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Identification of candidate genes for prostate
cancer-risk SNPs utilizing a normal prostate
tissue eQTL data set
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M.C. Larson2, Z. Fogarty2, Y. Zhang3, N. Larson2, A. Nair2, D. O’Brien2, L. Wang4 & D.J. Schaid2

Multiple studies have identified loci associated with the risk of developing prostate cancer but

the associated genes are not well studied. Here we create a normal prostate tissue-specific

eQTL data set and apply this data set to previously identified prostate cancer (PrCa)-risk

SNPs in an effort to identify candidate target genes. The eQTL data set is constructed by the

genotyping and RNA sequencing of 471 samples. We focus on 146 PrCa-risk SNPs, including

all SNPs in linkage disequilibrium with each risk SNP, resulting in 100 unique risk intervals. We

analyse cis-acting associations where the transcript is located within 2Mb (±1Mb) of the

risk SNP interval. Of all SNP–gene combinations tested, 41.7% of SNPs demonstrate a

significant eQTL signal after adjustment for sample histology and 14 expression principal

component covariates. Of the 100 PrCa-risk intervals, 51 have a significant eQTL signal and

these are associated with 88 genes. This study provides a rich resource to study biological

mechanisms underlying genetic risk to PrCa.
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F
or US men, prostate cancer (PrCa) is the most frequent of all
cancers (220,800 newly diagnosed cases annually) and the
second most frequent for deaths due to cancer (27,540

deaths annually)1. Although the causes of the variation of PrCa
incidence are likely to involve differences in screening methods,
diet and health-related behaviours, clinical practice patterns
and environmental risk factors, there is a large body of literature
that also strongly implicates a genetic aetiology. This evidence
comes from a variety of study designs, including case–control,
cohort, twin and family-based studies2,3. Both linkage- and
association-based strategies have been used to help identify
candidate susceptibility loci for PrCa3,4. Multiple genome-wide
association studies (GWAS) have now been performed5–14

yielding numerous single-nucleotide polymorphisms (SNPs)
with an increased risk for PrCa. Importantly, a significant
number of these have subsequently been validated in
well-powered case–control studies7,11,13.

Despite the exceptional progress made for PrCa association-
based studies, we are faced with the tremendous challenge of how
to interpret these emerging results. There remains a substantial
gap between disease–SNP associations derived from GWAS and
an understanding of how these risk SNPs contribute to disease.
Thus far, the functional role for the majority of risk SNPs for
PrCa has not been determined, including knowledge of the target
gene. As these risk SNPs have been found in non-coding regions
of the genome, with many residing at some distance from any
nearby annotated gene, it is believed that many of these (or their
closely linked causal SNPs) are located in regulatory domains of
the genome that control gene expression rather than in coding
regions that directly affect protein function15. Thus, the results of
GWAS performed for PrCa present with several key problems
including: (1) the target gene for the risk SNP (or causal SNP)
is most often unknown; (2) the causal SNP is unknown (most
likely in linkage disequilibrium (LD) with the measured risk
SNP); and (3) the functional consequence of the causal SNP is
unknown.

A frequently used strategy to address these problems involves
the use of gene expression16. There is a great deal of evidence
indicating that regulatory SNPs are widespread in the
human genome and genetic variations contribute appreciably to
differences in gene expression phenotypes17–19. Loci that control
the expression level of individual mRNA transcripts, referred to
as expression quantitative trait loci (eQTL), can be globally
identified by comparing genome-wide SNP and genome-wide
mRNA expression on a common set of samples. These eQTLs
may exist either in cis (cis-eQTL), probably owing to regulatory
sequence polymorphisms, or in trans (trans-eQTL), presumably
representing polymorphisms in transcription factors, miRNAs or
pathways that ultimately lead to transcriptional control of a given
gene. Publically available eQTL data sets are available, but most of
these utilize lymphoblastoid cell lines. Thus, tissue-specific signals
may be overlooked. Realizing the importance of eQTL, NIH
(National Institutes of Health) established the Genotype Tissue
Expression Project (GTEx)20,21. The goal of GTEx is to unravel
the complex patterns of genetic variation and gene expression
across diverse human tissue types20,21. However, large-scale
prostate-specific eQTL data sets are not yet available.

