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Ab-dependent reduction of NCAM2-mediated
synaptic adhesion contributes to synapse loss
in Alzheimer’s disease
Iryna Leshchyns’ka1, Heng Tai Liew1, Claire Shepherd2, Glenda M. Halliday2, Claire H. Stevens2,3, Yazi D. Ke3,

Lars M. Ittner2,3 & Vladimir Sytnyk1

Alzheimer’s disease (AD) is characterized by synapse loss due to mechanisms that remain

poorly understood. We show that the neural cell adhesion molecule 2 (NCAM2) is enriched

in synapses in the human hippocampus. This enrichment is abolished in the hippocampus of

AD patients and in brains of mice overexpressing the human amyloid-b (Ab) precursor

protein carrying the pathogenic Swedish mutation. Ab binds to NCAM2 at the cell surface of

cultured hippocampal neurons and induces removal of NCAM2 from synapses. In AD

hippocampus, cleavage of the membrane proximal external region of NCAM2 is increased

and soluble extracellular fragments of NCAM2 (NCAM2-ED) accumulate. Knockdown of

NCAM2 expression or incubation with NCAM2-ED induces disassembly of GluR1-containing

glutamatergic synapses in cultured hippocampal neurons. Ab-dependent disassembly of

GluR1-containing synapses is inhibited in neurons overexpressing a cleavage-resistant mutant

of NCAM2. Our data indicate that Ab-dependent disruption of NCAM2 functions in AD

hippocampus contributes to synapse loss.
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L
earning and memory processes depend on the number and
correct functioning of synapses in the brain. Cell adhesion
molecules are enriched in the pre- and postsynaptic

membranes. These molecules physically connect synaptic mem-
branes, providing mechanical stabilization of synaptic contacts1–3,
are necessary for the formation of new synapses during neuronal
development4,5, and maintain and regulate synaptic plasticity in
adults6–10.

Alzheimer’s disease (AD) is a neurodegenerative brain
condition predominantly of the aging population. One of the
earliest signs of AD is the loss of synapses11, which can at least
partially be linked to the toxicity mediated by Ab12–14, a peptide
that accumulates in the brains of AD patients. The impact of AD
on synaptic adhesion and the role of synaptic cell adhesion
molecules in the progression of the disease remains poorly
understood.

The neural cell adhesion molecule 2 (NCAM2), sometimes
designated OCAM, belongs to the immunoglobulin superfamily
of cell adhesion molecules. NCAM2 participates in homophilic
trans-interactions15,16. During human embryonic development,
NCAM2 is expressed in several tissues, including lung, liver, and
kidney with the highest expression in the brain17. The expression
level of NCAM2 peaks around postnatal day 21 and remains high
during adulthood15, suggesting that the protein is necessary both
during development and in adult brains. Accordingly, studies
with cultured neurons and in NCAM2 deficient mice show that
NCAM2 is important for the development of the brain, and the
olfactory system in particular18,19.

The NCAM2 gene is located on chromosome 21 in humans
and NCAM2 overexpression has been suggested to be one of the
factors contributing to the symptoms of Down syndrome17,
which presents with early-onset AD pathology. Single-nucleotide
polymorphisms in the NCAM2 gene have been reported as a risk
factor related to the progression of AD in the Japanese
population20. A recent genome-wide association study has
found an association between single-nucleotide polymorphisms
in the NCAM2 gene and levels of Ab in the cerebrospinal fluid in
humans, suggesting that NCAM2 is involved in the pathogenic
pathway to the senile plaques that concentrate in AD brains21.
Since genetic association studies indicate a link between NCAM2
and AD, we have analysed whether AD pathology influences
levels of NCAM2 in synapses. Our results indicate that the
synaptic adhesion mediated by NCAM2 is highly susceptible to
Ab toxicity and that proteolytic fragments of NCAM2 generated
in an Ab-dependent manner can directly contribute to the
induction of synapse disassembly.

Results
Synaptic NCAM2 is reduced in the hippocampus in AD. To
analyse whether functions of NCAM2 are affected in AD, frozen
post-mortem brain tissue of AD patients and non-affected con-
trols (n¼ 10 each) was analysed by western blot with antibodies
against NCAM2. The detailed demographic data for the subjects
analysed are presented in Supplementary Table 1. Total levels of
NCAM2 were slightly increased in the hippocampus, but not
significantly affected in the cerebellum or superior temporal
cortex in AD (Supplementary Fig. 1). In contrast, levels of
VGLUT1, a presynaptic marker-protein of excitatory synapses,
were reduced in AD hippocampus (Supplementary Fig. 1), indi-
cating a loss of excitatory synapses. Levels of VGAT, a pre-
synaptic marker-protein of inhibitory synapses, were not
significantly affected in any brain region analysed (Supplemen-
tary Fig. 1).

Changes in the protein levels in brain homogenates do not
necessarily reflect changes in the protein levels in synapses. To

analyse whether the synaptic function of NCAM2 is affected in
AD, we compared the enrichment of NCAM2 in synaptosomes
isolated from the brain tissue of individuals with AD and non-
affected controls by western blot analysis of synaptosomes and
total homogenates of the brains used for synaptosome prepara-
tions. Equal total protein amounts from each probe were applied
to the gels to compensate for any possible differences in the yield
of synaptosomes because of the synapse loss observed in AD.
Western blot analysis with antibodies against actin, VGLUT1,
VGAT, synaptophysin (a general presynaptic marker-protein),
and PSD95 (a postsynaptic marker-protein), showed that these
proteins were enriched to similar levels in synaptosomes from AD
and control brains, indicating similar purities of intact synapto-
some isolations (Fig. 1a). Western blot analysis showed that in
control individuals NCAM2 was highly enriched in synaptosomes
from the hippocampus and to a lower degree in synaptosomes
from the temporal cortex and cerebellum (Fig. 1a,b). This
synaptic enrichment of NCAM2 was significantly reduced in
synaptosomes from AD hippocampi (Fig. 1a,b). The synaptic
enrichment of NCAM2 was slightly lower in the AD versus
control cerebellum, however the difference was not statistically
significant (Fig. 1a,b).

NCAM2 is a membrane protein (Fig. 2a). Its proteolysis results
in the release of the free, non-membrane-attached soluble
fragments22. To investigate whether a reduction in the synaptic
levels of NCAM2 is accompanied by changes in NCAM2
proteolysis, soluble protein fractions were isolated from the
cerebellum, superior temporal cortex and hippocampus of control
and AD brains. Western blot analysis of these fractions showed
enrichment of the soluble marker-protein GAPDH as well as
NCAM2-positive bands (Fig. 1c), which were detected at a lower
molecular weight compared with NCAM2-positive bands in
synaptosomes (Fig. 1c). Since the antibodies used in our analysis
were against the extracellular domain of NCAM2 (NCAM2-ED),
the B100-kDa NCAM2 fragment detectable in the soluble
protein fractions likely represented NCAM2-ED. In agreement,
the molecular weight of recombinant NCAM2-ED was also
B100 kDa (Fig. 3a).

The levels of the soluble NCAM2 fragments relative to the
NCAM2 levels in synaptosomes were significantly increased in
AD hippocampus (Fig. 1c,d). Similar results were obtained when
the levels of NCAM2 in the soluble protein fraction were
normalized to the levels of GAPDH (Fig. 1e). The levels of the
soluble NCAM2 were not statistically significantly different in the
temporal cortex and cerebellum in AD brains (Fig. 1c–e). These
results suggested increased proteolysis of NCAM2 and release of
NCAM2-ED from the synaptic plasma membrane in the
hippocampus in AD brains.

