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Early Pliocene onset of modern Nordic Seas
circulation related to ocean gateway changes
Stijn De Schepper1,2, Michael Schreck3,4, Kristina Marie Beck2, Jens Matthiessen4, Kirsten Fahl4

& Gunn Mangerud2

The globally warm climate of the early Pliocene gradually cooled from 4 million years ago,

synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceano-

graphic records indicate that the Nordic Seas cooled during the earliest Pliocene, before

global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas

cooling has limited our understanding of the governing mechanisms. Here, using marine

palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic

migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the

development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes

global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait

and Central American Seaway triggered the development of a modern circulation in the

Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for

more widespread Greenland glaciation in the late Pliocene.
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T
he early Pliocene (5–4 million years ago, Ma) is
characterized by globally warmer sea surface temperatures
and a reduced meridional temperature gradient compared

with the present1–3 at atmospheric carbon dioxide concentrations
of B400 p.p.m.4. Following the ‘early Pliocene climatic optimum’
(4.4–4.0Ma), atmospheric carbon dioxide concentrations
decrease4 and a cooling is observed in sea surface temperature
records from around the globe2. Local cooling of the seas around
Iceland occurred earlier in the early Pliocene, together with5 or even
before6 the first arrival of cool-water Pacific mollusks in Iceland.
The arrival of cool-water Pacific mollusks7, which was recently
re-dated to around 4.5Ma (ref. 8), has been linked to inflow of
Pacific waters into the Nordic Seas via the Bering Strait7–9.

Today, water flows from the Pacific through the narrow and
shallow (B50m) Bering Strait into the Arctic and North Atlantic,
influencing meridional overturning circulation strength and global
climate10. The first inflow of Pacific water into the Arctic and
Atlantic oceans has been determined based on the first occurrence
of cool-water Pacific marine invertebrates (mollusks, gastropods) in
4.5-Myr-old sediments of the Tjörnes section in Iceland8,11. The
implied northern migration pathway for these cool-water organisms
is more plausible than a tropical pathway via the Central American
Seaway. Although deep-water exchange across the Central
American Seaway likely halted in the late Miocene12–14, a further
shoaling phase in the early Pliocene has been interpreted between
B4.8 and 4.2Ma (refs 15,16). Proxy data and modelling
experiments suggest that the shoaling led to increased North
Atlantic meridional overturning circulation16, a Nordic Seas
circulation with a stronger Norwegian Atlantic Current and a
cooler and fresher East Greenland Current17, but also the onset of
northward flow through the Bering Strait into the Arctic18,19.

As the connection between the North Atlantic and Arctic
Ocean, and a region of North Atlantic Deep Water formation, the
Nordic Seas are an integral part of the Atlantic meridional
overturning circulation20. The modern Nordic Seas can be
divided into a polar, Arctic and Atlantic domain21 based on
different surface water masses and the position of the polar and
Arctic front (Fig. 1). The strong east–west sea surface temperature
and salinity gradient is caused by inflow of relatively warm saline
Atlantic water in the southeast, continuing as the Norwegian
Atlantic Current towards the Arctic Ocean, and by export of cool,
fresher Arctic water via the East Greenland Current in the west22.
This Nordic Seas circulation was hypothesized to be initiated in
the early Pliocene as a consequence of Central American Seaway
closure17, but a precise timing, encompassing mechanism and
conclusive data from the Nordic Seas remained elusive.

Here, using new marine palynological data (palynomorphs
including dinoflagellate cysts and acritarchs) from Norwegian Sea
Ocean Drilling Program (ODP) Hole 642B and an existing record
from Iceland Sea ODP Hole 907A (ref. 23), we demonstrate that
the Nordic Seas cooled and a zonal sea surface temperature
gradient developed around 4.5Ma, preceding the global climate
cooling and atmospheric carbon dioxide decline from 4.0Ma. We
link this change in surface ocean conditions to inflow of fresher,
cooler Pacific water via the Bering Strait into the Nordic Seas
along the East Greenland Current pathway around 4.5Ma.