In this study, we established and utilized a normal prostate
tissue-specific eQTL data set to specifically target and analyse the
association of previously reported PrCa-risk SNPs and their
neighbouring SNPs with gene expression levels. Our goal was to
identify candidate target genes for each of the PrCa-risk SNPs and
to fine map the eQTL signal with a dense set of SNPs for each of
the target genes identified. Of the 100 PrCa-risk intervals studied,
51 demonstrated a significant eQTL signal and these are
associated with 88 genes.

Results
PrCa-risk SNP-based eQTL. Our primary analysis focused
on identifying cis-eQTLs for 146 reported PrCa-risk SNPs
(Supplementary Data 1), including all observed and high-quality
imputed SNPs in LD with each risk SNP (r240.5), resulting in a
total of 6,324 risk and LD-SNPs to be evaluated in 100 unique risk
intervals (several of the risk SNPs were in close proximity to each
other and were combined in a single risk interval) (Fig. 1). The
risk SNPs and the number of SNPs evaluated for each of the risk
intervals is provided in Supplementary Data 2.

A total of 3,229 gene transcripts surrounding the risk-SNP
intervals were identified. Of these, 885 were not evaluated due to
low expression, leaving 2,344 for further analysis. Some gene
transcripts fell within 2Mb of multiple risk-SNP intervals
resulting in 2,008 unique gene transcripts (Fig. 1). The number
of genes localized to each risk-SNP interval is provided in
Supplementary Data 2, while the expression profile for all genes
in each of the 100 regions is shown in Supplementary Fig. 1.

We first evaluated the statistical association for each LD-SNP
within our regions of interest with each of the expressed
transcripts, for a total of 127,276 association tests. A linear
regression model, regressing normalized expression levels on the
number of minor alleles of each SNP genotype, adjusted
for histologic characteristics and expression principal
components (PC) was used to obtain all P values reported in
this study. Of the 6,324 LD-SNPs located in the 100
risk intervals, 2,638 (41.7%) demonstrated a significant
eQTL signal after adjustment for covariates and meeting a
Bonferroni-adjusted P value threshold of 1.96E-07 (significant
P values ranged from 1.96E-07 to 6.37E-154) resulting in
4,174 SNP–gene pairs. Of the 100 PrCa-risk intervals, 51 (51%)
demonstrated a Bonferroni significant eQTL signal and
these were associated with 88 genes (Fig. 1 and Supplementary
Data 1 and 2). For each of the significant SNP–gene association
tests, the effect size and direction of effect on the mRNA
expression is provided by the b-coefficient, obtained from
regressing normalized expression levels on the number of
minor alleles of each SNP genotype, adjusted for histologic
characteristics percent lymphocytic population and percent
epithelium present, and 14 principal components (PCs; Methods
and Supplementary Data 1).

Gene-based eQTL. Genes that were statistically significantly
associated with one or more PrCa-risk SNPs were considered
cis-eQTL ‘target genes’ for PrCa risk. To fully identify all
cis-eQTLs for these target genes, we conducted a second-stage
eQTL analysis where we focused on all SNPs surrounding the 88
target genes identified in the primary analysis. On the basis of
empirical data using publically available information, we observed
that 99% of all eQTLs are located within 1.1Mb from either the
transcription start site (TSS) or transcription end site (TES) of all
genes examined (see Methods). Thus, the SNP regions of interest
for the second-stage analysis were defined as those localized
±1.1Mb from the gene TSS or TES positions. Of the 347,442
SNPs surrounding the 88 target gene regions of interest, and
excluding those SNPs included in the primary analysis, 36,122
additional SNPs demonstrated a significant eQTL signal after
adjustment for covariates and meeting a Bonferroni-adjusted
P value threshold of 3.02E-08 (significant P values ranged from
3.02E-08 to 172E-202). Of the 88 target genes, 82 were found
to have significant eQTL signals beyond what was originally
detected in the primary analysis. There were no additional
statistically significant eQTLs for 6 of the 88 target genes.
Examples are provided in Fig. 1 and plots for all genes are
provided in Supplementary Figs 2–4,
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On the basis of the LD between the PrCa-risk SNP and the
peak eQTL signal, considering both primary- and second-stage
analyses, the 88 target gene regions of interest were placed into
three separate categories (Fig. 1 and Supplementary Figs 2–4).
The Pearson correlation was used to measure LD between the
PrCa-risk SNP and the SNP most strongly associated with
expression level (peak eQTL signal), and then used to create the
three groups: r2 of 40.5 between the two SNPs, r2 of 0.2–0.5, and
r2 of o0.2 (no LD) for groups 1, 2 and 3, respectively. Of the 88
gene regions of interest, 37 (42%), 17 (19%) and 34 (39%) were
placed in groups 1, 2 and 3, respectively. The distance from the
risk SNP and the peak eQTL signal varied considerably, with a
mean of 98 kb and ranging from 0 to a higher value of B760 kb.