Cleavage of NCAM2aa682-701 is increased in AD brains. To
confirm that amino acid sequences within NCAM2, which are
proximal to the extracellular leaflet of the membrane, can be
cleaved in the brain tissue, peptides corresponding to the amino
acid sequences within this region of NCAM2 (Fig. 2a) were
analysed in a cleavage assay (Fig. 2b). In this assay, peptides
labelled with FITC and biotin at the N- and C-terminus,
respectively, were incubated with lysates of homogenates or
synaptosomes from control or AD hippocampus. Non-cleaved
peptides were removed using streptavidin beads. Levels of FITC
groups released by the peptide cleavage were analysed by mea-
suring FITC fluorescence (Fig. 2b). This analysis showed that the
release of FITC groups from the most membrane proximal
NCAM2aa682-701 fragment was significantly higher than from
the adjacent NCAM2aa666-685 fragment (Fig. 2c), indicating that
this sequence is susceptible to cleavage. Cleavage efficiency of
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Figure 1 | Synaptic accumulation of NCAM2 is reduced in the hippocampus of AD-affected individuals. (a) Western blot analysis of homogenates

and synaptosomes prepared using brain tissue from cerebellum, temporal cortex and hippocampus of control and AD individuals. Note enrichment of

synaptophysin, PSD95, actin, VGLUT and VGAT in synaptosomes indicating efficient synaptosome isolation. NCAM2 is highly enriched in synaptosomes

versus homogenates from the hippocampus in control but not in AD individuals. Full-length versions of the western blots are shown in Supplementary

Figs 6 and 7. (b) Graphs show the ratio of the respective protein levels in synaptosomes to homogenates for individual cases and mean±s.e.m.

(n¼ 10 control and n¼ 10 AD cases were analysed). *P¼0.0039, Mann–Whitney test. (c) Western blot analysis of the soluble protein fractions and

synaptosomes prepared using brain tissue from the cerebellum, temporal cortex and hippocampus of control and AD individuals. Total protein

concentration in synaptosomes was kept at 25% of that in the soluble protein fraction to improve visualization of the protein bands in both fractions on one

blot. Probes were analysed with antibodies against the extracellular domain of NCAM2 and GAPDH, which served as a loading control. Note increased

levels of solubleB100-kDa NCAM2 fragments in the soluble protein fraction from the hippocampus and temporal cortex of the AD individuals. Full-length

versions of the western blots are shown in Supplementary Fig. 8. (d,e) Graphs show NCAM2 levels in the soluble protein fraction normalized to NCAM2

levels in synaptosomes (d) and NCAM2 levels in the soluble protein fraction normalized to GAPDH levels in homogenates (e) for individual cases and

mean±s.e.m. (n¼ 10 control and n¼ 10 AD cases were analysed). *Po0.05, Mann–Whitney test.
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NCAM2aa682-701 was markedly increased in AD samples with
the strongest effect observed in the lysates of synaptosomes when
compared with the total homogenate lysate (Fig. 2c). Cleavage of
NCAM2aa682-701 was reduced when aspartic acid 693 was
changed to alanine, but not after mutating asparagine 689 to
alanine (Fig. 2c). Thus, we found that the extracellular region of
NCAM2 is cleaved at amino acids 685–701, with aspartic acid at
position 693 being essential. Furthermore, the cleavage rate at this
site is increased in synapses of AD hippocampus.

NCAM2 binds to Ab in vitro. In search for possible mechanisms
of the increased proteolysis of synaptic NCAM2 in AD, we
determined whether purified recombinant NCAM2-ED (Fig. 3a)
binds to Ab1-42 in vitro using ELISA. Ab1-42 bound to NCAM2-ED
immobilized on plastic in a concentration-dependent manner

(Fig. 3b). No binding to bovine serum albumin (BSA) used as a
negative control was observed. Hence, NCAM2 can directly
associate with Ab1-42.

To further understand the nature of the complexes formed by
NCAM2-ED and Ab1-42, the sizes of the protein particles formed
by NCAM2-ED or Ab1-42 alone or when NCAM2-ED and Ab1-42
were incubated together were measured by using dynamic light
scattering. This analysis showed that Ab1-42 formed particles with
the hydrodynamic diameter of B140 nm (Fig. 3c), as previously
reported for Ab oligomers23. In agreement, SDS–polyacrylamide
gel electrophoresis (PAGE) and western blot analysis of the Ab1-42
preparation with human Ab-specific antibodies (6E10, Covance)
showed a band atB18kDa corresponding to Ab1-42 tetramers and
a minor band atB4.5 kDa corresponding to Ab1-42 monomers but
no higher molecular weight bands (440 kDa) corresponding to
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Figure 2 | Cleavage of the membrane-adjacent extracellular fragment of NCAM2 is increased in AD brains. (a) Diagram showing the structure of

NCAM2. Ig, immunoglobulin-like domain; Fn, fibronectin type III domain. Peptides used in the cleavage assay and corresponding to aa682-701

(NCAM2aa682-701) and aa666-685 (NCAM2aa666-685) of human NCAM2 are shown below. Asparagine 689 and aspartic acid 693 exchanged to

alanine in the cleavage assay shown in c are highlighted in bold. (b) Scheme of the peptide cleavage assay. Peptides labelled with FITC and biotin at the

N- and C-terminus, respectively, were incubated either with the total brain lysate or lysate of synaptosomes. Non-cleaved peptides and biotin-containing

fragments of the cleaved peptides were removed using streptavidin-coated beads. The remaining FITC fluorescence was used as an estimate of peptide

cleavage. (c) Graphs show the efficiency of the peptide cleavage (meanþ s.e.m.) with the fluorescence signals for NCAM2aa682-701 in controls set to

100%. Lysates from eight controls and eight AD patients were analysed. Note that the efficiency of NCAM2aa682-701 cleavage is higher in AD cases and

particularly in synaptosomes. NCAM2aa682-701 cleavage is reduced by mutating aspartic acid 693. *Po0.05 (compared as indicated), ^Po0.05

(compared with NCAM2aa682-701 cleavage in AD) analysis of variance with Tukey’s multiple comparisons test.
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and western blot with antibodies against the extracellular domain of NCAM2. (b) NCAM2-ED immobilized on the plastic surface of 96-well plates was

assessed by ELISA for its ability to bind increasing concentrations of Ab1-42. Meanþ s.e.m. (n¼ 3) OD values from a representative experiment are shown.

Note that Ab1-42 binds to NCAM2-ED but not to BSA in a concentration-dependent manner. The experiment was performed five times with the same

effect. (c) DLS analysis of the hydrodynamic diameters of the protein particles in the solutions containing Ab1-42 oligomers alone, NCAM2-ED alone or a

mixture of Ab1-42 oligomers and NCAM2-ED. Note that the particle size peaks (marked by black dashed lines) are shifted to a larger hydrodynamic

diameter (grey dashed line) in the solution containing a mixture of Ab1-42 oligomers and NCAM2-ED when compared with solutions containing Ab1-42
oligomers or NCAM2-ED alone. (d) DLS analysis of the hydrodynamic diameters of the protein particles in the solutions containing Ab1-42 oligomers alone,
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incubated with BSA. The experiment in c,d was performed twice with the same effect and a representative experiment is shown. (e) Western blot analysis

of the Ab1–42 oligomer preparation used in this study. (f,g) PAGE (f) and western blot (g) analyses of the probes containing NCAM2-ED, NCAM2-ED

incubated with Ab1-42, or Ab1-42 performed under non-reducing conditions. Dashed lines and arrows indicate the position of the peaks in the labelling

density determined by the densitogram analysis. A fragment of the densitogram covering 75–150 kDa range is shown in f. Note that the density peak in

the NCAM2 band in the probes incubated with Ab1-42 is shifted to the higher molecular weight (grey arrows) when compared with the NCAM2 band

in the absence of Ab1-42 (black arrows). Full-length versions of the western blots are shown in Supplementary Fig. 9. OD, optical density. AU, arbitrary units.
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protofibrils (Fig. 3e)24. The hydrodynamic diameter of the particles
formed by NCAM2-ED was B260 nm (Fig. 3c). NCAM2-ED
incubated with Ab1-42 oligomers formed larger protein particles
with the hydrodynamic diameter of B440 nm (Fig. 3c), indicating
binding of NCAM2 to Ab1-42. In contrast, incubation of Ab1-42
oligomers with BSA did not induce any shift in the size indicating
no particles were formed by BSA and Ab1-42 (Fig. 3d).

To confirm the dynamic light scattering data, NCAM2-ED
incubated with or without Ab1-42 oligomers was analysed by
PAGE under non-reducing conditions. Analysis of the densito-
grams of the Coomassie-stained gels showed that incubation with
Ab1-42 resulted in a slight B15–20 kDa shift of the NCAM2-ED
band to the upper molecular weight with no higher molecular
complexes observed (n¼ 3 experiments; Fig. 3f). A similar shift
was observed when the probes were analysed by western blot with
antibodies against NCAM2 (Fig. 3g). Furthermore, western blot
analysis with antibodies against Ab confirmed that the shifted
band was also positive for Ab (Fig. 3g). Since the shift
corresponded to the molecular weight of the tetrameric Ab1-42
oligomers (Fig. 3e), our data indicate that Ab1-42 oligomers bind
to NCAM2.

