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The full repertoire of Drosophila gustatory
receptors for detecting an aversive compound
Jaewon Shim1,2,*, Youngseok Lee3,*, Yong Taek Jeong1,*, Yonjung Kim4,*, Min Goo Lee4,

Craig Montell5 & Seok Jun Moon1

The ability to detect toxic compounds in foods is essential for animal survival. However, the

minimal subunit composition of gustatory receptors required for sensing aversive chemicals

in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and

GR98b function together in the detection of L-canavanine, a plant-derived insecticide. Ectopic

co-expression of Gr8a and Gr98b in Gr66a-expressing, bitter-sensing gustatory receptor

neurons (GRNs) confers responsiveness to L-canavanine. Furthermore, misexpression of all

three Grs enables salt- or sweet-sensing GRNs to respond to L-canavanine. Introduction of

these Grs in sweet-sensing GRNs switches L-canavanine from an aversive to an attractive

compound. Co-expression of GR8a, GR66a and GR98b in Drosophila S2 cells induces

an L-canavanine-activated nonselective cation conductance. We conclude that three GRs

collaborate to produce a functional L-canavanine receptor. Thus, our results clarify the full set

of GRs underlying the detection of a toxic tastant that drives avoidance behaviour in an insect.
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T
aste is critical for evaluating food quality. Dedicated
sensory cells are devoted to each taste modality, sending
sensory information to higher brain centres that direct

either attraction or aversion1. Because many bitter and other
avoidance compounds are toxic, rapid and accurate detection of
these compounds is an important defense in many herbivorous
animals.

In Drosophila, several types of membrane proteins participate
in the perception of aversive chemicals. At least two transient
receptor potential (TRP) channels, TRPA1 and TRPL, function in
the sensation of deterrent compounds2–4. However, the detection
of most aversive tastants are thought to be accomplished through
members of the gustatory receptor (GR) family, which encodes 68
proteins5–8. Fly GRs are unrelated to mammalian taste receptors,
which are G-protein coupled receptors, but they are distantly
related to the Drosophila olfactory receptors (ORs)7,9–14.
Heteromeric OR complexes comprise odorant-gated-cation
channels15–17, and it is reported that insect fructose receptors
consist of single GR subunits, which form nonselective cation
channels18.

The Drosophila GRs that respond to noxious compounds
consist of multiple subunits. Based on in vivo loss-of-function
studies, three GRs are broadly tuned (GR32a, GR33a and GR66a)
and function in the detection of a wide range of avoidance
compounds19–21. In addition, other GRs, such as GR8a, GR47a
and GR93a, are narrowly tuned and required for sensing
L-canavanine, strychnine and caffeine, respectively22–24.

L-canavanine is a plant-derived analogue of the amino acid
L-arginine25–27, and ingestion of this compound is lethal to fruit
flies and many other insects because it incorporates into proteins
in place of L-arginine. We previously reported that GR8a and
GR66a are required for L-canavanine detection22. However, co-
expression of Gr8a and Gr66a in sweet-sensing GRNs does not
confer responsiveness to L-canavanine. Currently, the minimum
subunit composition of the L-canavanine receptor or any of the
other GR complexes that respond to aversive compounds are
unknown. It is also unclear if these heteromultimeric GRs are
cation channels.

In this study, we perform an RNA interference (RNAi) screen
to identify the complete set of receptors involved in L-canavanine
detection. As expected, knockdown of Gr8a and Gr66a impairs L-
canavanine avoidance behaviour. In addition, we find that
suppressing expression of one additional gene (Gr98b) disrupts
L-canavanine avoidance. We deleted Gr98b, which eliminates the
behavioural repulsion and action potentials in response to L-
canavanine. Introduction of Gr8a, Gr66a and Gr98b together in
sweet-sensing GRNs or low salt-sensing GRNs, endows these cells
with the ability to respond to L-canavanine. Moreover, ectopic
expression of these GRs in sweet-sensing GRNs switches the flies’
innate L-canavanine aversion to attraction. Ectopic expression of
Gr8a, Gr66a and Gr98b in S2 tissue culture cells confers
L-canavanine-dependent currents. Our findings define the first
heteromultimeric GR complex that is required and sufficient for
conferring sensitivity to an aversive compound.