To determine whether the target genes had evidence of
multiple independent regulatory SNPs, we evaluated the statistical
association for each SNP in the target gene region adjusting for
the peak eQTL signal SNP. Conditioning on the peak eQTL signal
for each of the 88 target genes, no SNPs (including the original

risk SNP) demonstrated a Bonferroni significant eQTL signal for
44 (50%) of the target genes. These included 25 (68%) of the
37 genes in group 1, 10 (59%) of the 17 genes in group 2 and
9 (26%) of the 34 genes in group 3. On the other hand, significant
residual eQTL signals were found for the remaining 44 genes,
including 12 (32%) of the 37 genes in group 1, 7 (41%) of the 17
genes in group 2 and 25 (74%) of the 34 genes in group 3. Among
these 44, 13 had a second eQTL signal involving variants in high
LD with the PrCa-risk SNP (r240.5); 3 in group 1, 1 in group 2
and 9 in group 3. Adjusted P values for some of the SNPs in the
risk region, including the PrCa-risk SNP are provided in
Supplementary Figs 2–4.

Characteristics of significant cis-eQTL findings. Of the 51 risk
intervals demonstrating a significant eQTL signal, 33 comprised
significant SNP–gene associations involving a single gene. For the
remaining 18 risk intervals, the risk SNPs were each associated
with two or more genes, ranging from 2 to 7 genes per region
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Figure 1 | Schematic diagram outlining the eQTL analyses conducted for the primary and second stages. Schematic diagram outlining the analysis

conducted for the primary analysis (focused on risk regions defined by PrCa-risk SNPs) and for the second stage (focused on target gene regions defined as

all genes meeting a Bonferroni significance threshold in stage 1). Stage 2 results were classified into three groups (G1, G2 and G3) based on the magnitude

of LD between the PrCa-risk SNP and the peak eQTL-associated SNP in each region; G1 defined as r240.5 between risk and peak SNPs, G2 having r2

between 0.2–0.5 and G3 having r2r0.2. An example regional association plot is shown for each group. The x axis shows the chromosomal position of the

SNPs (with analyzed gene in the region displayed below) and the y axis is the � log10(P value) obtained by regressing normalized expression levels for the

gene listed in the panel title on the number of minor alleles of each SNP genotype adjusted for histologic characteristics and 14 expression principal

components. The position of the PrCa-risk SNP is indicated by a dotted red vertical line with the eQTL result displayed as diamond. All Bonferroni

significant results are coloured, with the colour defined by LD between the SNP and the PrCa-risk SNP listed in the panel title (LD r240.5 red, between 0.2–

0.5 green andr0.2 blue). The right y axis shows the recombination rate (purple dotted lines mark recombination locations). The bottom half of each panel

contains an LD heat map of the significant SNPs in the region (if 41,000 significant SNPs, only the top 1,000 SNPs in the region are shown).
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(2 genes in 10 regions, 3 genes in 2 regions, 4 genes in 3 regions,
6 genes in 1 region and 7 genes in 2 regions).

In addition, 10 of these 51 regions had multiple reported risk
SNPs in close proximity, ranging from 2 to 5 risk SNPs per region
(2 risk SNPs in 7 regions, 3 risk SNPs in 2 regions and 5 risk SNPs
in 1 region). The LD between the risk SNPs varied, ranging from
an r2 of o0.2 to 1 (15 with an r2 of o0.25, 3 from 0.5 to 0.7 and
4 from 0.7 to 1.0). Examples for 4 of the regions where r2 was
o0.7 among the risk SNPs are shown in Figs 2 and 3 (r2¼ 0.54
for the risk SNPs in the GGCX region, r2o0.2 for those associated
with BMPR1B, r2¼ 0.67 for HNF1B and r2o0.25 within the
CHMP2B region). For GGCX (Fig. 2), the data indicate that the
eQTL signal is driven largely by the SNPs in high LD with the risk
SNP rs10187424 (lower left panel). The risk SNP rs2028898
(upper left panel) is not likely to be an independent risk factor, as
it is in low LD with rs10187424. BMPR1B (Fig. 2) demonstrates a
more complex region. The peak eQTL signal is in high LD with

