major result of this publication. The recorded data for
each local oscillator phase are binned in two-dimensional
histograms (Fig. 2a) presenting the marginal distributions for
the xA/B and pA/B variables. The reconstructed state is the one that
optimally reproduces the measured histograms by a superposition
of harmonic oscillator wave functions31. The coefficients of this
superposition are estimates of the density matrix elements of the
underlying quantum state (see Methods).

Figure 4 shows the result of the reconstruction. The diagonal
matrix elements (Fig. 4a) witness the predominant creation of

atom pairs. The two-particle twin Fock state 1; 1j i shows the
strongest contribution besides the vacuum state. Likewise, the
twin Fock states 2; 2j i to 4; 4j i have the strongest contribution for
a given total number of particles. The strong nonclassicality of the
reconstructed state becomes also apparent in the distributions of
the difference and the sum of the particles (Fig. 4b,c). The
distribution of the number difference is strongly peaked at zero
and is much narrower than a Poissonian distribution with the
same number of particles. The distribution of the total number of
atoms shows an indication of the characteristic even/odd
oscillations, which is caused by the pair production in the
underlying spin dynamics.

Discussion
For an evaluation of the created state, we have extracted a
logarithmic negativity of 1.43±0.06 from the reconstructed
density matrix. This value is above the threshold of zero for
separable states and signals non-separability of the reconstructed
state. The quantum Fisher information34 FQ for the state
projected on fixed-N subspaces reveals that FQ=�n ¼ 1:5 � 0:1,
where �n is the average number of particles. Since FQ=�n41 the
state is a resource for quantum enhanced metrology34.
Furthermore, we fit an ideal two-mode squeezed state with
variable squeezing parameter x to the reconstructed two-mode
density matrix with maximal fidelity. With a fidelity of 78.4%, the
experimentally created state matches a two-mode squeezed state
with a squeezing parameter of xfit¼ 0.63. The fidelity increases to
90% if we include local oscillator phase noise and statistical noise.
The unwanted contributions in the density matrix, including the
off-diagonal terms in Fig. 4a, can be well explained by four effects.
First, the purity of the reconstructed state is limited by the finite
number of homodyne measurements. Second, small drifts in the
microwave intensity of the dressing field (on the order of 0.1%),
which shifts the level (1, � 1), result in a small drift of the local
oscillator phase. Third, a small drift of the radiofrequency
coupling strength during homodyning virtually increases the
variance in the (xAþ xB) and the (pAþ pB) directions. Finally, we
did not correct for the detection noise of our absorption imaging.

Our experimental realization of the EPR criterion demonstrates
a strong form of entanglement intrinsically connected to the
notion of local realism. In the future, the presented atomic two-
mode squeezed state allows to demonstrate the continuous-
variable EPR paradox with massive particles. Since the two modes
A and B are Zeeman levels with an opposite magnetic moment,
the modes can be easily separated with an inhomogenous
magnetic field to ensure a spatial separation. The nonlocal EPR
measurement could then be realized by homodyning with two
spatially separated local oscillators. These can be provided by
splitting the remaining BEC into the levels (2, ±1) which have
the same magnetic moment as the two EPR modes. Furthermore,
this set-up can be complemented by a precise atom number
detection to demonstrate a violation of a Clauser–Horne–
Shimony–Holt-type inequality. Such a measurement presents a
test of local realism with continuous-variable entangled states. In
this context, neutral atoms provide the exciting possibility to
investigate the influence of increasingly large particle numbers
and possible effects of gravity.

Methods
Experimental sequence. We start the experiments with an almost pure
Bose–Einstein condensate of 20,000 87Rb atoms in an optical dipole potential with
trap frequencies of 2p� (280, 220, 180) Hz. At a homogeneous magnetic field of
2.6 G with fluctuations of about 70 mG, the condensate is transferred from the level
(F, mF)¼ (2, 2) to the level (1, 0) by a series of three resonant microwave pulses.
During this preparation, two laser pulses resonant to the F¼ 2 manifold rid the
system of atoms in unwanted spin states. Directly before spin dynamics is initiated,
the output states (1, ±1) are emptied with a pair of microwave p-pulses from
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(1, þ 1) to (2, þ 2) and from (1, � 1) to (2, � 2) followed by another light pulse.
This cleaning procedure ensures that no thermal or other residual excitations are
present in the two output modes, which may destroy the EPR signal35.