To analyse whether NCAM2 can also associate with Ab1-42
oligomers at the cell surface of neurons, we used cultured mouse
hippocampal neurons. First, we confirmed synaptic localization of
NCAM2 in these neurons by using immunofluorescence labelling.
Labelling with antibodies against NCAM2 showed that it was
distributed along dendrites that stained for the dendritic marker-
protein MAP2 (Fig. 4a). Higher magnification visualized clusters
of NCAM2 co-localizing with the presynaptic marker synapto-
physin (Fig. 4b). Interestingly, NCAM2 was enriched in a subset
of synapses (Fig. 4b). Co-labelling with antibodies against the
postsynaptic marker of excitatory synapses, PSD95, showed that
NCAM2 co-localized with PSD95-positive synapses (Fig. 4c,
Pearson’s correlation coefficient for NCAM2 and PSD95 labelling
was 0.752±0.008, n¼ 23 neurons analysed). These observations
indicate that similarly to its distribution in human brain, NCAM2
is enriched in synapses of mouse hippocampal neurons.

Next, neurons were treated with 0.5 mM Ab1-42 oligomers or
equivalent volume of the neuronal culture medium used to dilute
oligomers for 30min or 24 h. Neurons were then subjected to a
proximity ligation (PL) assay using antibodies against Ab1-42 (sc-
28365; Santa Cruz Biotechnology) and antibodies against the
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extracellular domain of NCAM2 (ref. 19) to detect complexes of
NCAM2 and Ab1-42. Neurons were co-labelled for synaptophysin
and Ab1-42 to visualize synapses and neuronal morphology.
Proximity ligation produced a weak reaction in mock-treated
control neurons (Fig. 5), suggesting that NCAM2 associates with
endogenous APP present in cultured hippocampal neurons (see
also Fig. 8f). Neurons incubated with Ab1-42 oligomers for 30min

presented with a strong punctuated Ab immunoreactivity along
dendrites partially overlapping with synaptophysin accumula-
tions (Fig. 5), indicating that Ab1-42 oligomers bound to the cell
surface at synapses, as described previously13. This was
accompanied by a significant increase in the NCAM2/Ab1-42 PL
signal (Fig. 5). Interestingly, the NCAM2/Ab1-42 PL products
were observed not only along neurites but also on the substrate in
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Figure 5 | Ab1–42 oligomers bind to NCAM2 at the cell surface of neurons. Representative images of cultured hippocampal neurons, which were either

mock-treated or incubated with Ab1-42 oligomers for 30min or 24 h. Ab1-42/NCAM2 complexes at the cell surface were detected by PL using antibodies

against Ab1-42 and the extracellular domain of NCAM2 applied to detergent non-permeabilized neurons. Neurons were then co-labelled with antibodies

against Ab1-42 and synaptophysin used to visualize neurons. Differential interference contrast images (DIC) and inverted grey scale fluorescence images

are shown. Note endogenous APP labelling in mock-treated neurons and increased levels of Ab1-42 immunoreactivity and NCAM2/Ab1-42 proximity ligation

reaction products along neurites of neurons treated with Ab1-42 oligomers for 30min. NCAM2/Ab1-42 proximity ligation reaction products and Ab1-42
oligomers were observed along neurites and also adsorbed to the substrate around neurons treated with Ab1-42 oligomers for 24 h. A dead neuron with

disrupted morphology of the soma, fragmented dendrites and highly positive for Ab1-42 is marked with an arrow. Graphs show levels of Ab1-42 and

synaptophysin immunoreactivity and Ab1-42/NCAM2 proximity ligation products measured along neurites and randomly sampled areas around neurons

(meanþ s.e.m., n450 neurons analysed in each group). Po0.05, analysis of variance with uncorrected Fisher’s least square difference test. The

experiment was performed twice with the same effect. Scale bar, 40mm.
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neurite-free areas (Fig. 5). In neurons incubated with Ab1-42
oligomers for 24 h, levels of NCAM2/Ab1-42 ligation products
adsorbed to the substrate around neurons were increased as
compared to neurons incubated with Ab1-42 for 30min (Fig. 5).
This increase in the substrate-bound ligation products was
accompanied by a reduction in levels of Ab1-42
immunoreactivity along neurites in neurons incubated with
Ab1-42 oligomers for 24 h as compared with neurons incubated
with Ab1-42 oligomers for 30min (Fig. 5), suggesting that
prolonged incubation with Ab1-42 oligomers resulted in the
dissociation of NCAM2/Ab1-42 complexes from the cell surface
and subsequent adsorption to the substrate. Dead neurons
containing high levels of Ab immunoreactivity, probably
representing intracellular accumulations of Ab, were also
observed in cultures treated with Ab1-42 oligomers for 24 h
(Fig. 5), in accordance with previous reports showing that
intraneuronal accumulation of Ab1-42 precedes neuronal death25.
Omission of one of the antibodies abolished the PL signal
indicating the specificity of the reaction (Fig. 5). Taken together,
our data suggest that Ab1–42 oligomers form complexes with
NCAM2 that progressively dissociate from synaptic sites into the
medium.

Ab removes NCAM2 from synapses of hippocampal neurons.
To confirm that exposure to Ab1-42 oligomers affects levels of
NCAM2 at synapses, we analysed levels of NCAM2 in synapto-
somes isolated from control mock-treated cultured hippocampal
neurons and neurons treated with Ab1-42 oligomers for 24 h.
Western blot analysis of synaptosomes showed that NCAM2 was
highly enriched in synaptosomes isolated from control neurons
(Fig. 6a), in agreement with immunocytochemical analysis
(Fig. 4) and observations with human brain tissue (Fig. 1a). The
synaptic enrichment of NCAM2 was significantly reduced in
synaptosomes from neurons treated with Ab1-42 oligomers
(Fig. 6a). Levels of synaptophysin were similar in synaptosomes
isolated from Ab1-42- and mock-treated neurons, indicating
similar isolation efficiency (Fig. 6a).

The fact that levels of NCAM2 were not significantly affected
in the temporal cortex of AD-affected individuals (Fig. 1a)
prompted us to analyse the effect of Ab1-42 oligomers on NCAM2
levels in synapses of cortical neurons. Synaptosomes isolated from
cultured cortical neurons showed NCAM2 enrichment in
synapses, albeit at lower levels as compared with hippocampal
neurons (Fig. 6a). Interestingly, but in line with our findings in
human temporal cortex (Fig. 1a), levels of NCAM2 in synapto-
somes were not reduced by exposure of cortical neurons to Ab1-42
for 24 h (Fig. 6a). Western blot analysis of the cell culture lysates
showed that in hippocampal and cortical neurons incubated with
Ab1-42 oligomers the overall levels of NCAM2 were increased
when compared with NCAM2 levels in mock-treated neurons
(Fig. 6a), indicating a similar compensatory reaction in both types
of neurons. It is therefore possible that cortical neurons are more
efficient in compensating for the Ab-dependent loss of NCAM2
because levels of NCAM2 in synapses of these neurons are lower.

To confirm that Ab1-42 induces removal of NCAM2 from the
cell surface of cultured hippocampal neurons, we compared levels
of the soluble proteolytic products of NCAM2 in the cell culture
medium collected from control mock-treated neurons and
neurons treated with Ab1-42 oligomers for 24 h. Western blot
analysis showed that levels of soluble NCAM2 with the molecular
weight of B100 kDa were significantly increased in culture
medium from Ab1-42-treated hippocampal neurons (Fig. 6b),
further indicating that Ab1-42 induces removal of NCAM2 off the
neuronal cell surface. In contrast, levels of the soluble proteolytic
products of CHL1, another synaptic cell adhesion molecule of the
immunoglobulin superfamily26,27, were not changed in the

culture medium from Ab1-42-treated hippocampal neurons
(Fig. 6b). Incubation with Ab1-42 did not increase levels of
soluble NCAM2 in the culture medium from cortical neurons
(Fig. 6b), suggesting that cortical neurons are more resistant to
Ab1-42-dependent NCAM2 proteolysis.