Results
Screening for receptors required for L-canavanine detection.
Our previous findings show that GR8a and GR66a are required
but not sufficient for L-canavanine detection22. Therefore, we
performed an RNAi screen to address a potential requirement for
other GRs, by interrogating the full set of 58 available UAS–Gr
RNAi lines. We also knocked down 13 genes encoding ionotropic
receptors (IRs) that were expressed in GRNs28,29. We crossed
these RNAi lines to flies that expressed Dicer (UAS–Dcr2) and the
Gr33a–GAL4 driver, which is expressed in GRNs that respond to

aversive compounds21. All of the progeny were viable and
appeared healthy.

To assess L-canavanine avoidance, we performed two-way
choice behavioural assays. Given a choice between 1mM sucrose
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Figure 1 | Identification of taste receptors required for L-canavanine

avoidance. (a) An RNAi screen of 58 UAS–Gr RNAi lines and 13 UAS–Ir RNAi

lines for defects in L-canavanine avoidance. We drove expression of the RNAi

lines using the Gr33a–GAL4, and included UAS–Dcr2 (Dicer2) to improve the

efficacy of the RNAi. The dashed line indicates no preference. See the

Methods section (fly stocks) for the list of stocks screened. (b) Two-way

choice assays after knocking down Gr98b using two different RNAi lines. The

control consisted of UAS–Dcr2;Gr33a–GAL4 flies without the RNAi

transgenes. RNAi stock numbers (VDRC) are indicated within the bars. n¼ 5

for each genotype. **Po0.01 (analysis of variance (ANOVA) with post hoc

Tukey test). (c) Cartoon showing the strategy for creating the Gr98a1 allele by

ends-out homologous recombination. The arrowheads indicate the genomic

PCR primers used to confirm the Gr98b deletion. A 543bp band present in

control flies was absent in Gr98b1. (d) Two-way choice assays to test whether

Gr98b1 displayed a deficit in L-canavanine avoidance. To test for rescue of the

Gr98b1 phenotype, we expressed the Gr98b cDNA in the Gr98b1 background

using the Gr66a–GAL4, the Gr8a–GAL4 and the Gr98b–GAL4. n¼ 5 for each

genotype. **Po0.01 (ANOVA with post hoc Tukey test). (e) Two-way choice

assays to test for avoidance of Gr98b1 flies in response to the indicated bitter

chemicals. The flies were given a choice between 1mM sucrose and 5mM

sucrose plus the following aversive compounds: 0.5mM papaverine (PAP),

0.5mM strychnine (STR), 0.1mM denatonium (DEN), 0.05mM berberine

(BER), 0.1mM lobeline (LOB), 5mM caffeine (CAF), 0.2% N,N-diethyl-m-

toluamide (DEET), and 0.5mM quinine (QUIN). n¼4–7 for each genotype.

All data are mean±s.e.m.
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and 5mM sucrose mixed with 30mM L-canavanine, wild-type
flies strongly avoid the higher sugar laced with L-canavanine22. As
expected, knockdown of either Gr8a or Gr66a dramatically
reduced L-canavanine avoidance22 (Fig. 1a). In addition, we found
that RNAi-mediated suppression of one other receptor (Gr98b)
also reduced L-canavanine avoidance dramatically (Fig. 1a;
v101040 line). Introduction of all other UAS–Gr or UAS–Ir
RNAi lines had no impact on L-canavanine avoidance (Fig. 1a).
We tested an additional UAS–Gr98b RNAi line (v1302), which
produced the same phenotype as the first line (v101040; Fig. 1b).
Thus, GR98b was an additional candidate receptor critical for
detecting L-canavanine.

Mutation of Gr98b impaired L-canavanine detection. To con-
firm a role for Gr98b for L-canavanine repulsion, we generated a
mutation by ends-out homologous recombination (Fig. 1c). The
Gr98b1 mutation deleted the region encoding the N-terminal 233
out of 403 residues. The mutant flies were homozygous viable and
fertile. Consistent with the RNAi experiments, the Gr98b1 flies
failed to avoid L-canavanine (Fig. 1d). We fully rescued L-canava-
nine avoidance in the Gr98b1 flies by expressing a wild-type Gr98b
transgene (UAS–Gr98b) under the control of the Gr66a (Gr66a–
GAL4), the Gr8a (Gr8a–GAL4) or the Gr98b promoter (Gr98b–
GAL4; Fig. 1d). L-canavanine-induced action potentials were also
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Figure 3 | Ectopic Gr8a and Gr98b expression in bitter-sensing GRNs conferred L-canavanine sensitivity. (a) Expression patterns of the Gr8a, the Gr66a

and the Gr98b reporters as well as a cartoon indicating the location of Gr8a-, Gr66a- and Gr98b-expressing sensilla in the labellum. The scale bar represents