Figure 5 shows a schematic overview of the following experimental sequence.
A microwave frequency which is red-detuned to the transition between the levels
(1, � 1) and (2, � 2) by about 208 kHz is adiabatically ramped on within 675 ms.
The microwave shifts the level (1, � 1) by about 500Hz, depending on the chosen
detuning, to compensate for the quadratic Zeeman effect of q¼ 491Hz, such that
multiple spin dynamics resonances can be addressed16,36. Each resonance
condition belongs to a specific spatial mode of the states (1, ±1) to which the
atoms are transferred. If the energy of the level (1, � 1) is reduced, then more
internal energy is released, and higher excited spatial modes are populated (for
details, see ref. 36). Here we choose the first resonance, where spin dynamics leads
to a population of the levels (1, ±1) in the ground state of the effective potential.
This ensures an optimal spatial overlap between the atoms in the three contributing
levels. This resonance condition is reached, when the input state (two atoms in the
BEC in the level (1, 0) at the energy of the chemical potential) is exactly degenerate
with the output state (two atoms in the levels (1, ±1) including dressing, trap
energy and mean-field shift). Due to this degeneracy, the phase relation between
the initial condensate and the output state stays fixed during the spin dynamics
evolution time. For this configuration, we have checked that spin dynamics is the
only relevant process, which produces atoms in the state (1, ±1) (see ref. 29,
Fig. 3). Subsequently, the microwave dressing field is ramped down within 675 ms,
stays off for a variable duration between 25 and 1,150 ms and is quickly switched on
again. The variable hold time allows for an adjustment of the local oscillator phase
relative to the output state.

For the atomic homodyning, a radiofrequency pulse with a frequency of
1.834MHz and a duration of t¼ 30ms couples the level (1, 0) with the levels
(1, ±1). The microwave dressing field is chosen such that both radiofrequency
transitions are resonant, but the resonance condition for spin dynamics is not
fulfilled. Afterwards, the dipole trap is switched off to allow for a ballistic
expansion. After an initial expansion of 1.5ms to reduce the density, a strong
magnetic-field gradient is applied to spatially separate the atoms in the three
Zeeman levels. Finally, the number of atoms in the three clouds is detected by
absorption imaging on a charge-coupled device camera with a large quantum
efficiency. The statistical uncertainty of a number measurement is dominated by
the shot noise of the photoelectrons on the camera pixels and amounts to 16 atoms.
We estimate the uncertainty of the total number calibration to be o1%.

Three-mode unbalanced homodyning. The radiofrequency coupling is described
by the three-mode unitary operation e� iHt=‘ , where

H ¼ ‘Oþ 1

2
ffiffiffi
2

p ayAa0 þ aAa
y
0

� �
þ ‘O� 1

2
ffiffiffi
2

p ayBa0 þ aBa
y
0

� �
;

andO±1 are Rabi frequencies for the (1, 0)2(1,±1) transition (in generalOþ 1aO� 1).