Ab binds to and removes NCAM2 from synapses in APP23
mice. Next, we used Ab-forming human mutant APP-expressing
APP23 mice to analyse whether Ab interacts with NCAM2 in the
brain in vivo. Immunolabelling of brain slices with antibodies to
NCAM2 showed widespread NCAM2 expression in hippocampi
of both wild-type and APP23 mice of different age (Fig. 7a,
Supplementary Figs 3 and 4). Antibodies against human Ab
(6E10, Covance) stained neurons in the hippocampus of APP23
mice (Fig. 7a, Supplementary Fig. 3). NCAM2 and Ab partially
co-localized along dendrites of the neurons in 9-month-old
APP23 mice (Fig. 7d), which did not show overt plaques (Fig. 7a),
in small Ab aggregates probably representing nascent plaques in
12-month-old APP23 mice (Supplementary Figs 3 and 4), and in
small Ab aggregates and around mature plaques in 24-month-old
APP23 mice (Supplementary Figs 3 and 4). No labelling was
observed when primary antibodies were omitted (Fig. 7b,c).

To analyse whether increased levels of Ab influence synaptic
accumulation of NCAM2 in vivo, we compared synaptic
enrichment of NCAM2 in brains of APP23 mice and wild-type
littermates. Western blot analysis showed that NCAM2 was
highly enriched in synaptosomes from the hippocampus of wild-
type mice in all ages tested (Fig. 8a). Enrichment of NCAM2 in
hippocampal synaptosomes was significantly reduced in APP23
mice at all ages analysed (Fig. 8a,b). NCAM2 was also highly
enriched in synaptosomes isolated from the cortex of 5–9- and
12-month-old wild-type mice (Fig. 8a). This enrichment of
NCAM2 progressively declined in APP23 mice with the
difference reaching statistical significance at 12 months of age
(Fig. 8a,c). Interestingly, synaptic levels of NCAM2 in the cortex
of 15-month-old wild-type mice declined to the level of APP23
mice, possibly reflecting ageing. Synaptic enrichment of NCAM2
in the cerebellum was not different between genotypes in mice of
all ages tested (Fig. 8a,d), consistent with absence of transgene
expression in the cerebellum of APP23 mice28. A decline in
synaptic levels of NCAM2 was accompanied by an increase in
soluble NCAM2 fragments in the hippocampus of APP23 mice
(Fig. 8e; ratio of soluble NCAM2 to full-length synaptic NCAM2
levels in synaptosomes was 0.11±0.02 in the hippocampus of
wild-type animals versus 0.24±0.05* in the hippocampus of
APP23 mice, n¼ 5, *Po0.05, paired t-test), indicating increased
proteolysis of NCAM2.

Although co-localization data (Fig. 7) suggests that NCAM2
and Ab interact, it does not exclude that NCAM2 co-localize with
full-length APP or its fragments containing epitopes present in
Ab and recognized by 6E10 antibodies. To confirm that NCAM2
interacts with Ab, co-immunoprecipitation experiments were
performed. Immunoprecipitation of NCAM2 from APP23 brain
extracts co-immunoprecipitated Ab species of B20–37 kDa
detectable with antibodies against human Ab (6E10, Covance)
(Fig. 8f). Co-immunoprecipitation efficiency was stronger in the
hippocampus when compared with cortex (Fig. 8f). NCAM2
immunoprecipitates from the cortex and hippocampus of APP23
mice also contained full-length APP and B75 kDa products
possibly representing APP proteolytic fragments containing
epitopes present in Ab and detectable with 6E10 antibody
(Fig. 8f). To confirm that Ab1-42 associates with NCAM2,
NCAM2 immunoprecipitates were also analysed with the rabbit
monoclonal antibody (D3E10, Cell Signaling) recognizing Ab1-42,
but not full-length APP or other Ab species. Labelling with this
antibody also showed immunoreactivity at B20–37 kDa in
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NCAM2 immunoprecipitates from APP23 hippocampus (Fig. 8f).
Taken together, our results suggest that Ab binds to NCAM2
particularly in the hippocampus and may induce removal of
NCAM2 from synapses in vivo.

Disruption of NCAM2 adhesion promotes synapse dis-
assembly. Soluble NCAM2-ED contains amino acid sequences
normally involved in mediating NCAM2-NCAM2 homophilic
adhesion16. NCAM2-ED may therefore bind to membrane-
localized NCAM2 and affect its interactions and functions. Since
NCAM2-ED accumulates in AD brains (Fig. 1c–e) and is
generated in response to Ab1-42 (Fig. 6b), we determined
whether application of NCAM2-ED affects synapse integrity in
cultured hippocampal neurons. Neurons were incubated with
recombinant NCAM2-ED (2.5 mgml� 1) for 24 h or mock-treated

with equivalent volume of the neuronal culture medium used to
dilute NCAM2-ED. To visualize synapses, neurons were labelled
with antibodies against the extracellular domain of the GluR1
subunit of AMPA receptors applied before permeabilization of
membranes with detergent and co-labelled with antibodies
against synaptophysin applied after permeabilizing membranes
with detergent. Confocal microscopy analysis showed that in
mock-treated neurons over 80% of cell surface GluR1 clusters
overlapped with synaptophysin accumulations and were thus
identified as synaptic (Fig. 9a,b). The number of synaptic GluR1
clusters was significantly reduced in neurons incubated with
NCAM2-ED (Fig. 9a,b). This reduction was accompanied by a
reduction in the numbers of synaptophysin accumulations along
dendrites and by an increase in the numbers of extra-synaptic
GluR1 clusters identified as clusters that did not overlap with
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synaptophysin accumulations (Fig. 9a,b). Since NCAM2-ED can
bind not only to the membrane bound NCAM2 but possibly also
to other binding partners of NCAM2 at the cell surface, we also
analysed whether synapse integrity is affected by antibodies,
which bind specifically to the extracellular domain of NCAM2
(ref. 19, Supplementary Fig. 2). Incubation of neurons with the
antibodies against the extracellular domain of NCAM2
(2.5mgml� 1) for 24h also resulted in reduced density of GluR1-
positive synapses along dendrites (Fig. 9a,b). A similar effect was
observed in neurons incubated with Ab1-42 oligomers (0.5mM) for
24h (Fig. 9a,b), in agreement with previous reports13. Incubation
with NCAM2-ED, antibodies against the extracellular domain of
NCAM2 or Ab1-42 oligomers also resulted in reduced numbers of

synapses positive for the NR1 subunit of the NMDA receptor and
an increase in numbers of extra-synaptic NR1 clusters along
dendrites of neurons (Fig. 9c). Our observations thus indicate that
disruption of NCAM2 functions at the cell surface results in the
disassembly of glutamatergic synapses.

Since the actin cytoskeleton plays a central role in anchoring of
the receptors in the postsynaptic density, we determined whether
exposure to NCAM2-ED influences actin at synapses. In mock-
treated control neurons, accumulations of F-actin visualized
with fluorophore-labelled phalloidin co-localized with
synaptophysin clusters (Fig. 9d). Numbers of synaptic phalloidin
clusters and overall phalloidin intensity along dendrites were
reduced in neurons treated for 24 h with NCAM2-ED or
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antibodies against the extracellular domain of NCAM2
(Fig. 9d,e). This effect was accompanied by the increased
appearance of non-synaptic filopodia and lamellipodia along

dendrites of neurons treated with NCAM2-ED or antibodies
against NCAM2 (Fig. 9d), resulting in an increased ratio of
dendrite area-to-length (Fig. 9e). A similar effect was observed in
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neurons treated for 24 h with Ab1-42 oligomers (Fig. 9d,e), as
described previously13.

Cleavage-resistant NCAM2 reduces Ab-dependent synapse loss.
Since Ab1-42 induces removal of NCAM2 from synapses, we
determined whether knockdown of NCAM2 expression by
transfection of neurons with targeted miRNA (NCAM2miR)
alters synapse numbers. Immunofluorescence analysis of trans-
fected neurons showed that numbers of synaptic cell surface

GluR1 clusters were reduced while numbers of extra-synaptic cell
surface GluR1 clusters were increased in neurons transfected with
NCAM2miR when compared with neurons transfected with
control miRNA (Fig. 10a,b). When neurons transfected with
control miRNA were incubated with Ab1-42 oligomers for 24 h,
numbers of synaptic GluR1 clusters declined and numbers of
extra-synaptic GluR1 clusters increased to the levels observed in
NCAM2miR transfected neurons (Fig. 10a,b). Administration of
Ab1-42 oligomers to NCAM2miR-transfected neurons did not
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increase numbers of extra-synaptic GluR1 clusters any further
(Fig. 10a,b), indicating that the effects of NCAM2 knockdown
and Ab1-42 are not additive. Transfection with NCAM2miR did
not significantly reduce the effect of Ab1-42 on the overall num-
bers of synaptophysin-positive synaptic boutons along dendrites
(Fig. 10c).