the risk SNP rs12500426 (upper middle panel). The risk SNP
rs17021918 (lower middle panel), which is not in LD with
rs12500426 (r2o0.2), shows another cluster of high-LD-SNPs
that have a significant eQTL signal, yet are in moderate to low LD
with the peak signal. These data suggest the presence of two
independent regulatory domains, each tagged by the two reported
risk SNPs. Finally, there is a third cluster of significant eQTL
signals that are not in LD with either of the two reported risk
SNPs (r2o0.2 for both, blue points clustered around 96Mb),
suggesting a third independent regulatory domain for BMPR1B.
Both HNF1B (Fig. 2) and CHMP2B (Fig. 3) demonstrate the
presence of reported risk SNPs that are not in LD with each other
and where the eQTL signal is driven by one of the risk-SNP
clusters. Thus, in each case, there is no eQTL signal for one
(HNF1B) or more (CHMP2B) of the reported risk SNPs.

We then examined the positional distributions and the
magnitude of gene dysregulation for each of the peak eQTLs
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Figure 2 | Regional association plots for regions containing multiple risk SNPs. Regional association plots are presented for three gene regions, each of

which contain two or more PrCa-risk SNPs with varying degrees of LD between them (r2¼0.54 for GGCX region, r2o0.2 for BMPR1B region and r2¼0.67

for HNF1B region. The x axis shows the chromosomal position of the SNPs (with analyzed gene in the region displayed below) and the y axis is the � log10

(P value) obtained by regressing normalized expression levels for the gene listed in the panel title on the number of minor alleles of each SNP genotype

adjusted for histologic characteristics and 14 expression principal components. The position of the PrCa-risk SNP is indicated by a dotted red vertical line

with the eQTL result displayed as diamond. All Bonferroni significant results are coloured, with the colour defined by LD between the SNP and the PrCa-risk

SNP listed in the panel title (LD r240.5 red, between 0.2–0.5 green and r0.2 blue). The right y axis shows the recombination rate (purple dotted lines

mark recombination locations). The bottom half of each panel contains an LD heat map of the significant SNPs in the region (if 41,000 significant SNPs,

only the top 1,000 SNPs in the region are shown). For each gene region, two or more plots are shown depending on the number of risk SNPs in the region,

one for each risk SNP. The points are coloured according to LD with the risk SNP listed in the panel title (r240.5, red; between 0.2–0.5, green; and r0.2,

blue). The eQTL result for the PrCa-risk SNP listed in the panel title is displayed as diamond, the data points for all of the other PrCa-risk SNPs are displayed

as an open circle.
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relative to the TSS and TES. In general, we observed a high
density of the peak eQTLs in proximity to the TSS and TES of the
target genes, with 53 of the 88 (60%) significant peak eQTL
signals within 20 kb of at least one of these positions (Fig. 4).
However, the distance from the TSS to the peak eQTL signal
varied considerably (Fig. 4), ranging from 57 bp to a higher value
of B1Mb (not shown). Also shown in Fig. 4 is the magnitude of
the eQTL effects (that is, the absolute level of expression

differences associated with the SNP genotypes). Generally, those
eQTLs associated with larger differences in gene expression
clustered near the TSS and TES, while those eQTLs associated
with smaller differences were observed further away.

For the purpose of fine-mapping causative SNPs and candidate
regulatory elements, we estimated the minimum region within
the peak eQTL signal that could contain such elements. The
estimated minimal region was based on a visual inspection of the
regional association plots (Supplementary Figs 2–4), focusing on
the most narrow portion of the peak eQTL signal taking into
account the LD structure in that region. The distribution of the
estimated minimal size for each of the 88 regions of interest is
shown in Supplementary Fig. 5. Overall, 54 (61%) of the peak
eQTL signals wereoB50 kb; the remainder ranged fromB50 to
almost 350 kb in size. Examples where the regulatory domains
were mapped for two of the target genes (CTBP2 and ASCL2)
are shown in Supplementary Figs 6 and 7 and Supplementary
Data 3 and 4.