50mm. (b) Ectopic expression of Gr8a and Gr98b in bitter-sensing GRNs (I-type sensilla) conferred L-canavanine sensitivity to sensilla that did not normally

respond to L-canavanine. A schematic representation of a sensilla depicting the ectopic expression experiment (above) and representative traces (below)

evoked by 30mM L-canavanine from I4 sensilla of control (UAS-Gr8a,UAS-Gr98b) and UAS–Gr8a,UAS–Gr98b;Gr33a–GAL4 flies. (c) Response frequencies

evoked by 30mM L-canavanine after ectopic expression of Gr8a and Gr98b in the indicated sensilla. UAS–Gr8a,UAS–Gr98b flies were the negative controls.

n¼4–14. **Po0.01 (Mann–Whitney U-test). Medians and quartiles are shown.
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Figure 2 | Dependence of L-canavanine induced action potentials on

Gr98b. (a) Action potentials elicited in S6 sensilla of control (w1118), Gr98b1

and rescue flies (Gr66a–GAL4/UAS–Gr98b;Gr98b1) in response to 30mM

L-canavanine. (b) Mean frequencies of action potentials upon exposure to

30mM L-canavanine. Indicated are the genotypes and sensilla tested (S3,

S5 and S10), n¼ 10–12 for each genotype. (c) Mean frequencies of action

potential induced in S6 sensilla in response to the indicated bitter chemicals

(1mM PAP, 1mM STR, 1mM DEN, 0.1mM BER, 1mM LOB, 10mM CAF,

0.2% DEET and 1mM QUIN). n¼ 10–21 for each genotype. All data are

mean±s.e.m. **Po0.01 (analysis of variance with post hoc Tukey test).
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abolished in Gr98b1 flies, and the defect was rescued by expressing
the wild-type Gr98b transgene (UAS–Gr98b) using the Gr66a–
GAL4 (Fig. 2a,b). In contrast to the effects on sensing L-canavanine,
Gr98b1 flies displayed robust aversion and electrophysiological
responses to papaverine, strychnine, denatonium, berberine, lobe-
line, caffeine, N,N-diethyl-m-toluamide (DEET) and quinine
(Figs 1e and 2c). These data indicated that GR98b was required for
the detection of L-canavanine, and was narrowly tuned.

Endowing L-canavanine responsiveness to bitter-sensing GRNs.
The major taste organ of the fly, the labellum, is decorated
with gustatory bristles (sensilla) that fall into three classes based

on length and position: long (L), intermediate (I) and short (S)1.
Gr66a is widely expressed in bitter-sensing GRNs of S-type
and I-type sensilla30–32, whereas Gr8a expression is limited
to the subset of Gr66a-expressing GRNs that respond to
L-canavanine22. To determine the expression pattern of Gr98b,
we examined GFP staining in Gr98b–GAL4;UAS–mCD8::GFP
flies. We detected Gr98b–GAL4 reporter expression in GRNs of
I1, S1, S3, S5, S6, S7, S10 and S11 sensilla (Fig. 3a; Supplementary
Table 1). Consistent with a role in sensing L-canavanine, this
included all of the sensilla that responded to L-canavanine22,
and the S-type sensilla that contained GRNs that expressed the
Gr8a–GAL4 (refs 22,30).
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Figure 4 | Effects resulting from ectopic expression of Gr8a, Gr66a and Gr98b in sugar and low-salt responsive GRNs. (a) Schematic depicting ectopic

expression of Gr8a, Gr66a and Gr98b in sweet-sensing GRNs (above) and representative traces (below) evoked by 30mM L-canavanine from L3 sensilla

expressing Gr8a, Gr66a and Gr98b in sweet-sensing GRNs. (b) Dose-dependent L-canavanine responses in the indicated sweet-sensing GRNs. Shown are the

responses of the indicated sensilla from control flies without a GAL4 (UAS–Gr8a,UAS–Gr66a,UAS–Gr98b; dashed lines) or flies expressing the three Grs under

the control of the Gr64f–GAL4 (solid lines). n¼6–21. Data are mean±s.e.m. (c) Response frequencies evoked by 30mM L-canavanine after ectopic expression

of Gr8a, Gr66a and Gr98b in the indicated sweet-sensing GRNs using the Gr64f–GAL4. Genotypes: (1) green circles: 2� (UAS–Gr66a,UAS–Gr98b);Gr64f–GAL4/