To calculate the mode transformation, we use H; aA½ � ¼ �‘Oþ 1a0=2
ffiffiffi
2

p
,

H; aB½ � ¼ �‘O� 1a0=2
ffiffiffi
2

p
and H; a0½ � ¼ � ‘ Oþ 1aA þO� 1aBð Þ=2

ffiffiffi
2

p
. We have

aA
aB
a0

0
@

1
A

out

¼

~O2
þ 1cþ ~O2

� 1
2

~Oþ 1
~O� 1 c� 1ð Þ

2
~Oþ 1s
i
ffiffi
2

p

~Oþ 1
~O� 1 c� 1ð Þ

2

~O2
� 1cþ ~O2

þ 1
2

~O� 1s
i
ffiffi
2

p
~Oþ 1 s
i
ffiffi
2

p ~O� 1 s
i
ffiffi
2

p c

0
BBB@

1
CCCA

aA
aB
a0

0
@

1
A; ð2Þ

where c¼ cos(Ot/2), s¼ sin(Ot/2), and

~Oþ 1 ¼
Oþ 1

O
; ~O� 1 ¼

O� 1

O
; with O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

þ 1 þO2
� 1

2

s
; ð3Þ

are rescaled Rabi frequencies. Below, we illustrate how the measurement of
the number of particles in the mF¼±1 mode after the radiofrequency coupling,
NA ¼ ðawAaAÞout and NB ¼ ðawBaBÞout, gives access to the number conserving
quadratures

xA;B ¼
âyA;Ba0 þ ay0âA;Bffiffiffiffiffiffiffi

2n0
p ; pA;B ¼

ay0âA;B � âyA;Ba0
i

ffiffiffiffiffiffiffi
2n0

p ; ð4Þ

where n0 ¼ haw0a0i is the average number of particles in the condensate
before homodyne (similarly, nA;B ¼ hâwA;BâA;Bi). In our experiment,
nA þ nBð Þ=n0 � 10� 4. We thus neglect fluctuations of the number of particles in
the mF¼ 0 mode, replacing ay0a0 with its mean value n0EnAþ n0þ nB¼Ntot.

Number difference. The quadrature difference can be experimentally obtained by
measuring the difference of the number of particles in the ±1 modes. From
equation (2) we can directly calculate NA�NB. To the leading order in n0, we have

NA �NBffiffiffiffiffiffiffiffiffiffiffi
s2Ntot

p � s
ffiffiffiffiffiffiffiffi
Ntot

p ~O2
þ 1 � ~O2

� 1

� �
2

þ

þ
~Oþ 1 c ~O2

þ 1 � ~O2
� 1

� �
þ 2~O2

� 1

� �
2

pA

þ
~O� 1 c ~O2

þ 1 � ~O2
� 1

� �
� 2~O2

� 1

� �
2

pB:

ð5Þ

Since Oþ 1 and O� 1 only differ by 1.7% in our experiments, and
c ~O2

þ 1 � ~O2
� 1

� �
	 2~O2

� 1, we can simplify this equation and obtain

pA � pB ¼ NA �NB � s2 ~O2
þ 1 � ~O2

� 1

� �
Ntot=2ffiffiffiffiffiffiffiffiffiffiffi

s2Ntot
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Number sum. The quadrature sum is obtained by adding the number of particles
in the ±1 modes after homodyning:

NA þNBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c2Ntot

p � s
ffiffiffiffiffiffiffiffi
Ntot

p

c
þ ~Oþ 1pA þ ~O� 1pB ð7Þ

Taking ~O� 1 � ~Oþ 1 � 1, we have

pA þ pB ¼ NA þNB � s2Ntotffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c2Ntot

p : ð8Þ

Finally, the mean transfer of particles from mF¼ 0 to mF¼±1 and the mean
number difference is used to calculate

NA þNB

Ntot

	 

� s2; and

NA �NB

Ntot

	 

� 1

2
s2 ~O2

þ 1 � ~O2
� 1

� �
: ð9Þ

Observing a transfer of 15% of the atoms from mF¼ 0 to mF¼±1 we deduce
c2E0.85.

To summarize, equations (6) and (8) are used to experimentally obtain pA±pB
from the measurement of the number of particles in the output modes. The
quadratures xA±xB are obtained with the same method, by applying a relative p/2
phase between the pump and side modes before homodyne detection.

Entanglement criteria for continuous variables. Criteria for identifying con-
tinuous-variable entanglement between the systems A and B, with no assumption
on the quantum state of the local oscillator, have been discussed in ref. 37.