Results
Marine palynology at Norwegian Sea ODP Hole 642B. In the
early Pliocene, between 5.0 and 4.5Ma, the palynological
assemblages indicate an outer shelf environment influenced by
warm, temperate waters. The dinoflagellate cyst assemblage
contains the typical early Pliocene dinoflagellate cyst
taxa Batiacasphaera micropapillata complex, Corrudinium
devernaliae, Operculodinium tegillatum, Pyxidinopsis vesiculata
and Reticulatosphaera actinocoronata (Fig. 2; Supplementary

Data 1). The dominant dinoflagellate cyst taxa B. micropapillata
complex (3–43%), Spiniferites/Achomosphaera spp. (5–42%),
Protoperidinioids (6–54%) and occasionally Nematosphaeropsis
labyrinthus (2–29%) indicate an outer shelf, consistent with the
location of ODP Hole 642B on the Vøring Plateau. The acritarch
assemblage is dominated by Cymatiosphaera? invaginata, and
occasionally by Lavradosphaera crista and Cyst type I of de
Vernal and Mudie (1989). The high acritarch (51,388±14,187
acritarchs per g sediment) and dinoflagellate cyst (32,993±9,140
cysts per g sediment) concentrations, and the presence, but not
dominance, of several oceanic genera (for example, Impagidi-
nium, Invertocysta) are consistent with a nutrient-rich outer shelf
environment. Both dinoflagellate cysts with a modern (sub)-
tropical distribution (for example, Melitasphaeridium choano-
phorum, Tuberculodinium vancampoae) and with a cool-water
affinity (for example, Filisphaera filifera) occur in this interval.
The high Warm/Cold index (W/C index, see Methods), due to
the higher number of warm-water taxa (mainly Operculodinium
israelianum, Operculodinium? eirikianum, O. tegillatum and
M. choanophorum), indicates warm temperate conditions. A brief
cooling can be interpreted from the W/C index around 4.9–
4.8Ma (Fig. 3; Supplementary Data 1), due to an increase of the
cool-water species F. filifera.

After 4.5Ma, the palynological assemblages indicate an
outer shelf environment influenced by cooler waters compared
with the interval 5.0–4.5Ma. The typical early Pliocene marker
taxa B. micropapillata complex, C. devernaliae, O. tegillatum,
P. vesiculata, R. actinocoronata and the acritarch Cyst type I of de
Vernal and Mudie (1989) disappeared around 4.5Ma (Fig. 2;
Supplementary Data 1). The dominant taxa are cysts of
Protoceratium reticulatum (5–45%), Spiniferites/Achomosphaera
spp. (14–23%), N. labyrinthus (5–12%) and F. filifera (0–13%).
The previously abundant Protoperidinioids decrease to less than
5% of the total assemblage, indicating reduced nutrient
availability. Palynomorph concentrations drop considerably
to 8,684±1,361 dinoflagellate cysts per g sediment and
22,803±3,148 acritarchs per g sediment. Such concentrations,
the abundant Spiniferites/Achomosphaera spp. (14–21%) and
dominant cysts of P. reticulatum (29–45%), which are known to
be abundant around shelf edge environments24, are consistent
with an outer shelf environment. The occurrence of several
oceanic taxa (for example, Impagidinium) indicates influence of
open-ocean waters. Cysts of P. reticulatum, an indicator for
inflow of warm North Atlantic waters into the Pliocene Nordic
Seas25,26, are present in the record since 4.5Ma and become
dominant from 4.23Ma. The (sub)tropical and thermophilic
dinoflagellate cysts Lingulodinium machaerophorum,
M. choanophorum, Dapsilidinium pseudocolligerum and
O.? eirikianum further confirm that warm Atlantic water
influenced the Norwegian Sea. However, increasing numbers of
cool-water taxa F. filifera and Impagidinium pallidum and a
decrease of warm-water taxa (for example, O.? eirikianum, O.
tegillatum and O. israelianum) results in a drop in the W/C index
and thus a cooling relative to the period between 5.0 and 4.5Ma.