þ , (2) blue circles: 2� (UAS–Gr8a,UAS–Gr98b);Gr64f–GAL4/þ , (3) ochre circles: 2� (UAS–Gr8a, UAS–Gr66a);Gr64f–GAL4/þ and (4) purple circles:

2� (UAS–Gr8a, UAS–Gr66a,UAS–Gr98b);Gr64f–GAL4/þ . n¼4–21 for each genotype. Shown are the medians and quartiles. *Po0.05, **Po0.01 (Kruskal–

Wallis test with Mann–Whitney U post hoc-test). (d) Response frequencies evoked by 30mM L-canavanine after ectopic expression of Gr8a, Gr66a and Gr98b
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To determine whether Gr8a, Gr66a and Gr98b were sufficient
to confer L-canavanine sensitivity to GRNs that normally do not
respond to L-canavanine, we ectopically expressed Gr8a and
Gr98b in Gr66a-expressing GRNs that were insensitive to
L-canavanine22,30–32. Misexpression of Gr8a in Gr66a-
expressing, L-canavanine-insensitive GRNs does not confer
L-canavanine sensitivity22. We found that introduction of Gr8a
and Gr98b in L-canavanine-insensitive S2- and I-type sensilla
under the control of the Gr33a–GAL4 conferred robust
L-canavanine responses to these sensilla (Fig. 3b,c). These
results indicated that GR8a and GR98b were essential
components of the functional L-canavanine receptor.

Conferring L-canavanine responsiveness to sweet-sensing GRNs.
Since bitter-sensing GRNs in S2- and I-type sensilla also express
other GRs30, it is possible that additional avoidance GRs may be
involved in L-canavanine detection. Wild-type L-type sensilla
contain four GRNs, one of which respond to sugars and not to
L-canavanine22. To provide stronger evidence that Gr8a, Gr66a
and Gr98b were sufficient for L-canavanine sensation, we
misexpressed these three Grs in sugar-activated GRNs in L-type
sensilla, using the Gr64f–GAL4 (Fig. 4a). We found that this
manipulation endowed sweet-sensing GRNs with the ability to
respond robustly to L-canavanine (Fig. 4b,c). Ectopic expression of
only two of the three GRs was insufficient to confer significant
L-canavanine responsiveness (Fig. 4c). However, in 12 out of 90
recordings, co-expression of just two of the Grs (Gr8a and Gr66a)
produced a small L-canavanine-evoked response in L-type sensilla
(Fig. 4c). We also ectopically expressed Gr8a, Gr66a and Gr98b in
low salt-sensing Ir76b–GAL4-positive GRNs33, and found that this
conferred significant L-canavanine responsiveness to these GRNs
(Fig. 4d). Ectopic expression of Gr8a, Gr66a and Gr98b did not
induce responsiveness to any of several bitter compounds tested
(Fig. 4e).

Eliciting behavioural attraction to L-canavanine. Because
expression of Gr8a, Gr66a and Gr98b was sufficient to endow
L-canavanine sensitivity to sweet-sensing GRNs, we tested whether
ectopic expression of these Grs induced attraction to L-canavanine.

Control flies (w1118) strongly preferred 1mM sucrose over 1mM
sucrose laced with 30mM L-canavanine (Fig. 5). In contrast,
Gr66aex83 mutants had no preference for either alternative.
Gr66aex83 flies expressing just two Grs (Gr8a/Gr66a, Gr8a/Gr98b or
Gr66a/Gr98b) in sweet-sensing GRNs were also nearly indifferent
to sucrose alone versus sucrose plus L-canavanine (Fig. 5). How-
ever, introduction of all three Grs (Gr8a/Gr66a/Gr98b) induced
significant attraction to the L-canavanine-containing food (Fig. 5).

GR8a/GR66a/GR98b-dependent L-canavanine current in S2 cells.
To test whether GR8a, GR66a and GR98b could form an
L-canavanine-activated cation channel, we co-expressed the three
GRs in Drosophila S2 cells and performed whole-cell voltage-clamp
recordings. We clamped the cells at a holding potential of � 60mV
and applied voltage ramps from � 80 to þ 80mV. Using a normal
physiological bath solution, we found that addition of 30mM
L-canavanine produced a slightly outwardly rectifying current with
a reversal potential of � 0.88±1.89mV (Fig. 6a,b). However, no
current was produced when we expressed any combination of two
GRs (GR8a/GR66a, GR8a/GR98b or GR66a/GR98b; Fig. 6c–f). The
L-canavanine-induced currents were completely inhibited by La3+,
a broad spectrum cation channel inhibitor (Fig. 6g,h). Consistent
with the in vivo data, no other aversive compounds tested induced
a conductance in S2 cells expressing GR8a, GR66a and GR98b
(Fig. 6i).