Separability. For mode-separable states, rsep ¼
P
k
pkr

kð Þ
A 
 r kð Þ

B ðpk40;
P
k
pk ¼ 1Þ

we have37,38

V �
x þV �

p � 2� nA þ nB
n0

; ð10Þ

where V �
x ¼ Var xA � xBð Þ and V �

p ¼ Var pA � pBð Þ are the variances of
quadrature sum and difference, respectively. A violation of equation (10) signals
non-separability, that is, rarsep. Equation (10) generalizes the criterion of refs
26,27 that was derived for standard quadrature operators (that is, when the mF¼ 0
mode is treated parametrically, the operator a0 being replaced by

ffiffiffiffiffi
n0

p
).

EPR criterion. Reid’s EPR criterion corresponds to a violation of the Heisenberg
uncertainty relation on system B, when measurements are performed on system A.
This requires the two-mode state to be non-separable and to have strong
correlations between the sum and difference of position and momentum
quadratures, xA±xB and pA � pB. We point out that not all non-separable states
fulfil Reid’s criterion. The position–momentum quadratures for the B mode satisfy
the commutation relation xB; pB½ � ¼ � iðawBaB � aw0a0Þ=n0. The corresponding
Heisenberg uncertainty relation is D2xBD

2pB � 1
4ð1�

nB
n0
Þ2. Let us introduce the

quantities xext(xA) and pext(pA), which are the estimate of xB and pB on system B,
respectively, given the results of quadrature measurements on the system A. We
then indicate as D2xinfB the squared deviation of the estimate from the actual value,
averaged over all possible results xA,

D2xinfB ¼
Z

dxB

Z
dxAP xA; xBð Þ xB � xext xAð Þ½ �2; ð11Þ

and similarly for D2pinfB , where P(xA, xB) is the joint probability. Reid’s criterion
thus reads37 D2xinfB D2pinfB o1

4ð1�
nB
n0
Þ2. Taking xext xAð Þ ¼ xA �ð�xA � �xBÞ and

pextðpAÞ ¼ � pA þ �pB þ �pAð Þ, where the bar indicates statistical average, Reid’s
criterion translates into a condition for the product of quadrature variances:

V �
x �V þ

p o
1
4

1� nB
n0

� �2

: ð12Þ

In our case, nA=n0 � nB=n0 � 10� 4. Therefore, corrections in equations (10)
and (12) due to finite number of particles in the mF¼ 0 are negligible. We are thus
in a continuous-variable limit.

We point out that the above EPR criterion—consistent with the analysis of the
experimental data presented in Figs 2b and 3—uses quadrature variances with
symmetric contributions from A and B. In this case the EPR threshold is 1/4. The
above inequalities and entanglement criteria can be generalized (and optimized) for
asymmetric contributions, see refs 3,12.

Quantum-state tomography. Here we discuss the protocol used for quantum
state tomography and, very briefly, its theoretical basis. A more detailed
discussion can be found in refs 31,33. We point out that our state reconstruction is
performed without any assumtpions neither on the state nor on the experimental
quadrature distribution, in particular we do not assume our state to be a Gaussian
state.

We have collected a total of N¼ 2,864 measurements of the quadratures xA
and xB at different values of the local oscillator phase y relative to the side modes.
The measurement results are binned in 2D histograms (see Fig. 2a, where the
typical bin width is dx¼ 0.25) such that we take xA,B to have a discrete spectrum.

To simplify the notation, let us indicate as x the square bin [xA, xAþ dx],
[xB, xBþ dx]. Given a quantum state r (unknown here), the probability to observe
a certain sequence of results (nx, y measurement in the bin x, when the phase value
is set to y, with

P
x;y

nx;y ¼ N) is

L nx;y
 �

rj
� �

¼ N !Q
x;y nx;y !