Discussion
In this study, we identified 88 genes as potential candidates for
PrCa risk. The two-stage analysis was critical, as not all PrCa-risk
SNPs fell within the peak eQTL signal identified (Supplementary
Figs 2–4). In fact, for many of the regions, utilizing the PrCa-risk
and LD-SNPs alone would not have been sufficient to map the
entire eQTL peak (Supplementary Figs 2–4).

For some of the associations, the overlap between the risk SNP
and the eQTL signals may represent a chance overlap, as over
two-thirds of transcripts in normal prostate tissue have eQTLs
associated with them22. If these were the case, then these eQTL
analyses may lead to false-positive assignments of target genes as
PrCa susceptibility genes. To explore this issue in more detail, we
grouped the 88 regions of interest into three separate categories
based on the LD between the PrCa-risk SNP and the peak eQTL
signal (Supplementary Figs 2–4). The LD between the PrCa-risk
SNP and the peak eQTL signal was set at an r2 of 40.5 for group
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Figure 3 | Regional association plots for the CHMP2B gene region containing multiple risk SNPs. Regional association plot presented for the CHMP2B

gene region containing several PrCa-risk SNPs with varying degrees of LD between them. The x axis shows the chromosomal position of the SNPs (with

analyzed gene in the region displayed below) and the y axis is the � log10(P value) obtained by regressing normalized expression levels for the gene listed

in the panel title on the number of minor alleles of each SNP genotype adjusted for histologic characteristics and 14 expression principal components. The

position of the PrCa-risk SNP is indicated by a dotted red vertical line with the eQTL result displayed as diamond. All Bonferroni significant results are

coloured, with the colour defined by LD between the SNP and the PrCa-risk SNP listed in the panel title (LD r240.5, red; between 0.2–0.5, green; and

r0.2, blue). The right y axis shows the recombination rate (purple dotted lines mark recombination locations). The bottom half of each panel contains an

LD heat map of the significant SNPs in the region (if 41,000 significant SNPs, only the top 1,000 SNPs in the region are shown). For each gene region, two

or more plots are shown depending on the number of risk SNPs in the region, one for each risk SNP. The points are coloured according to LD with the risk

SNP listed in the panel title (r240.5, red; between 0.2–0.5, green; and r0.2, blue). The eQTL result for the PrCa-risk SNP listed in the panel title is

displayed as diamond, the data points for all of the other PrCa-risk SNPs are displayed as an open circle.
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1 (high LD), 0.2–0.5 for group 2 (moderate LD) ando0.2 for
group 3 (low LD).

For group 1 (37 candidate genes, [Supplementary Fig. 2]), there
was a complete overlap between the risk SNP and the eQTL
signal. The risk SNP and the LD-SNPs utilized in the primary
analysis provided the most significant P values, and the eQTL
signals were generally categorized by very narrow regional
association plots (minimal region). For 25 of the 37 group 1
genes, no SNPs (including the original risk SNP) demonstrated a
significant eQTL signal after adjustment for the peak eQTL signal.
Overall, the candidate genes identified in this group most likely
represent true signals for their association with PrCa risk,
assuming the identified PrCa-risk SNP is also a true-positive
signal.

For group 3 (34 candidate genes, [Supplementary Fig. 4]), the
peak eQTL signals were derived primarily from the second-stage
analysis. In this group, the LD between the PrCa-risk SNPs and
the peak eQTL signals are low, having an r2 of o0.2. Unlike
group 1, the risk SNPs in this group had minimal overlap with the
peak eQTL signal in over half of the regions identified, and in
several cases, the risk SNP was localized hundreds of kb from the
peak eQTL signal. There are several possible explanations for
these findings. First, some of these regions could be the result of a
chance overlap between the eQTL signal and the risk SNP. The
target gene identified, therefore, may not necessarily be associated
with PrCa risk (false positive for PrCa). A second possibility is
that there are several independent regulatory regions for the same
gene, and a PrCa-risk SNP was identified for only one of them.
If this was the case, however, and if the gene was truly associated
with PrCa risk, then one might have expected the discovery of
PrCa-risk SNPs within the peak eQTL region. Although we are
not aware of such risk SNPs in these regions, their discovery is
dependent on having adequate SNP coverage in the GWAS
performed. To distinguish between the possibility of a chance
overlap of the eQTL signal and a true association with PrCa, more
detailed association studies ensuring both adequate SNP coverage
and adequate statistical power in these regions of interest would
be required. A negative finding for a PrCa-risk SNP in the main
eQTL peak may suggest that the candidate gene is of less interest,
while a positive finding may argue for its importance in PrCa risk.
Of note, these eQTL signals may be good candidates for PrCa-
risk-SNP discovery.