Discussion
Perception of toxic compounds and the aversive behaviors they
elicit are innate defense mechanisms shared by many animals,
including insects. In Drosophila, the detection of most aversive
compounds depends on members of the GR family19–23,30. The
subunit composition of GR receptors is complicated.
Consequently, a major challenge in the field has been to define
the repertoire of subunits that are sufficient to render a functional
bitter receptor in vivo and in vitro.

We and others have made multiple attempts to elucidate the
composition of a functional receptor complex that senses a
repulsive compound21,23,30,34. However, none of these
undertakings have been entirely successful. For example, Gr33a,
Gr66a and Gr93a are essential for detecting caffeine, but
misexpression of these GRs in sweet-sensing GRNs is
insufficient to confer sensitivity to caffeine23. Similarly, we have
defined several GRs that contribute to DEET sensation by
GRNs19. However, ectopic expression of these GRs in non-DEET-
responsive GRNs is not adequate to elicit DEET sensitivity19.
Ectopic expression of Gr59c in Gr21a/Gr63a CO2-sensing
neurons or in a subset of bitter-sensing GRNs that do not
normally respond to berberine, denatonium and lobeline confers
sensitivity to these tastants30,34. Nevertheless, GR59c has not been
functionally expressed in vitro, and so it remains unclear whether
it forms a homomeric or heteromeric receptor. Consistent with
the latter possibility, misexpression of Gr59c in sweet-sensing
GRNs is ineffective, indicating that one or more additional GRs
are required for detection of these avoidance compounds30.

We found that Gr8a, Gr66a and Gr98b were sufficient to
generate a functional L-canavanine-sensing GR complex in vivo in
every type of GRN tested that was formerly unresponsive to
L-canavanine. These included low salt-sensing and sweet-sensing
GRNs. Moreover, activation of sweet GRNs with L-canavanine,
after misexpressing the three Grs, converted the natural aversion
to L-canavanine to attraction35–37. Because low-salt and sweet
GRNs do not normally express any aversive GR, our findings
indicate strongly that there are no additional GRs that comprise
the L-canavanine receptor.
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The combination of GR8a and GR66a resulted in a low level of
L-canavanine sensitivity in a few GRNs that do not normally
respond to L-canavanine. Thus, GR8a and GR66a may produce a
low-affinity L-canavanine receptor, while GR98b is required for a
high-affinity receptor. The GR heteromultimers required for
sensing other aversive tastants may be even more complex than
the three GR subunits that are required and sufficient for
responding to L-canavanine. Because ectopic expression of the
three GRs known to be required for responding to caffeine or the
three GRs essential for tasting DEET are insufficient for
conferring responses to these compounds19,21, these assemblies
appear to be comprised of at least four GRs subunits.

The minimum number of GR subunits critical for sensing
attractive tastants remains unresolved. Ectopic expression of
single GRs in the CO2-sensing olfactory neurons endows these

cells with glycerol and sugar sensitivities, raising the possibility
that homomeric GRs elicit these responses34,38. However, CO2

neurons express GR21a, GR63a39 and possibly other GRs that
could potentially form heteromultimeric GR complexes.
Mutational analyses and unsuccessful ectopic expression studies
indicate that most sugar receptors consist of a complexity of
subunits40–42. The notable exceptions are insect fructose
receptors, which function as ligand-gated cation channels in
HEK293 cells18.

We demonstrated that introduction of GR8a, GR66a
and GR98b in vitro in Drosophila S2 cells conferred an
L-canavanine-induced cation conductance. Thus, we conclude
that these three GRs comprise a heteromultimeric L-canavanine-
activated channel, which is required and sufficient for detecting
this aversive compound in GRNs. This three subunit channel is
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Figure 6 | Whole-cell voltage clamp recordings of S2 cells expressing GRs. Cells were stimulated with 30mM L-canavanine as indicated. (a,b) Cells were

transfected either with pActin5c–GAL4, pUAST–EGFP only (mock) or pActin5c–GAL4, pUAST–EGFP plus pUAST–Gr8a, pUAST–Gr66a and pUAST–Gr98b

(3 GRs). (a) Currents produced in response to voltage steps (�80mV to þ 80mV in 20mV increments) of 500-ms duration obtained in the presence of

L-canavanine. (b) I–V relationships using cells expressing GR8a, GR66a and GR98b, and stimulated with L-canavanine. (c) Current densities at þ 80mV.