To analyse whether overexpression of NCAM2 changes the
responsiveness of neurons to Ab, neurons were transfected with
DNA coding for non-mutated human NCAM2 or cleavage-
resistant NCAM2 with aspartic acid 693 in the cleavage site
mutated to alanine (NCAM2D693A). Transfection with both
NCAM2 constructs resulted in expression of the NCAM2
proteins recognized with the NCAM2 antibodies at the expected
molecular weight (Supplementary Fig. 2C). In neurons trans-
fected with non-mutated NCAM2, the percentage of non-
synaptic GluR1 clusters was increased when compared with
neurons transfected with green fluorescent protein (GFP) only
(Fig. 10d), possibly due to cleavage of overexpressed NCAM2 and
therefore increased levels of NCAM2-ED, which affects numbers
of GluR1-containing synapses (Fig. 9b). In agreement, the neurite
area/length ratio was increased in NCAM2- versus GFP-
transfected neurons (Fig. 10f), as observed for neurons treated
with NCAM2-ED (Fig. 9d, e). Furthermore, these effects were
blocked in neurons transfected with NCAM2D693A (Fig. 10d,f),
indicating that cleavage of NCAM2 is required. In neurons
transfected with NCAM2D693A, the Ab1-42-dependent increase
in numbers of extra-synaptic GluR1 clusters was blocked
(Fig. 10d), and Ab1-42-dependent reduction in the overall
numbers of synaptic accumulations along dendrites was partially
inhibited (Fig. 10e).

Because overexpression of non-mutated NCAM2 induced
changes obscuring the effects of Ab, we also analysed whether
responsiveness to Ab is restored in neurons, in which human
NCAM2 was expressed on the NCAM2-negative background
achieved by knockdown of expression of mouse NCAM2 using
mouse NCAM2-specific NCAM2miR. Analysis of the immuno-
fluorescence images of transfected neurons labelled with anti-
bodies against NCAM2 showed that in neurons transfected with
NCAM2miR only the levels of NCAM2 were reduced to
25.4±2.1% of NCAM2 levels in control neurons. By testing
different concentrations of DNAs, we found that in neurons co-
transfected with DNAs coding for NCAM2miR and non-mutated
human NCAM2 or human NCAM2D693A at 1:1 ratio the levels
of NCAM2 immunofluorescence were increased to 72.9±5.5%
and 62.8±6.4% of the levels in control neurons, respectively. The
percentage of non-synaptic GluR1 clusters was reduced in
neurons co-transfected with NCAM2miR and non-mutated

NCAM2 or NCAM2D693A when compared with neurons
transfected with NCAM2miR only (Fig. 10g). Application of
Ab1-42 for 24 h induced an increase in the percentage of non-
synaptic GluR1 clusters (Fig. 10g) and an increase in the neurite
area/length ratio (Fig. 10h) in neurons co-transfected with non-
mutated NCAM2. This effect was, however, blocked in neurons
co-transfected with NCAM2D693A (Fig. 10g,h).

Taken together, our results indicate that Ab affects the
numbers of GluR1-containing glutamatergic synapses in a
NCAM2-dependent manner.

Discussion
Alzheimer’s disease is characterized by loss of synapses, which is
the strongest correlate of cognitive decline11,29–32 and possibly
one of the earliest events in AD pathogenesis30,33. Synapses are
long lasting contacts between neurons, which are stabilized by a
number of cell adhesion molecules that concentrate in pre- and
postsynaptic membranes2,5. Cell adhesion molecules play an
essential role in maintaining synapse functionality and stability.
Although cell adhesion molecules of many families are required
for the synapse integrity8,10, elimination of even one type of
synaptic cell adhesion molecule is often sufficient to induce
abnormalities in synapse ultrastructure and protein
composition6,7. In the present study, we show that levels of the
synaptic cell adhesion molecule NCAM2 are markedly reduced in
hippocampal synapses in AD brains and Ab-forming APP23
mice. Our observations that disruption of NCAM2 interactions at
the cell surface, knockdown of NCAM2 expression and Ab
exposure result in reduced numbers of glutamatergic synapses in
hippocampal neurons suggest that abnormalities in NCAM2-
mediated synaptic adhesion contribute to synapse loss in AD.

Although the mechanisms of synapse disassembly in AD remain
poorly understood, previous studies indicated that synapse loss can
be linked to Ab-induced toxicity12,34,35. Our observations showing
that synaptic levels of NCAM2 are similarly reduced in APP23
mice and in cultured hippocampal neurons from wild-type mice
exposed to Ab argue in favour of Ab-dependent mechanisms in
the disruption of NCAM2-mediated synaptic adhesion. We
however do not exclude that other factors, such as disrupted
trafficking of NCAM2 to synapses, may also contribute to the
reduction of NCAM2 levels at synapses. Strikingly, the effects of
Ab on synaptic targeting of NCAM2 were particularly strong in
hippocampal but not cortical or cerebellar neurons. The enhanced
susceptibility of synaptic NCAM2 to Ab-dependent proteolysis
may therefore contribute to selective vulnerability of the
hippocampus to AD.

Figure 9 | Disruption of NCAM2 functions at the neuronal cell surface promotes glutamatergic synapse disassembly. (a–e) Cultured hippocampal

neurons were either mock-treated or incubated with the recombinant soluble extracellular domains of NCAM2 (NCAM2-ED), antibodies against the

extracellular domain of NCAM2 (NCAM2mAb), or Ab1-42 oligomers. In a,b, neurons were labelled with antibodies against the extracellular domain of GluR1

before permeabilization of membranes with detergent, and co-labelled with antibodies against synaptophysin after permeabilization of membranes with

detergent. Representative images of dendrites are shown (a). Note co-localization of cell surface GluR1 accumulations with synaptophysin clusters in mock-

treated neurons, and increased levels of non-synaptic cell surface GluR1 accumulations in neurons treated with NCAM2-ED, NCAM2mAb or Ab1-42. Graphs
(b) show the percentage of synaptic and non-synaptic GluR1 clusters relative to total number of GluR1 clusters along dendrites and numbers of

synaptophysin accumulations per dendrite length (meanþ s.e.m.). *Po0.0001 (analysis of variance with Dunnett’s multiple comparison test, n480

dendrites from 20 neurons were analysed in each group). In c, neurons were labelled with antibodies against the extracellular domain of NR1 before

permeabilization of membranes with detergent, and co-labelled with antibodies against synaptophysin after permeabilization of membranes with detergent.

Graphs show the percentage of synaptic and non-synaptic NR1 clusters relative to total number of NR1 clusters along dendrites (meanþ s.e.m.).