Group 2 (17 candidate genes, Supplementary Fig. 3) represents
an intermediate group, where the LD between the PrCa-risk SNP
and the peak eQTL signal is between an r2 of 0.2 and 0.5.
Although these regions share many of the characteristics of
group 1, the peak eQTL signals for this group were derived
primarily from the second-stage analyses. For over half, the peak
eQTL region and risk SNP overlapped. Given that the risk SNP is
a tag SNP, the findings in this category are expected. The majority
of candidate genes identified in this group most likely represent
true signals for their association with PrCa risk.

In the primary analysis, all SNPs in LD with the PrCa-risk
SNPs (r240.5) were used to identify potential eQTL signals and
candidate genes. If the LD cutoff had been more stringent, several
of the genes initially identified would not have met our threshold
for detection. Of the 88 target genes initially identified, 12, 16 and
22 genes would not have been selected if the LD cutoff
had been set to an r2 of 0.7, 0.8 and 0.9, respectively. Although
using a more stringent LD cutoff might have helped to reduce
potential false-positive signals for PrCa susceptibility genes,
some true-positive candidate genes might also have been lost.
Although generally robust, another potential confounder that has
been reported to lead to false-positive eQTL signals for a small
number of genes is allelic mapping bias in RNA sequencing23.
One of the target genes identified in our study, HLA-DRB5,

has been reported to be affected by this bias and thus may be a
false-positive signal23. In the end, however, laboratory studies will
be required to confirm that the target genes identified by these
studies are in fact PrCa susceptibility genes regardless of which
group these were placed in.

To explore the possibility of multiple independent regulatory
regions, we performed conditional eQTL analysis adjusting for
the peak eQTL signal for each target gene. The data suggest the
presence of a single regulatory domain for half of the target genes.
Importantly, the remaining half of the target genes did show
evidence for one or more independent regulatory domains, some
of which were observed among SNPs in high LD with the
PrCa-risk SNP. It is important to note that the classification of
each gene as having a single or multiple regulatory domains is
based on the conditional eQTL Bonferroni threshold, and thus is
likely conservative. For that reason, we also applied a recently
developed fine-mapping method that uses marginal test
statistics and correlations among SNPs in a Bayesian framework
(CAVIARBF24) which may help to interpret the results for some
genes. CAVIARBF estimates a posterior inclusion probability for
each SNP. When summed, this provides an estimate of the
expected number of causal variants in each region. The average
expected number of causal variants across the 88 target genes was
2.82 (range 1.72–3.0). Cumulatively, these data provide evidence
for the presence of multiple independent regulatory domains for
some of the candidate genes, highlighting the complexity of gene
regulation and dysregulation at these sites. Unfortunately, our
results do not help to identify the causative SNPs themselves,
primarily due to LD in the regions. The data do point, however,
to the possible number of regulatory domains and their possible
general positions.

A number of candidate regions (n¼ 10) demonstrating an
eQTL signal had several PrCa-risk SNPs in close proximity. The
LD for several of the risk-SNP pairs was high (4 with r240.7)
and, as a result, the additional SNPs do not add useful
information, both appearing to map to the same regulatory
domain. For many of the risk-SNP pairs, however, the LD
between them was quite low (15 with r2o0.25). These present an
opportunity to examine the more complex nature for several of
the regulatory regions. Examples of these are provided in Figs 2
and 3. BMPR1B demonstrates a particularly interesting case in
point. Overall, the data suggest the presence of three independent
regulatory domains. Two of these are each tagged by one reported
risk SNP (rs12500426 for one domain, red cluster in the upper
panel, and rs17021918 for the other domain, red cluster in the
lower panel). A third domain is suggested by the presence of a
third cluster of significant eQTL signals that are not in LD with
either of the two reported risk SNPs (blue cluster to right of both
red domains). This latter region would be ideal for the testing and
discovery of additional PrCa-risk SNPs. In another example, both
HNF1B and CHMP2B demonstrate the presence of reported risk
SNPs that are not in LD with each other and where the eQTL
signal is driven by one of the risk-SNP clusters. Thus, in each
case, there are reported risk SNPs that are not associated with an
eQTL signal. Assuming that the reported risk SNPs are not a
false positive, then these data suggest the presence of other
unique mechanisms for PrCa risk that are associated with these
risk SNPs.