The cells expressed the indicated GRs and were recorded in the presence or absence of L-canavanine stimulation. The numbers of recordings are indicated.

*Po0.05 (paired Student’s t-test). (d-f) Current–voltage traces showing that expression of two GRs in S2 cells did not lead to L-canavanine-induced

increases in current densities. (d) Gr8a- and Gr66a-expressing S2 cells (n¼ 10). (e) Gr8a- and Gr98b-expressing cells (n¼ 11). (f) Gr66a- and Gr98b-

expressing cells (n¼ 6). (g) Effect of La3þ on I–V relationship. The cells expressed GR8a, GR66a and GR98b, and were recorded in the presence

of L-canavanine. (h) Effect of La3þ on current densities obtained at þ 80mV. The cells expressed the three GRs and were stimulated with L-canavanine.

**Po0.01 (analysis of variance (ANOVA) with post hoc Tukey test). (i) Current densities in cells expressing GR8a, GR66a and GR98b and stimulated with

the indicated bitter chemicals: 30mM L-canavanine, 1mM papaverine (PAP), 1mM strychnine (STR), 1mM denatonium (DEN), 100mM berberine (BER),

1mM lobeline (LOB), 5mM caffeine (CAF), and 1mM quinine (QUIN). The numbers of recordings are indicated. **Po0.01 (ANOVA with post hoc Tukey

test). All error bars indicate s.e.m.
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more complex than the channels formed by the distantly related
ORs, which are comprised of just two subunits15,16. One of the
two OR subunits is a broadly required olfactory co-receptor,
which is essential for trafficking of the OR complex43. Similarly,
since GR66a is essential for sensing a broad array of aversive
tastants19, it may also represent a co-receptor that participates in
trafficking of other GRs, such as GR8a and GR98b, which provide
tastant specificity.

Finally, activation of the L-canavanine cation conductance in
GRNs inhibits feeding in Drosophila. Other Dipterans such as
mosquitoes feed on human hosts and in doing so, spread
prevalent diseases, including malaria and Dengue fever. The
discovery that a Drosophila GR receptor complex that responds to
a repulsive compound is a cation channel, offers the possibility of
finding effective compounds to suppress feeding by insect disease
vectors, by performing high-throughput screens for activators of
similar complexes that function in mosquitoes.

Methods
Fly stocks. All fly stocks were maintained on conventional cornmeal–agar–
molasses medium, with 12-h light/12-h dark cycles at 25 �C and 60% humidity. We
obtained the following fly stocks from the Bloomington Stock Center: (1)
70FLP,70I-SceI/CyO, (2) UAS–Dcr2 and (3) UAS–mCD8::GFP. The UAS–Gr8a,
UAS–Gr66a, Gr33a–GAL4 and Gr8a–GAL4 flies were described previously20–22,30.
The Gr66a–GAL4 flies were a gift from H. Amrein32. Gr98b–GAL4 and Gr64f–
GAL4 were provided by J. Carlson30,44. We obtained the fly stocks for the RNAi
screen from the Vienna Drosophila RNAi Center and the Bloomington Stock
Center. The stock numbers are as follows: Gr2a (v102185), Gr5a (v13730), Gr8a
(v31104), Gr9a (v15446), Gr10a (v39237), Gr10b (v31151), Gr21a (v104122),
Gr22a (v106736), Gr22b (v107792), Gr22c (v7249), Gr22e (v9389), Gr22f
(v102860), Gr23a (v40852), Gr28a (v100938), Gr28b (v101727), Gr32a (v47956),
Gr33a (v42802), Gr36a (v48018), Gr36b (v8062), Gr36c (v3872), Gr39a (v8685),
Gr39b (v33215), Gr43a (v39518), Gr47b (v4594), Gr57a (v45879), Gr58a (v1703),
Gr58b (v9565), Gr58c (v29137), Gr59a (v31107), Gr59b (v101219), Gr59c (v3530),
Gr59d (v2766), Gr59e (v31110), Gr59f (v18989), Gr61a (v106007), Gr63a
(v108203), Gr64a (v103342), Gr64b (v42517), Gr64c (BL36734), Gr64d (v29422),
Gr64e (v109176), Gr64f (v105084), Gr66a (v14820), Gr68a (v13380), Gr77a
(BL38236), Gr85a (v47992), Gr89a (v8253), Gr92a (v44408), Gr93a (v13569),
Gr93b (v12160), Gr93c (v109794), Gr93d (v6813), Gr94a (v9537), Gr97a (v4395),
Gr98a (v1300), Gr98b (v1302 and v101040), Gr98c (BL36735), Gr98d (v4398), IR7a
(v108171), IR47a (v11812), IR56a (v5010), IR56b (v4704), IR56d (v6112), IR94e
(v33066), IR20a (v8658), IR94a (v7566), IR94c (v6817), IR94h (v1563), IR60b
(v12089), IR67c (v37261) and IR94f (v109702).