Marine palynology at Iceland Sea ODP Hole 907A. In the early
Pliocene between 5.0 and 4.5Ma, the palynological assemblages
indicate an open-ocean environment, with input from the shelf,
influenced by temperate waters. Comparable to the Norwegian
Sea, the same early Pliocene marker species such as O. tegillatum,
O.? eirikianum, B. micropapillata complex and R. actinocoronata
occur in ODP Hole 907A (Fig. 2; Supplementary Data 2). The
dinoflagellate cyst assemblage is dominated by N. labyrinthus
(0–65%), and occasionally B. micropapillata complex (0–47%),
Spiniferites elongatus (1–50%) and Spiniferites spp. (0–12%).
Protoperidinioids (2–15%) are common to abundant throughout

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9659

2 NATURE COMMUNICATIONS | 6:8659 |DOI: 10.1038/ncomms9659 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the interval. Acritarchs are also abundant and dominated by
C.? invaginata and L. crista, the same taxa as in the Norwegian Sea.
Together this suggests an open-ocean environment, with
occasional influx from the outer shelf (Spiniferites spp.).
This interval also records the highest concentrations of the
entire studied interval, with dinoflagellate cyst concentrations
of 9,073±1,308 cysts per g sediment, and acritarch concentrations
of 6,199±958 acritarchs per g sediment. In general, the assemblage
composition at ODP Hole 907A is comparable to ODP Hole 642B,
but the more oceanic species N. labyrinthus is dominant and
dinoflagellate cyst concentrations are lower. This is consistent with
the more open-ocean setting of ODP Hole 907A compared with the
outer shelf environment at the Vøring Plateau ODP Hole 642B. The
co-occurrence throughout the interval of dinoflagellate cysts with a
warm-water affinity such as Impagidinium aculeatum, Invertocysta
lacrymosa,M. choanophorum, O. israelianum, O. tegillatum and O.?
eirikianum and the cool-tolerant taxa S. elongatus (common to
dominant) and I. pallidum (rare to common) indicates temperate
conditions in the Iceland Sea and inflow of warm Atlantic water
(see Supplementary Note 1).

After 4.5Ma, the palynological record indicates an open-ocean
environment, with cool-water conditions between 4.5 and
4.26Ma and followed by a long barren interval until 2.6Ma
(with a few exceptions, see Supplementary Note 2), indicating
harsh conditions for dinoflagellate cysts and acritarchs.
The Pliocene marker species, including the warm-water species
O.? eirikianum, and Protoperidiniods disappear between 4.5 and
4.4Ma, but dinoflagellate cysts remain present until 4.26Ma
(Fig. 2; Supplementary Data 2). Nevertheless, dinoflagellate cyst
and acritarch concentrations decrease considerably after 4.5Ma

leading to a total crash at 4.14Ma, when the assemblage becomes
taxonomically depleted. In contrast to the transition towards an
assemblage dominated by cysts of P. reticulatum observed in
ODP Hole 642B, the impoverished assemblage in ODP Hole
907A between 4.5 and 4.26Ma remains dominated by the
oceanic species N. labyrinthus, and occasionally Impagidinium
cf. pacificum and I. pallidum. This indicates an open-ocean
environment, with little or no influence from the shelf,
and cool-water conditions. Warm-water taxa (for example,
O.? eirikianum) that were recorded previously at this site are
almost entirely absent after 4.45Ma. From 4.26 to 2.6Ma, ODP
Hole 907A is characterized by a long interval of nearly barren
palynological samples containing less than 10 cysts counted per
sample and concentrations below 60 cysts per g sediment. The
absence of cysts of P. reticulatum and thermophilic taxa, which
respectively thrive and persist in the Norwegian Sea, indicates
that warm Atlantic water did not influence the Iceland Sea.

Iceland Sea ODP Hole 907A alkenone sea surface temperatures.
Our low-resolution sea surface temperature reconstruction for
Iceland Sea ODP Hole 907A based on the alkenone unsaturation
index (Uk

0

37) indicates considerably higher annual sea surface
temperatures in the early Pliocene compared with present (Fig. 3;
Supplementary Table 1). At 4.5Ma, a persistent cooling can be
observed followed by a further cooling after 4Ma, yet at all time
remaining warmer than present.