*Po0.0001 (analysis of variance with Dunnett’s multiple comparison test, n485 dendrites from 20 neurons were analysed). In d,e, neurons were

co-labelled with fluorescent phalloidin and synaptophysin antibodies. Representative images of dendrites are shown in d. Note higher labelling intensity and

co-localization with synaptophysin of the phalloidin-labelled polymerized actin accumulations in control neurons versus neurons treated with Ab1-42,
NCAM2-ED or NCAM2mAb. Note increased numbers of filopodia and lamellipodia in neurons treated with Ab1-42, NCAM2-ED or NCAM2 mAb. Graphs

(e) show ratio of the dendrite area-to-length and phalloidin labelling intensity of dendrites of neurons. Mean valuesþ s.e.m. are shown. *Po0.0001

(analysis of variance with Dunnett’s multiple comparison test, n¼ 50 dendrites from 20 neurons were analysed in each group). Scale bar, 10mm (in a,d).
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Figure 10 | Ab1-42 reduces the number of GluR1-containing synapses in the NCAM2-dependent manner. (a) Representative images of dendrites of

cultured hippocampal neurons transfected either with control negative miRNA (negative miR) or NCAM2miR and either mock-treated or incubated with

Ab1-42. Transfected neurons were identified by fluorescence of GFP, which is co-expressed together with miRNA. Neurons were co-labelled with antibodies

against cell surface GluR1 and synaptophysin. Note that the number of synaptic GluR1 clusters is reduced and the number of non-synaptic GluR1 clusters is

increased in neurons transfected with NCAM2miR. Scale bar, 10mm. (b,c) Graphs show meanþ s.e.m. percentage of synaptic and non-synaptic GluR1

clusters relative to the total number of GluR1 clusters along dendrites (b) and numbers of synaptophysin accumulations per dendrite length normalized to

the mean number in mock-treated neurons (c) for neurons described in (a). (d–f) Graphs show meanþ s.e.m. percentage of synaptic and non-synaptic

GluR1 clusters relative to the total number of GluR1 clusters along dendrites (d), number of synaptophysin accumulations per dendrite length normalized to

the mean number in mock-treated neurons (e), and area/length ratio (f) in cultured hippocampal neurons transfected either with GFP alone or co-

transfected with GFP and non-mutated NCAM2 (NCAM2WT) or NCAM2D693A mutant and either mock-treated or incubated with Ab1-42. (g,h) Graphs
show meanþ s.e.m. percentage of non-synaptic GluR1 clusters relative to the total number of GluR1 clusters along dendrites (g) and area/length ratio (h)

in cultured hippocampal neurons co-transfected with NCAM2 miR and either GFP, non-mutated NCAM2 (WT) or NCAM2D693A mutant (D693A) and

either mock-treated or incubated with Ab1-42. In b–h, *Po0.01 (compared as indicated), ^Po0.01 (compared with mock-treated neurons transfected with

negative miR (b), GFP (d–f) or co-transfected with NCAM2miR and GFP (g–h)), analysis of variance with Tukey’s multiple comparison test, n450

dendrites from 20 neurons were analysed in each group.
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Our observations that NCAM2 directly interacts with synthetic
Ab1-42, that Ab1-42 forms a molecular complex with NCAM2 at
the neuronal cell surface and that complexes of NCAM2 and
oligomers of Ab can be isolated from APP23 mouse brains,
indicate that NCAM2 may function as a previously unrecognized
receptor for Ab at the neuronal cell surface. Previous studies have
shown that Ab can also bind to other cell adhesion molecules at
the neuronal cell surface, among which are the prion protein36

and L137. In addition, a number of cell adhesion molecules have
been shown to interact with APP, including the neural cell
adhesion molecule 1 (NCAM1)38 and TAG1 (ref. 39). It remains
to be investigated whether the NCAM2/Ab complex comprises
other adhesion molecules and cell surface proteins. Interestingly,
NCAM1, a homologue of NCAM2, binds to prion protein40 and
L1 (ref. 41). However, in spite of homology to NCAM2, NCAM1
binds to a region of APP which is different to the Ab-containing
region38.

The fact that NCAM2 directly binds to Ab suggests that this
event may predispose NCAM2 to proteolysis and shedding of its
extracellular domain. Ab-derived diffusible ligands, a form of
Ab1-42 used in our study, have been previously shown to attach to
the postsynaptic sites of excitatory synapses and induce removal
of cell surface proteins13. How exactly Ab induces NCAM2
proteolysis remains to be investigated, but interestingly, we could
show site-specific cleavage of NCAM2 is enhanced in AD
synapses. Importantly, Ab has been shown previously to inhibit
shedding of another synaptic cell adhesion molecule,
N-cadherin42, an observation which indicates that Ab does not
induce overall degradation of the synaptic cell adhesion machinery
but rather target-specific components, including NCAM2.

Notably, we found that extracellular domains of NCAM2
accumulate in brains of AD patients. In addition to enhanced
proteolysis, an increase in the levels of soluble NCAM2 may also
be related to overall increased expression of NCAM2 triggered by
exposure to Ab. A similar increase in levels of expression were
observed for cellular prion protein, another key player in Ab
toxicity36, expression of which is increased in response to
incubation with Ab43. Our observation that incubation of
cultured hippocampal neurons with recombinant extracellular
domains of NCAM2 results in a reduction of the numbers of
glutamatergic synapses suggests that proteolytic products of
NCAM2 may exacerbate the effect of Ab by interfering with
NCAM2-mediated homophilic interactions and promoting
further disassembly of synaptic contacts. In addition to
the disruption of NCAM2-mediated adhesion, binding of the
extracellular domains of NCAM2 may influence the intracellular
cytoskeleton by activating intracellular signalling, which can be
induced by other members of this family of cell adhesion
molecules in response to extracellular ligand binding44.

Taken together, we show that Ab induces synaptic loss and
proteolysis of NCAM2 in cell culture and APP transgenic mouse
models, providing a mechanistic explanation for synaptic
NCAM2 changes in AD brains. The detrimental effects of
proteolyically cleaved extracellular NCAM2 on synapses may
augment the Ab toxicity in the pathogenesis of AD. The exact
molecular mechanisms underlying Ab-induced NCAM2 changes,
and to which degree it contributes to onset and progression of
disease remains to be established. Nevertheless, our data reveal a
new role of NCAM2 in AD that warrants further investigation.

Methods
Antibodies. Rat monoclonal antibodies against the extracellular domain of
NCAM2 (MAB778; R&D Systems) were used at 2.5 mgml� 1 for immunocy-
tochemistry (IC) and in experiments aimed to disrupt NCAM2 functions in live
cultured hippocampal neurons. Goat polyclonal antibodies against the extracellular
domain of NCAM2 (sc-51336; Santa Cruz Biotechnology) were used at 4 mgml� 1

for IC, immunohistochemistry (IH) and in the PL assay. Mouse monoclonal
antibodies against the extracellular domain of NCAM2 (sc-136328; Santa Cruz
Biotechnology) were used for IC (2mgml� 1), Western blot (WB, 1 mgml� 1),
immunoprecipitation (IP, 7 mg per 1mg of total protein) and to immobilize
NCAM2 for ELISA (10 mgml� 1). Goat antibodies against the extracellular domain
of CHL1 (AF2147; R&D systems) were used for WB (1 mgml� 1); goat polyclonal
and mouse monoclonal antibodies against synaptophysin (sc-7568, sc-17750; Santa
Cruz Biotechnology) were used for WB (1 mgml� 1) and IC (4mgml� 1); mouse
monoclonal antibodies against actin (sc-8432; Santa Cruz Biotechnology;
1 mgml� 1), VGLUT1 (sc-377425; Santa Cruz Biotechnology; 1 mgml� 1) and
VGAT (sc-393373; Santa Cruz Biotechnology; 1 mgml� 1) were used for WB;
mouse monoclonal antibodies against PSD95 (clone K28/86, Millipore) were used
for WB (0.1 mgml� 1) and IC (1mgml� 1); mouse monoclonal antibodies against
MAP2 (M4403; Sigma; 1:100) were used for IC; mouse monoclonal antibodies
against Ab (sc-28365; Santa Cruz Biotechnology) were used for WB (1 mgml� 1),
IC (2mgml� 1), PL (2 mgml� 1); rabbit polyclonal antibodies against Ab (pre-
diluted Ab42 detection antibody; KHB3441 ELISA kit; Life Technologies) were
used for ELISA; human-specific mouse monoclonal antibodies against Ab (6E10)
(Covance) were used for IH (1:100) and WB (1:1,000); rabbit monoclonal anti-
bodies against Ab1-42 (D3E10, Cell Signaling Technology; 1:200) were used for WB;
rabbit polyclonal (A5060) and mouse monoclonal antibodies against actin (Sigma)
were used for WB (1:1,000); rabbit polyclonal antibodies against the extracellular
epitope of the GluR1 subunit of AMPA receptors (AGC-004; Alomone Labs, Jer-
usalem, Israel) were used for IC (1:100); and rabbit polyclonal antibodies against
the extracellular epitope of the NR1 subunit of NMDA receptors (AGC-001;
Alomone Labs) were used for IC (1:100). We also used secondary antibodies
coupled to Cy2 (for IC, 1:400), Cy3 (for IC, 1:400) or Cy5 (for IC and IH, 1:400), or
horseradish peroxidase (HRP) (for WB, 1:25,000) from Jackson Immunoresearch,
and Alexa 555 coupled secondary antibodies (for IH, 1:1,000) from Life
Technologies.