Genetics. We generated the Gr98b mutant (Gr98b1) by ends-out homologous
recombination. To obtain the DNA construct for the homologous recombination,
we used a genomic DNA template from isogenic w1118 flies and PCR to amplify 3 kb
arms located 50 and 30 to the targeted Gr98b locus. The primers used for the
50 arm were 50-GGTGGCTTAGGTGCTGCCATTAC-30 and 50-TTGGGTGAGT
TCTGAAAACTAAC-30. The primers for the 30 arm were 50-TCTGAAACGCAA
TCAATTGCTA-30 and 50-GTAGCCCAATATCACAATTC-30 . We subcloned the
two arms into the pw35 vector45, the transgenic flies were generated by germline
transformation (BestGene, Inc., Chino Hills, CA), and the transgene was mobilized
to generate the homologous recombinants as described45. We confirmed the Gr98b1

allele via genomic PCR, in conjunction with the following primers: 50-TCTCCTG
GCCAGAGCCTTTCCATA-30 and 50-TGCTGCATTATCATGACGAACTCGG-30 .

To generate the UAS–Gr98b transgenic flies, we amplified a Gr98b cDNA from
a w1118-derived labellar cDNA library using the Hi-fidelity PCR kit (Roche), and
cloned the cDNA into the pUAST vector. We verified the cDNA clone by DNA
sequencing and the transgenic flies were generated by BestGene, Inc. We
outcrossed the Gr98b1 and the UAS–Gr98b flies to w1118 flies for five generations.

Imaging. We performed immunostaining of whole mount fly labella21 using rabbit
anti-green fluorescent protein (GFP) (1:1,000, Molecular Probes) primary
antibodies and goat anti-rabbit Alexa488 (1:400, Molecular Probes) secondary
antibodies. The labella were dissected from heads, fixed for 20min using 4%
paraformaldehyde diluted in PBS-T (1� PBS for 20min and 0.2% TritonX-100)
and washed three times with PBS-T. The labella were bisected with a razor blade,
incubated for 30min in blocking solution (5% heat-inactivated goat serum in PBS-
T) and incubated overnight at 4 �C with the primary antibodies diluted in the
blocking solution. The tissues were washed three times with PBS-T and incubated
with the secondary antibodies diluted in blocking solution for 1 h at room
temperature. Following three washes with PBS-T, the samples were mounted with
Vectashield (Vector Laboratories, Burlingame, CA) and visualized with a Zeiss
LSM700 confocal microscope (Jena, Germany).

Chemicals. Sucrose, denatonium, quinine, papaverine, caffeine, strychnine,
L-canavanine, N,N-diethyl-m-toluamide (DEET), sulforhodamine B, KCl and tri-
choline citrate were purchased from Sigma-Aldrich (Saint Louis, MO). Berberine
sulfate trihydrate and Brilliant Blue FCF were obtained from Wako Pure Chemical
Industries, Ltd (Osaka, Japan).

Two-way choice behavioural assay. The binary food choice assays were performed
in a blinded fashion as described previously11,20. Briefly, for each assay we starved
B50 (3–6 days old) flies for 18 h and placed them in 72-well microtiter dishes. Each
alternating well was filled with 1% agarose combined with one of the two types of test
mixtures. The aversion to bitter chemicals was assayed by comparing the preferences
for 1mM sucrose to 5mM sucrose plus the indicated concentrations of aversive
compounds. To measure the effect of activation of sugar GRNs by L-canavanine, we
tested the preference for 1mM sucrose versus 1mM sucrose plus 30mM L-canavanine.