Discussion
If the late Miocene to earliest Pliocene (44.5Ma) Nordic Seas
circulation were the same as today, a clear contrast between the
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warm Atlantic-influenced Norwegian Sea and the cool Arctic-
influenced Iceland Sea should be visible in the palynological
record. In contrast, our early Pliocene (5.0–4.5Ma) dinoflagellate
cyst records show that only a weak-to-absent zonal sea surface
temperature gradient existed between the Norwegian and Iceland
seas, and second, that the surface water evolution in both seas is
coupled and influenced by Atlantic water. Notwithstanding some
differences due to the different environment at both studied sites,
the earliest Pliocene records from the Norwegian Sea and Iceland
Sea23 are very comparable before 4.5Ma: at both sites the same
early Pliocene markers and abundant taxa (Batiacasphaera,
N. labyrinthus, O. tegillatum and Spiniferites) occur and
palynomorph concentrations reach the highest values for the
late Miocene to late Pliocene interval (Fig. 2). The dinoflagellate
cyst assemblages indicate warm temperate conditions in the
Norwegian Sea and temperate conditions in the Iceland Sea,
implying that a strong, modern zonal surface temperature
gradient was absent (Fig. 3). The presence of (sub)tropical
dinoflagellate cysts (for example, L. machaerophorum,
M. choanophorum and T. vancampoae) in both the Norwegian
Sea and Iceland Sea indicate that warm Atlantic water influenced
the entire Nordic Seas. Furthermore, ostracod5, mollusk7,27

and dinoflagellate cyst28 assemblages as well as mollusk d18O
palaeotemperature reconstructions6 from the shallow marine
Tjörnes Beds in northeastern Iceland indicate warm conditions at
that time (Fig. 3). Also our low-resolution alkenone sea surface

temperature record from the Iceland Sea indicates warm surface
water conditions before 4.5Ma and a variability that is largely
comparable to the Norwegian Sea W/C index (Fig. 3;
Supplementary Note 3). This suggests a coupling of the
temperature and surface water masses evolution in the
Norwegian Sea and Iceland Sea between 5.0 and 4.5Ma (Fig. 4).

The Norwegian Sea and Iceland Sea temperature evolution
becomes uncoupled after 4.5Ma and the Atlantic water influence
weakened in the Iceland Sea, which became gradually more
influenced by cool, fresh water from the East Greenland Current.
Around 4.5Ma, the Norwegian Sea and Iceland Sea dinoflagellate
cyst assemblage underwent a major turnover (Fig. 2;
Supplementary Table 2), which we interpret as a cooling followed
by the development towards the modern circulation in the Nordic
Seas. In Norwegian Sea ODP Hole 642B, this turnover is
expressed in a cluster of extinction events, a decrease in the
W/C index and a shift from assemblages with an important
heterotrophic component (Barssidinium, Brigantedinium,
Selenopemphix, round brown cysts) to assemblages dominated
by cysts of P. reticulatum (Fig. 2). The distribution of the cysts of
P. reticulatum in recent sediments closely matches the Gulf
Stream and North Atlantic Drift in the North Atlantic29 and the
Norwegian Atlantic Current in the Nordic Seas30. In Pliocene
records, the dominant presence of this species has been
interpreted as evidence for the North Atlantic Current in the
eastern North Atlantic31 and inflow of North Atlantic water into
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the Nordic Seas25. Its appearance in Norwegian Sea ODP Hole
642B after 4.5Ma onwards is consistent with the first
establishment of a more modern-like Norwegian Atlantic
Current. A reduction of warm-water species and increase of
cooler-water species (for example, Habibacysta tectata and
F. filifera) after 4.5Ma is reflected in a decreasing W/C index,
demonstrating a significant early Pliocene cooling (Fig. 3).
Nevertheless, (sub)tropical and thermophilic species such as
O.? eirikianum, M. choanophorum and D. pseudocolligerum
continue to be present, suggesting that warmer-than-present sea
surface conditions persisted in the Norwegian Sea.