For each of the eQTL signals in the risk regions, the
b-coefficient obtained from the regression analysis provides the
direction of the RNA expression relative to the alternative
(or minor allele) (Supplementary Data 1). Both up-and down-
dysregulation changes were observed, and as such, may provide
some insights into the functional significance of regulatory
domains as well as the mechanism of action of the various
candidate genes. However, future studies will be needed to define
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the role and mechanism by which these candidate genes are
involved in PrCa aetiology and/or progression.

Co-regulation of two or more genes from a common eQTL
region was a common finding. Several eQTLs were characterized
by association with multiple genes, many with direction and
magnitude of regulatory effect similar across the dysregulated
genes. The common presence of cis-acting co-regulatory modules
has been previously described25. These data suggest a more
complex biology for many of the PrCa-risk SNPs, that is,
a one-to-many relationship. This finding also adds an additional
layer of complexity in determining which of the co-regulated
genes (if not all) is truly associated with PrCa risk.

A number of eQTL studies testing for SNP–gene expression
associations for PrCa-risk SNPs have now been published
(Supplementary Fig. 8)26–28. Grisanzio et al.26 tested 12 risk
SNPs (mass spectrometry) and all expressed genes (NanoString
nCounter) within ±0.5Mb of the risk SNP (all included in our
study) with 407 normal prostate tissue samples. They found five
significant SNP–gene associations (Po0.001) among four risk
SNPs, all of which were replicated in our study. These candidate
target genes identified include SLC22A3 (chr6), NCOA4, MSMB
(chr10), HNF1B (chr17) and NUDT11 (chrX). Of the remaining
eight risk SNPs without significant signals, they found nine genes
among four SNPs that were at least nominally significant
(Po0.05). Of these, two genes were significantly associated in
our study; BHLHA15 (chr7) and CTBP2 (chr10). Of the four risk
SNPs with no associated genes, we found a significant gene
association for two of these, and finally, no associations were
identified by either study for the final two risk SNPs.

Xu et al.28 tested 51 risk SNPs (Affymetrix SNP 6.0 array) and
all expressed genes (RNAseq) within ±1.0Mb of the risk SNP
(all included in our study) with 50 PrCa tumour samples. They
found 14 significant SNP–gene associations (P value o1.41E-02)
among seven risk SNPs, five of which were replicated in
our study. These candidate target genes include IRX4 (chr5),
PP1R14A (chr19), NUDT11 (chrX), NCOA4 (chr10) and FOXP4
(chr6). We found no significant eQTL signals for nine of the
genes identified by this group; all nine genes were expressed in
our normal tissue samples. Of the remaining 44 risk SNPs with
no eQTL signals, we found a significant gene association with 12
of the risk-SNP regions.

Finally, Li et al.27 tested 69 risk SNPs (Affymetrix SNP 6.0
array) and all expressed genes (RNAseq) within ±0.5Mb of the
SNP with 145 PrCa tumour samples. They found 30 significant
(P valueo0.05) SNP–gene associations, 13 of which we were able
to replicate. However, for the remaining 17 signals, we found
eQTL associations for 6 of these but with different genes and no
signal for 11. All but three of these genes were expressed in our
normal tissue samples. Li et al. did not provide the list of risk
SNPs evaluated, so we are not able to comment on the remaining
39 risk SNPs with no eQTL signals.

In total, 19 candidate genes were identified in two or more
studies (Supplementary Fig. 8), only 1 of which was common to
all of these (NCOA4). If confined to regions common to each of
the studies, then we were able to identify 28 additional potential
targets, while Xu et al. and Li et al. identified 9 and 17 additional
targets, respectively. If we consider all regions evaluated, then
B69 additional novel candidate targets have been identified.
However, as noted earlier, this very likely represents an
overestimate, as some of these are likely to be false-positive
signals due to the overlap of PrCa-risk SNPs and eQTL signals by
chance (for example, group 3 eQTL signals).