To monitor food intake, we added blue dye (Brilliant Blue FCF, 0.125mgml� 1)
to one test mixture, and red dye (sulforhodamine B, 0.2mgml� 1) to the other.
After allowing the flies to feed for 90min at room temperature in the dark, the
animals were frozen at � 20 �C. The numbers of blue (NB), red (NR) or purple
(NMIX) flies were counted under a dissection microscope and the preference index
(PI) values were calculated according to the following equation: (NB�NR)/
(NRþNBþNMIX) or (NR�NB)/(NRþNBþNMIX). PIs of 1.0 and � 1.0 indicate
complete preference for one or the other food. A PI of 0 indicates no preference.

Tip recordings. Tip recordings46 were performed as we described previously20.
Following eclosion, we maintained flies on fresh food for 1 day. We immobilized
the animals by inserting a glass capillary reference electrode filled with Ringer’s
solution into the abdomen, and extending it to the head. We stimulated labellar
sensilla with recording electrodes (10–20 mm tip diameter) containing tastants
dissolved in 1mM KCl or 30mM tricholine citrate. The recording electrode was
connected to a preamplifier (TastePROBE, Syntech, Hilversum, The Netherlands)
and taste responses were collected and amplified (10� ) using a signal interface
(Syntech) in conjunction with a 100–3,000Hz band-pass filter. The inputs were
also linked to a loudspeaker to facilitate audio monitoring. We recorded action
potentials at a 12-kHz sampling rate, sorted the spikes based on amplitude, and
performed quantification using Autospike 3.1 software package (Syntech).

Cell culture and transfection. We grew S2 cells in Schneider’s Insect media
(Welgene, Gyeongsan-si, Republic of Korea) supplemented with 10% fetal bovine
serum (Invitrogen, Carlsbad, CA), 50 units per ml penicillin-streptomycin (Invi-
trogen) in T-25 flasks (Thermo, Waltham, MA) at 25 �C. To perform the patch
clamp experiments, we transfected cells 24 h after plating with pActin5c–GAL4,
pUAST–EGFP (enhanced green fluorescent protein) and the two or three of the
following Gr plasmids using X-tremeGENE HP DNA transfection reagent (Roche):
pUAST–Gr8a, pUAST–Gr66a and pUAST–Gr98b. The transfection mixture con-
sisted of 4 ml of transfection reagent and 1.3 mg of total DNA. After incubating the
cells with the transfection cocktail in serum-free media for 12 h, we switched to
serum-containing media, and continued to incubate the cells for 24 h to allow for
expression of the GRs and EGFP.

Patch clamp experiments in S2 cells. We transferred Gr- and EGFP-expressing
S2 cells on coverslips to a chamber positioned on the stage of an inverted micro-
scope (IX71, Olympus). Whole cell currents were measured using an Axon 200B
amplifier at a holding potential of � 60mV. The bath solution contained normal
Ringer’s solution (in mM): 140 NaCl, 5 KCl, 5 HEPES, 2 pyruvic acid sodium salt,
1.25 KH2PO4, 2 CaCl2, 2 MgCl2 and 10 D-glucose (pH 7.4). The pipette solution
contained (in mM): 140 KCl, 5 EGTA-2K, 10 HEPES and 10 D-glucose (pH 7.2).
We pulled electrodes from borosilicate glass that had resistances of 2–4MO after fire
polishing. The seal resistances were between 3 and 10GO. After establishing a
whole-cell configuration, we recorded currents in the presence of L-canavanine, by
applying hyperpolarizing and depolarizing voltage pulses using a holding potential
of � 60mV and voltage ramps from þ 80 and � 80mV in steps of 20mV. We
performed all recordings at room temperature using an Axopatch-200B amplifier
(Axon Instruments, Foster City, CA). We digitized the currents with a Digidata
1440A converter (Axon Instruments) filtered at 5 kHz. Command potential and
data acquisition were controlled with pClamp 10.2 software (Axon instruments).
Whole-cell recording data analyses were performed using Clampfit 10.2. The cur-
rent densities were normalized to the cell capacitance.

Statistical analyses. We performed statistical analyses using the SPSS 21.0 (IBM
Corporation, Armonk, NY). All data, except for ectopic expression of GRs, were
analysed using unpaired Student’s t-tests for comparing two sets of data or one-way
analysis of variance with Tukey post hoc tests for comparing multiple sets of data, as
these data passed the Kolmogorov–Smirnov test. The data represent the means±s.e.m.

Electrophysiological data for misexpression of Grs were analysed using non-
parametric tests (Figs 2c and 3c,d). We employed the Mann–Whitney U-test for
comparing two sets of data. We performed a Kruskal-Wallis test with Mann–
Whitney U post hoc-test to determine whether the medians of two genotypes were
significantly different. The data presented are the medians and quartiles.
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