In contrast, cysts of P. reticulatum were never recorded in the
Iceland Sea, and M. choanophorum and O.? eirikianum disappear
at 4.5Ma, indicating substantial cooling and waning of an
Atlantic water influence there. In fact, the palynomorph
assemblages and alkenone record in ODP Hole 907A provide
evidence that a cool Arctic domain and proto-East Greenland
Current were established after 4.5Ma, when the early Pliocene

productive interval is abruptly halted and followed by a long
barren interval. At 4.5Ma, the same dinoflagellate cyst species as
in the Norwegian Sea go extinct, palynomorph concentrations
and productivity decrease and heterotrophic species disappear
(Fig. 2). This turnover and the following barren interval have
been attributed to decreasing sea surface temperatures and
salinity changes due to arrival of cool, fresh waters of a proto-East
Greenland Current at the site23. A cooling of the Iceland Sea after
4.5Ma is evident in our low-resolution ODP Hole 907A alkenone
sea surface temperature record, as well as in ostracod and
mollusk-isotope palaeotemperature reconstructions from the
Tjörnes Beds5,6 (Fig. 3). The further cooling of sea surface
temperatures in the Iceland Sea and expansion of a sea-ice cover
from the Central Arctic Ocean to the marginal eastern Arctic32

after 4.0Ma provide evidence for increasingly cool and fresh
water transport via the East Greenland Current. The
contemporaneous onset of biogenic opal accumulation at ODP
Site 646 in the Labrador Sea was similarly linked to sea-ice-edge
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diatom production and significant surface water cooling due to
export of polar water17. But probably the best evidence for Pacific
cool-water inflow into the Nordic Seas around 4.5Ma is the first
occurrence of cool-water Pacific mollusks (for example, Mya
arenaria Linnaeus, Macoma obliqua Sowerby) in sediments of
the Tjörnes section in Iceland and even in the North Sea Basin
(see Supplementary Table 3).

The cooling and freshening of the East Greenland Current and
development of an Arctic domain in the Nordic Seas can be
directly tied to the inflow of fresher Pacific water via the Bering
Strait (Fig. 4). First, for Pacific mollusks to have arrived in the
North Atlantic realm around 4.5Ma, the Arctic Ocean must have
been (seasonally) sea-ice free and Nordic Seas surface water
temperatures must have decreased to subarctic values. Before
4Ma, the seas along the Arctic Ocean margins were perennially
ice-free32, and from 4.5Ma Nordic Seas surface water
temperatures dropped considerably. This is evidenced in the
palynomorph assemblage turnover at both the studied sites, the
decrease in the W/C index at ODP Hole 642B, the cooling
recorded in the Iceland Sea alkenone record, palaeotemperature
reconstructions at the Tjörnes Beds5,6 and invasion of cool-water
mollusks (Fig. 3). Second, and maybe most importantly, for
Pacific mollusks to have arrived in the Tjörnes section around
4.5Ma, crucially the Pacific–Arctic–Atlantic gateways must have
been open. One of the hypotheses explaining the strongly
asymmetric trans-Arctic interchange of marine invertebrates—
Pacific invaders outnumber those from the Arctic–Atlantic by a
ratio of 8:1—is a dominantly northward flow of Pacific water
through an open Bering Strait into the Arctic and eventually
Nordic Seas7,33. The condition of open gateways was established
by the late Miocene, when the Fram Strait was open for deep-
water exchange26 and also the Bering Strait was open by
5.5–5.4Ma (refs 34,35), possibly as early as 7.4–7.3Ma (ref. 36).
The Bering Strait and Fram Strait were then the only high-

latitude connections between the Atlantic and Pacific, since the
Canadian Arctic Archipelago was closed and Barents Sea
subaerially exposed37. Our data are consistent with northward
flow of cool, fresh Pacific water through the Bering Strait
continuing via the Arctic into the Nordic Seas along the East
Greenland Current pathway. In the tropics, deep-water exchange
across the Central American Seaway was likely halted by the
late Miocene12–14, but shallow exchange became gradually
more restricted between 4.8–4.2Ma (refs 15,16). Such exchange
persisted until B2.5Ma (ref. 12), possibly via transient channels
west of the Panama Canal Basin14, allowing an active North
Atlantic meridional overturning circulation. Early Pliocene
Central American Seaway shoaling has been linked mainly to
changes in the North Atlantic surface and deep circulation12,15–17,
but it may also have led to Pacific-to-Atlantic flow through the
Bering Strait9 via an increased North Pacific sea level relative to the
North Atlantic18,19. Today, water flow through the open Bering
Strait is mainly from the Pacific to the Arctic and is sustained by a
sea-level difference and salinity contrast between both basins38.
Therefore, supported by a contemporaneous timing of the changes
at the Pacific–Atlantic gateways and the development towards a
proto-East Greenland Current and Norwegian Atlantic Current
after 4.5Ma, there thus is a link between northward flow through
the Bering Strait—itself probably due to Central American Seaway
shoaling—and the development of the modern Nordic Seas
circulation. It is important to note that the flow through the
Bering Strait may have had a more direct impact on Nordic Seas
circulation, deep-water formation and global climate than
previously believed.