Human brain tissue. Analysis of the human brain tissue was approved by the
Human Research Ethics Committee of the University of New South Wales (permit
HREC 09301). Brain tissues from ten cases per group (AD-affected individuals
versus non-affected individuals with no pathology, similar age) were obtained from
the Sydney Brain Bank. Cases met current diagnostic criteria for either AD or
neuropathological control45. Case details are given in Supplementary Table 1.

Brain tissue homogenates. Brain tissue homogenates (10%, w/v) were prepared
in HOMO-A buffer: HOMO buffer (1mM MgCl2, 1mM CaCl2, 1mM NaHCO3,
5mM Tris, pH 7.4) containing 0.32M sucrose, EDTA-free complete inhibitors
(Roche) and 1mM PMSF (Sigma).

Soluble protein fractions and synaptosomes from brain tissue. Homogenates
were used for synaptosome isolation as described27,46. All steps were performed at
4 �C. Briefly, homogenates were centrifuged at 1,400 g for 10min. The supernatant
and pellet were resuspended in HOMO-A buffer and centrifuged for 10min at
700 g. The resulting supernatants were combined and centrifuged at 17,500 g for
15min. The supernatant was centrifuged at 200,000 g for 1 h and used as the
soluble fraction. The 17,500 g pellet was resuspended in HOMO-A buffer and
applied on the top of a step gradient with interfaces of 0.65, 0.85, 1 and 1.2M
sucrose in HOMO buffer. The 700-g pellets were combined, adjusted to 1M
sucrose in HOMO buffer and layered on 1.2M sucrose in HOMO buffer. HOMO-
A buffer was applied on the top of the gradient. The crude synaptosomal fractions
were collected at the 1M/1.2M interface after centrifugation for 2 h at 100,000g
and combined. The crude synaptosomal fraction was again adjusted to 1M sucrose
and layered on the top of the 1.2M sucrose. HOMO-A buffer was applied on the
top of the gradient. After centrifugation for 2 h at 100,000g, synaptosomes were
collected at the 1M/1.2M interface, resuspended in HOMO-A buffer, pulled down
by centrifugation for 30min at 100,000g and resuspended in HOMO-A buffer.

Mice. Extraction of brain tissues from mice was approved by the Animal Care and
Ethics Committee of the University of New South Wales (permit 12/135B). Brain
tissues from one- to three-day-old wild-type C57BL/6J mice (Australian BioR-
esources (Moss Vale, NSW, Australia)) of either sex were used for cell culture
preparation. APP23 mice express human APP under control of the murine Thy1
promoter and were as described28. The breeding colony of APP23 mice was
maintained in the Biological Resources Center at the University of New South
Wales. Brain tissue from wild-type and APP23 transgenic littermates of different
ages (as indicated in the text) and either sex were used for biochemical
experiments.

Cultures of hippocampal and cortical neurons. Cultures of hippocampal and
cortical neurons were prepared as described27,44. Neurons were maintained in
Neurobasal A medium supplemented with 2% B-27, Glutamax and 2 ngml� 1

bFGF-2 (all reagents from Life Technology) on glass coverslips coated with poly-D-
lysine (100 mgml� 1, Sigma). When indicated neurons were treated for 24 h with
0.5 mM of Ab1–42 peptide (AbcamBiochemicals, Cambridge, UK) in the form of
Ab-derived diffusible ligand prepared as described previously13,47,48, and
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monoclonal antibodies against the extracellular domain of NCAM2 (2.5 mgml� 1;
R&D systems), or recombinant extracellular domains of NCAM2 (2.5 mgml� 1)
applied in the cell culture medium.

Immunofluorescence labelling of cultured neurons. Indirect immuno-
fluorescence labelling was performed essentially as described previously1. Unless
otherwise stated, all steps were performed at room temperature. Neurons on glass
coverslips were fixed in 4% formaldehyde in phosphate-buffered saline (PBS) for
15min, and then washed three times with PBS. We have shown previously that this
procedure does not affect the integrity of cell surface membranes1. To label cell
surface AMPA and NMDA receptors, neurons were then blocked in 1% BSA in
PBS for 20min. Antibodies against extracellular epitopes of GluR1 or NR1 (in 0.1%
BSA in PBS) were applied to fixed but non-permeabilized cells for 1 h and detected
with fluorochrome-coupled secondary antibodies applied for 45min. The neurons
were then post-fixed for 5min in 2% formaldehyde in PBS and washed three times
with PBS. To label other proteins indicated in the text, neurons were permeabilized
with 0.25% Triton X-100 in PBS for 5min, blocked with 1% BSA in PBS for 20min,
and incubated with respective primary antibodies applied in 0.1% BSA in PBS
overnight at 4 �C. Neurons were then washed in PBS and incubated with
corresponding fluorochrome-conjugated secondary antibodies applied for 45min
in 0.1% BSA in PBS at room temperature. When indicated, neurons were then co-
labelled with Alexa Fluor 546-coupled phalloidin (Life Technologies) applied for
30min in 0.1% BSA in PBS at room temperature. Cells were washed four times
with PBS and embedded in Aqua-Poly/Mount (Polysciences, Eppelheim,
Germany). Immunofluorescence images were acquired at room temperature using
a confocal laser scanning microscope C1si, NIS Elements software and oil Plan Apo
VC � 60 objective (numerical aperture 1.4), all from Nikon Corporation (Tokyo,
Japan). Numbers of synaptic and non-synaptic clusters of AMPA and NMDA
receptors were quantified in ImageJ (National Institutes of Health, USA). Clusters
were automatically outlined using a threshold function of ImageJ, and clusters in
which at least one pixel overlapped with a synaptophysin accumulation were
counted as synaptic. Length and area of dendrites were measured in ImageJ by
automatically outlining phalloidin-labelled dendrites using the threshold function
of ImageJ.

Immunofluorescence labelling of mouse brain slices. Immunofluoresecence
staining was done as previously described49. Briefly, 9-month-old male wild-type
and APP23 mice were anaesthetized and transcardially perfused with PBS followed
by 4% paraformaldehyde in PBS. Brains were extracted and fixed in 4%
paraformaldehyde/PBS overnight at 4 �C. Brains were then processed in a Excelsior
tissue processor (Thermo), embedded in paraffin, cut into 3-mm thick sections and
slide mounted. Sections were dewaxed, rehydrated to water and underwent heat-
mediated antigen retrieval with citrate buffer pH6.0 using a microwave vacuum
histoprocessor (Milestone). Nonspecific binding sites were blocked in a solution of
PBS with 3% normal horse serum and 2% BSA, and then incubated in a cocktail of
mouse monoclonal antibodies against Ab (1:100), goat polyclonal antibodies
against NCAM2 (1:50) and rabbit polyclonal antibodies against synaptophysin
(1:100) at 4 �C overnight. Sections were rinsed four times in PBS and incubated in a
cocktail of fluorescent secondary antibodies (donkey anti-mouse Cy5, donkey anti-
goat Alexa 555, donkey anti-rabbit Cy2, 1:250) and DAPI (1:3,000) at room
temperature for 1 h. Following incubation, sections were rinsed four times in PBS,
coverslipped with Prolong gold anti-fade reagent (Life Technologies) and sealed
with nail polish. Images were acquired using a confocal laser scanning microscope
C1si, NIS Elements software and oil Plan Apo � 10 (numerical aperture 1.4) and
Plan Apo VC � 60 objective (numerical aperture 1.4), all from Nikon Corporation
(Tokyo, Japan).

Proximity ligation assay. Proximity ligation experiments were performed
essentially as described previously44,50. Cultured neurons were fixed in 4%
formaldehyde in PBS, washed with PBS and blocked with 1% BSA in PBS for
20min. Antibodies against the extracellular domain of NCAM2 and Ab were
applied to the cells in 0.1% BSA in PBS overnight at 4 �C. Further steps were
performed using secondary antibodies conjugated with oligonucleotides (PLA
probes, Olink Bioscience, Uppsala, Sweden) and Duolink II fluorescence kit (Olink
Bioscience) in accordance with the manufacturer’s instructions. Fluorescence
images were acquired at room temperature using a confocal laser scanning
microscope Nikon C1si, NIS Elements software and oil Plan Apo VC � 60
objective (numerical aperture 1.4), all from Nikon Corporation (Tokyo, Japan).
Fluorescence intensities of PL products, and synaptophysin and Ab1-42 labelling
along neurites and in neurite-free areas were measured in ImageJ.