Y
x;y

Pr x; yð Þnx;y ; ð13Þ

indicated as likelihood function. In equation (13), Pr x; yð Þ ¼ Pr x yjð ÞP yð Þ is the
joint probability, Pr x yjð Þ ¼ xh jUw

y rUy xj i is the conditional probability, with
xj i ¼ xA; xBj i, Uy ¼ e� iy nA þ nBð Þ , and P(y) is the fraction of measurements done
when the phase is equal to y. The maximum likelihood (ML)

rML ¼ arg max
r

L nx;y
 �

rj j
� �� �

ð14Þ

is the state that maximizes L nx;y
 �

rj
� �

on the manifold of density matrices. To
find the ML we use the chain of inequalities31,33

L nx;y
 �

rj
� � 1

N� Tr rR f ; að Þ½ �
Y
x;y

ax;y
� �fx;y� l f ; að Þ

Y
x;y

ax;y
� �fx;y ; ð15Þ

where ax,y are arbitrary positive numbers (a¼ {ax, y} is the corresponding vector),
fx, y¼ nx, y/N are relative frequencies (f¼ {fx, y} is the corresponding vector), and

R ¼ 1
N

X
x;y

nx;y
P x yj jð ÞUy xj i xh jUy

y ; ð16Þ

is a non-negative operator with largest eigenvalue l(f, a). The second inequality is
saturated by taking r¼rML with support on the subspace corresponding to the
maximum eigenvalue of R: R(f, a)rML¼ l(f, a)rML. The first inequality is a Jensen’s
inequality between the geometric and the arithmetic average (which follows from
the concavity of the logarithm). It is saturated if and only if ax,y¼ P(x, y), which
also implies Tr[R(f, a)rML]¼ 1 and thus l(f, a)¼ 1. In conclusion, the search for
the ML can be recast in the operator equation RrML¼ rML or, equivalently (since R
and rML are Hermitian operators),

RrMLR ¼ rML: ð17Þ
Numerically, this equation is solved iteratively: we start the protocol from a unit
matrix r 0ð Þ ¼ N 1½ � and apply repetitive iterations according to equation (17),
r kþ 1ð Þ ¼ N R rðkÞ

� �
rðkÞR rðkÞ

� �� �
being the kth step of the algorithm, where N

denotes normalization to unit trace. The convergence (which is not guaranteed in
general) is checked. The method guarantees that rML is a non-negative definite
operator. In practical implementations, it is most convenient to work in the atom-
number representation and write r ¼

Pncut
nA ;nB ;mA ;mB¼0 rnA ;nB ;mA ;mB

nA; nBj i mA;mBh j,
where ncut is a cutoff (in our case ncutE10). We use n xA;B

��� �
¼ e� xA;B=2

p1=4
ffiffiffiffiffiffiffiffi
2nn !

p Hn xA;B
� �

,

where Hn is the Hermite polynomial of order n.

Simulation of ideal-state reconstruction. To check the consistency of the used
tomography method, we have simulated the reconstruction of an ideal two-mode
squeezed vacuum state xj i, equation (1). The simulation follows three steps: (i) we
generate distributions for the quadratures xA, B at different values of the phase shift,
according to the probability P xA;B yj

� �
¼ xh jUy xA;B

�� ��� ��2; (ii) we generate p random
quadrature data for each y value (for a total of N¼ p� ny, where ny is the number
of y values considered). This simulates, via Monte Carlo sampling, the acquisition
of experimental data. (iii) We perform a ML reconstruction, using the same
numerical code and method used for the analysis of the experimental data. In
Fig. 6, we plot the quantum fidelity between the reconstructed state, rML, and the
two-mode squeezed vacuum state, F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh jrML xj i

p
. When the number of

measurements p per y value is increased, the fidelity converges to an asymptotic
value F1t1. The asymptotic fidelity F1 tends to 1 when decreasing the bin
size dx.

Furthermore, to characterize the entanglement of the reconstructed state, we
have evaluated the logarithmic negativity and the quantum Fisher information

(QFI). The logarithmic negativity is defined as E r½ � ¼ log2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpptrTppt

q
, where rppt is

the partial transpose of rML. Mode-entanglement is obtained for39 E[r]40. The
QFI for the state projected over subspaces of a fixed number of particles n,
r ¼