The dinoflagellate cysts that disappear from the Nordic Seas
around 4.5Ma only go extinct in the North Atlantic after B4Ma,
indicating a 500-kyr delay (Fig. 2). The North Atlantic extinctions
are coeval with a decreasing global sea surface temperature2,
implying that the development of the zonal sea surface
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temperature gradient in the Nordic Seas around 4.5Ma predates
the early Pliocene global cooling. Therefore, the fundamental
oceanographic change in the Nordic Seas was not caused by
global climate evolution2, but is more likely attributable to
changes in Pacific–Atlantic oceanic gateway configurations.

It is interesting that North Atlantic surface waters cooled from
4Ma onwards, whereas changes in Nordic Seas circulation and
North Atlantic deep-water circulation are apparent 500-kyrs
earlier (Figs 2 and 3). In the early Pliocene northeast Atlantic, a
major unconformity was related to changed deep-ocean circula-
tion39. At the Eirik Drift, an excellent recorder of deep-water
currents originating from overflows from Nordic Sea Deep Water
formation regions, an erosional unconformity and a high-
amplitude reflector have been identified at 4.5Ma (ref. 40). This
reflector indicates the influence of a strong deep current likely due
to circulation changes and enhanced deep-water formation in the
Nordic Seas. Indeed, the Denmark Strait overflow increased
around that time17, possibly aided by regional subsidence,
with sustained production of Northern Component Water
thereafter41. On the Gloria Drift, sediment accumulation started
at 4.5Ma, and several North Atlantic sediment drifts reveal
overall highest apparent sedimentation rates in the early
Pliocene42, indicating a major change towards a bottom-
current-dominated regime. The early Pliocene change in North
Atlantic deep-water circulation is simultaneous with development
of the modern Nordic Seas circulation at 4.5Ma underlining the
importance of Pacific water flow into the Atlantic via the Bering
Strait on the thermohaline circulation.

In summary, a modern Nordic Seas circulation with a strong
east–west surface water temperature gradient developed since
4.5Ma as a result of contemporaneous gateway reconfigurations
in the Central American Seaway and Bering Strait. The flow of
Pacific waters through the Bering Strait had a direct effect on
Nordic Seas circulation, but may ultimately be caused by impeded
flow through the Central American Seaway and consequent
buildup of a Pacific–Atlantic salinity and sea-level gradient. The
Pacific-to-Atlantic flow via the Bering Strait cooled and freshened
the East Greenland Current, in fact establishing an Arctic domain
in the Nordic Seas and isolating Greenland from warm Atlantic
waters of the Norwegian Atlantic Current. This was an important
precondition for more widespread glaciation on Greenland that
remained restricted in the early Pliocene43, but gradually
increased following regional circum-Arctic uplift around 4.0Ma
(ref. 26) and late Pliocene decreasing atmospheric carbon dioxide
concentrations4. Establishment of a modern Nordic Seas
circulation pattern also intensified North Atlantic Deep Water
formation, making the region a fundamental part of the Atlantic
meridional overturning circulation and a key region in global
climate variability since the early Pliocene.

Methods
Marine palynology. We investigated the dinoflagellate cysts and acritarchs of
40 samples across the time interval between 5.8 and 3.0Ma (94.95–64.54mbsf) at
Vøring Plateau ODP Hole 642B (67�13.50N, 2�55.70E; water depth 1,268m; Fig. 1).
The samples were prepared using a standard palynological maceration procedure,
which included weighing dried sediment, adding one Lycopodium clavatum
tablet (batch #483216), digestion cycles in cold HF and cold HCl, no oxidation,
occasional mild ultrasonic treatment and sieving at 10 mm before mounting the
residue on microscope slides. Slides were then counted using a light microscope at
� 400 magnification along non-overlapping traverses until at least 250 specimens
were counted, or until the slide was completely scanned.