Co-immunoprecipitation. Samples containing 1mg of total protein were lysed
with lysis buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, 1mM Na4P2O7, 1mM
NaF, 2mM Na3VO4, 1% (v/v) Triton X-100, 1mM PMSF, EDTA-free protease
inhibitor cocktail (Roche)) for 1 h at room temperature. Lysates were centrifuged
for 15min at 20,000g at 4 �C. Supernatants were cleared with protein A/G-agarose
beads (Santa Cruz Biotechnology) for 3 h, and beads were removed by cen-
trifugation at 600g for 5min. The supernatant was incubated with the mouse
monoclonal antibodies against the extracellular domain of NCAM2 or non-

immune mouse IgG overnight, followed by precipitation with protein A/G-agarose
beads for 3 h. The beads were pelleted and washed four times with the lysis buffer
and three times with TBS. All steps were carried out at 4 �C. The proteins were
finally eluted from beads with 5� SDS sample buffer (310mM Tris-HCl, pH 6.8,
25% (v/v) glycerol, 10% (w/v) SDS, 4.5% (v/v) b-mercaptoethanol, 0.015% (w/v)
bromophenol blue) by incubating samples at 70 �C for 10min and analysed by
western blot. To eliminate detection of the bands corresponding to the light chains
of the immunoglobulins used for immunoprecipitation, biotin-coupled secondary
antibodies specific to Fc fragments of the primary antibodies (Sigma) were used.
Signals were developed using NeutrAvidin-HRP protein conjugate (Pierce).

Homogenates and synaptosomes from cultured neurons. Neurons maintained
in culture for 20 days and treated as indicated in the text were placed on ice and
washed two times with ice-cold PBS. Neurons were then scrapped in 200 ml of
HOMO-A buffer and homogenized using a Potter homogenizer. Synaptosomes
were prepared as described previously26,51. Briefly, the homogenate was centrifuged
for 10min at 700g. The supernatant was collected and centrifuged at 15,000g for
15min. The pellet was then resuspended in 5 volumes of 0.1M K2-tartrate (pH 7.3)
and centrifuged at 5,000g for 5min. The pellet collected, resuspended again in 5
volumes of 0.1M K2-tartrate (pH 7.3) and centrifuged at 5,000g for 5min. The
pellet containing synaptosomes was resuspended in HOMO-A buffer.

Analysis of proteolytic products of NCAM2 in culture medium. Media from
neurons maintained in culture for 20 days and treated as indicated was collected
and centrifuged at 200,000g for 1 h at 4 �C. The supernatant was then collected,
diluted with the same volume of 20% trichloroacetic acid, and incubated for 30min
on ice to precipitate proteins. Precipitates were washed twice with ice-cold acetone
and used for western blot analysis.

Enzyme-linked immunosorbent assay (ELISA). To immobilize recombinant
extracellular domains of NCAM2, the plastic surface of MaxiSorp 96-well plates
(Nunc, Roskilde, Denmark) was coated with antibodies against the extracellular
domain of NCAM2 (10 mg per well) applied overnight at 4 �C in PBS. Wells were
then washed three times with PBS containing 0.05% Tween 20, blocked with 1%
BSA in PBS for 1 h at room temperature, and incubated overnight at 4 �C with
recombinant extracellular domains of NCAM2 (25 nM) or BSA (25 nM) in PBS
containing 0.05% Tween 20 and 0.1% BSA. Wells were washed three times with
PBS containing 0.05% Tween 20 and incubated with different concentrations of
Ab1-42 (7.8–250 nM) diluted with 0.05% Tween 20 and 0.1% BSA. Wells were
washed three times with PBS containing 0.05% Tween 20. Ab1-42 bound to
NCAM2 was detected with antibodies against Ab1-42 followed by HRP-conjugated
secondary antibodies. Protein binding was visualized by detecting HRP with the
OPD reagent (Pierce, Rockford, IL, USA) that resulted in a coloured product. The
amount of coloured product was quantified using an ELISA reader at 406 nm.

Dynamic light scattering. Dynamic light scattering (DLS) measurements were
performed at room temperature using Zetasizer Nano ZS (Malvern, Malvern, UK)
in accordance with the manufacturer’s instructions.

Production of the extracellular domains of NCAM2. DNA coding for the
extracellular domain of mouse NCAM2 (amino acids 1–698) was amplified from
the mouse brain cDNA library using forward 50-CACCATGAGCCTCCTCCT
CTCCTTCTACC-30 and reverse 50-TTCGCTTCACAGCAATTATCTTTAATAA
TGTTGGGTTTT-30 primers, cloned into pEF5/FRT/V5 directional expression
vector (Life Technologies) and transfected into CHO cells (American Type Culture
Collection, CHO-K1, ATCC CCL-61). Cells stably transfected with the construct
were selected with Hygromycin B (Life Technology) and maintained in culture in
Ham’s F-12 culture medium (PAA Laboratories) with 5% foetal bovine serum (Life
Technologies). Cell culture media containing the extracelluar domain of NCAM2
secreted by the cells was collected and centrifuged for 15min at 5,000g at 4 �C to
remove cell debris. The protein was concentrated with 40% ammonia sulphate,
desalted and purified using a continuous-elution electrophoresis cell (Model 491
Prep Cell, Bio-Rad) according to the manufacturer’s instructions. The purity of the
protein was controlled by SDS–PAGE electrophoresis with subsequent silver
staining and western blot analysis.

Peptide cleavage assay. Hippocampal tissue or synaptosomes containing 1mg of
total protein were lysed with lysis buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl,
1mM Na4P2O7, 1mM NaF, 1% (v/v) Triton X-100, protease inhibitor cocktail (set
III, Merck)) for 30min at room temperature. Lysates were centrifuged for 15min at
20,000g at 4 �C. Peptides corresponding to amino acids 682–701 (NCAM2aa682-
701) and 666-685 (NCAM2aa666-685) of human NCAM2, and mutated NCA-
M2aa682-701 peptides with aspartic acid 693 exchanged to alanine or asparagine
689 exchanged to alanine were purchased from Peptide 2.0 (Chantilly, VA, USA).
The peptides contained FITC and biotin at the N- and C-termini, respectively.
Peptides (250 ngml� 1 final concentration) were mixed with lysates of hippo-
campal tissue or synaptosomes (20 mg of total protein in 1ml of TBS) and
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incubated for 1 h at room temperature. Non-cleaved peptides and biotin-con-
taining fragments of cleaved peptide were removed by incubating lysates with
hydrophilic streptavidin magnetic beads (New England BioLabs) for 1 h at room
temperature. Fluorescence of FITC groups attached to fragments of cleaved pep-
tides remaining in the solution was measured using POLARstar Omega plate
reader (BMG Labtech).

Transfection of neurons. The NCAM2 miR expression vector was developed
using the BLOCK-iT PolII miR RNAi expression vector kit (Life Technologies) and
designed to co-express NCAM2-specific miRNA together with emerald GFP. The
following oligonucleotides were inserted into the BLOCK-iT PolII miR RNAi
expression vector:

top: 50-TGC TGT TAA GGT CAT CTC TTC TCC TCG TTT TGG CCA CTG
ACT GAC GAG GAG AAG ATG ACC TTA A-30 ;

bottom: 50-CCT GTT AAG GTC ATC TTC TCC TCG TCA GTC AGT GGC
CAA AAC GAG GAG AAG AGA TGA CCT TAA C-30 .

Negative control miR vector was from Life Technologies. Immunocytochemical
labelling confirmed that transfection with the NCAM2 miR vector resulted in an
over 80% reduction in expression of NCAM2 in cultured hippocampal neurons at
24 h after transfection (Supplementary Fig. 5).

DNA coding for the full-length transmembrane human NCAM2 and NCAM2
with aspartic acid 693 exchanged to alanine (NCAM2D693A mutant) was
synthesized using the GeneArt Gene Synthesis service (Life Technologies) and
subcloned into the pcDNA3 vector. Both constructs contained an HA tag inserted
at the N-terminus of the protein. The expression of both constructs was confirmed
by western blot and immunocytochemistry (Supplementary Fig. 2).

Hippocampal neurons were transfected before plating by electroporation using
the Neon transfection system (Life Technologies).
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