P
n
Qnrn, is given by40

FQ r½ � ¼ 2
X
n

Qn

X
kn ;kn0

pkn � pk0n
� �2
pkn þ pk0n

knh jJr kn0j ij j2 ð18Þ

where rn ¼
P

kn
pkn knj i knh j is in diagonal form and Jr is the collective pseudo-spin

operator (pointing along an arbitrary direction r in the three-dimensional space).
The QFI is then maximized over r, for further details see ref. 8. Particle
entanglement, useful for sub-shot-noise metrology, is obtained for40 FQ r½ � � �n,
where �n corresponds to the average number of particles in the two-mode state.
Similarly to the results of simulations shown in Fig. 6 we obtain that, in the limit
p-N and dx-0, the logarithmic negativity and QFI converge to E xj i½ � ¼
2x=log2 and FQ xj i½ � ¼ 4sinh2xcosh2x, respectively, which are analytical values
calculated for the two-mode squeezed vacuum state.
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Noise model and simulation of noisy state reconstruction. The main sources of
noise in our apparatus are phase fluctuations and noise of the radiofrequency
coupling strength. The phase noise is assumed to have a Gaussian distribution
Ps yð Þ ¼ e� y2=2s2=

ffiffiffiffiffiffiffiffiffiffi
2ps2

p
and we estimate a width sE0.36. Correlated fluctuations

of Oþ 1 and O� 1 affect (to first order) only measurements of the quadrature sum.
We have evaluated that this effect systematically increases the variance by 0.12.
Both these effects are included in the solid line of Fig. 3.

We have simulated the state reconstruction in presence of these noise effects.
We model the state in presence of phase noise as

rpn sð Þ ¼
Z p

�p
dyPs yð Þ x; yj i x; yh j ð19Þ

where x; yj i ¼
Pþ1

n¼0 e� iny tanhxð Þn
coshx n; nj i. The systematic shift of the quadrature

sum is included in the calculation of the quadrature distributions used
to generate random data. Results are shown in Fig. 7. We see that statistical
noise (that is, the limited sample size) and phase noise are responsible for the
appearance of off-diagonal terms, very similar to the ones observed in Fig. 4.
Note that phase noise alone is not responsible for the appearance of
off-diagonal terms in the density matrix. This can be seen by rewriting

equation (19) as rpn sð Þ ¼
Pþ1

n;m¼0
~Ps n�mð Þ tanhxð Þnþm

cosh2x n; nj i m;mh j, where
~Ps n�mð Þ ¼

R p
� p dyPs yð Þei n�mð Þy .

Figure 7 shows a slight asymmetry of the reconstructed state due to the
systematic shift of the variance sum: this effect is also observed in Fig. 4. The
quantitative agreement between the simulated density matrix rsim and the
experimental density matrix rexp is excellent, with a quantum fidelity

Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsim

p
rexp

ffiffiffiffiffiffiffiffi
rsim

pph i
� 0:9.
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We thank G. Tóth for inspiring discussions. We also thank W. Schleich for a review of
our manuscript. We acknowledge support from the Centre for Quantum Engineering
and Space-Time Research (QUEST) and from the Deutsche Forschungsgemeinschaft

(Research Training Group 1729). We acknowledge support from the European
Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP
participating countries within EURAMET and the European Union. L.P. and A.S.
acknowledge financial support by the EU-STREP project QIBEC. J.A. acknowledges
support by the Lundbeck Foundation.

Author contributions
All authors contributed to all aspects of this work.

Additional information
Competing financial interests: The authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Peise, J. et al. Satisfying the Einstein–Podolsky–Rosen
criterion with massive particles. Nat. Commun. 6:8984 doi: 10.1038/ncomms9984
(2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9984

8 NATURE COMMUNICATIONS | 6:8984 | DOI: 10.1038/ncomms9984 |www.nature.com/naturecommunications

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Satisfying the Einstein–Podolsky–Rosen criterion with massive particles
	Introduction
	Results
	Two-mode squeezed vacuum
	Quadratures and the EPR criterion
	Squeezing dynamics
	Full state reconstruction

	Discussion
	Methods
	Experimental sequence
	Three-mode unbalanced homodyning
	Number difference
	Number sum

	Entanglement criteria for continuous variables
	Separability
	EPR criterion

	Quantum-state tomography
	Simulation of ideal-state reconstruction
	Noise model and simulation of noisy state reconstruction

	Additional information
	Acknowledgements
	References