The total error on the palynomorph concentration is calculated following the
method outlined in ref. 44: total error e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22 þ e32

p
with e1¼ error on

number of spores in L. clavatum marker tablets, e2¼ error on number of
dinoflagellate cysts counted and e3¼ error on number of L. clavatum markers
counted.

The Warm/Cold (W/C) index is calculated based on the dinoflagellate cyst
occurrences according to the formula W/C¼ nW/(nWþ nC), with n¼ number of
specimens counted, W¼warm-water species, C¼ cold-water species. The

ecological preference of each species included in the index was considered
in relation to their distribution in the modern oceans45,46 and in Pliocene
deposits47–50. This resulted in using the following species as warm-water species:
Achomosphaera andalousiensis subsp. suttonensis, D. pseudocolligerum,
Hystrichokolpoma rigaudiae, I. aculeatum, I. paradoxum, I. patulum, I. solidum,
I. lacrymosa, I. tabulata, L. machaerophorum, M. choanophorum, O.? eirikianum,
O. centrocarpum s.s./O. israelianum, O. tegillatum, S. mirabilis/hyperacanthus,
Tectatodinium pellitum and Tubercoludinium vancampoae. The cool-water species
were: Bitectatodinium tepikiense, F. filifera, H. tectata, I. pallidum and S. elongatus.
A reliable W/C index could not be calculated for ODP Hole 907A over the entire
studied interval, because the total dinoflagellate cyst count was often lower than
100 cysts per sample in the Pliocene and/or the sum of cold and warm specimens
was lower than 10.

A full authorial citation of the dinoflagellate cyst species mentioned in the text
and figures is given in the Supplementary Note 4.

All raw data from ODP Hole 642B is available at doi: 10.1594/
PANGAEA.846838; data from ODP Hole 907A (69�15.00N, 12�41.90W;
water depth 2,036m; Fig. 1) is available at doi:10.1594/PANGAEA.807163.
Summarized data is presented in Supplementary Data 1 and 2.

Biomarker analyses. For alkenone analyses, freeze-dried and homogenized
sediments (2 to 4 g) were extracted with an Accelerated Solvent Extractor
(DIONEX, ASE 200; 100 �C, 1,000 psi, 5min) using dichloromethane and metha-
nol (99:1, v/v) as solvent. The separation of compounds was carried out
by open-column chromatography (SiO2) using n-hexane and dichloromethane
(1:1, v/v), and dichloromethane. The composition of alkenones was analysed with
an Agilent gas chromatograph (7890, column 60m� 0.32mm; film thickness
0.25 mm; liquid phase: DB1-MS) using a temperature program as follows: 60 �C
(3min), 150 �C (rate: 20 �Cmin� 1), 320 �C (rate: 6 �Cmin� 1) and 320 �C (40min
isothermal). For splitless injection, a cold injection system was used (60 �C (6 s),
340 �C (rate: 12 �C s� 1), 340 �C (1min, isothermal)). Helium was used as carrier
gas (1.2mlmin� 1). Individual alkenone (C37:3, C37:2) identification is based on
retention time and the comparison with an external standard.

The alkenone unsaturation index (Uk
0

37) as proxy for mean annual sea surface
temperature (�C) was calculated following ref. 51, based on a global core-top
calibration (60�N–60�S): Uk

0

37 ¼ 0:033�T (�C)þ 0.044. The s.e. of the calibration
is reported as ±0.050 Uk

0

37 units or ±1.5 �C. The instrument stability was
continuously controlled by re-runs of an external alkenone standard (extracted
from Emiliania huxleyi cultures with known growth temperature) during the
analytical sequences. The range of the total analytical error calculated by replicate
analyses is less than 0.4 �C. The data are presented in Supplementary Table 1 and
are available from doi:10.1594/PANGAEA.848671.

Age models. Tie points used to construct the age model of ODP Holes 642B,
646B, 907A and Deep Sea Drilling Project (DSDP) Holes 603C, 610A are presented
in the Supplementary Tables 4–8.
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