For the purpose of candidate gene discovery by eQTL analysis,
the use of tissue relevant to the disease being studied will be
important, in this case prostate tissue. However, we recognize that
this issue has not been well studied, particularly for genes

expressed in prostate tissue. To address this question, we
compared the eQTL results from our study with those derived
from lymphocytic cell lines, the most common source of cells for
the development of eQTL data sets. We first cross-referenced
our peak eQTLs with the transcriptome-wide significant (false
discovery rate ¼ 0.05) findings from the Geuvadis Consortium
(GEUV)29. In the Geuvadis study, cis-eQTL analysis was
performed with lymphocytic cell lines from 373 individuals of
European descent in the 1000 Genomes Project. This data set is
comparable to ours, both in variant density (sequencing data
compared with our data imputed to 1000 Genomes) and in
sample size. The GEUV results constitute 419,983 significant
cis-eQTLs for 3,259 genes. Of the 88 genes identified in our peak
eQTL analysis, only 23 (26.1%) were present in the GEUV results.
Of these, 13 corresponded to an eQTL SNP we identified in our
analysis, resulting in only 13/95 (13.7%) SNP–gene eQTL pairs
from our analysis reproduced in the lymphocytic cell lines-based
eQTL study. These data highlight the importance of testing
tissue-specific eQTL data sets for the identification of disease-
specific candidate genes. If we had used a lymphocytic cell lines
based eQTL data set, we would have missed the majority of eQTL
signals detected in our study.

Although this study does not identify the regulatory regions or
the causal SNPs associated with the gene dysregulation, our eQTL
analysis does provide critical fine mapping information necessary
for those studies. Importantly, many of these regions are narrowly
defined, enabling the identification of candidate causal regulatory
elements. A number of bioinformatics tools and a wealth of
publically available data sets now provide a unique opportunity to
map and identify candidate regulatory elements, transcription
factor binding sites and candidate causal variants within the peak
eQTL signals.

An example of a well-studied region is for the PrCa-risk SNP
rs4962416 and its associated gene CTBP2. In our study,
we identified 24 SNPs in the peak eQTL region associated
with dysregulation of CTBP2 (Supplementary Fig. 6 and
Supplementary Data 3). Of these, 15 map to a probable
prostate-specific enhancer region as defined by both Hazelett
et al.30 and Taberlay et al.31 One of the top variants (rs12769019),
as determined by Regulome, is found in an androgen receptor
(AR)-binding site (Chip-seq) and is predicted to possibly disrupt
the binding affinities of several transcription factors that could be
important for PrCa regulation through interactions with the AR
(POU6F1 and POU2F2). Importantly, Takayama et al.32 found
altered enhancer activity using a luciferase assay when the alleles
at rs12769019 and rs4962416 were tested in LnCap cells. An
example of a novel region identified in the current study is for the
PrCa-risk SNP rs7127900 and its associated gene ASCL2
(Supplementary Fig. 7 and Supplementary Data 4). In this case,
the peak eQTL region contained 54 significant eSNPs, many of
which are also found in enhancer regions and associated with
possible binding motifs. In this case, the SNP with the best
Regulome score (rs7123299) was shown to reside within a
FOXA1-binding motif. As with CTBP2, these data provide the
insights necessary to identify target regulatory elements and
motifs and to perform subsequent functional studies.

Overall, we believe that the results of our study represent the
most exhaustive published to date. We have included all known
published PrCa-risk SNPs, we have utilized an extremely dense
set of SNPs (2.5M Illumina array plus imputation) to map the
regions of interest, and we have used RNAseq to test all possible
transcripts in the regions. On the basis of this work, we identified
88 target genes that can now be prioritized for future study as
candidate PrCa susceptibility genes. However, additional studies
will be needed to identify those genes among the 88 that are truly
involved in PrCa risk and to define their mechanism of action.
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Finally, it is noteworthy to mention that an eQTL signal was not
identified for 49 of the 100 risk regions, and for some of the risk
SNPs in the 51 positive regions. Clearly, additional work will be
required to identify the mechanism by which the risk SNPs in
these regions increase risk for PrCa.

Methods
Case selection. Informed consent was obtained from all subjects; the study was
approved by the Mayo Clinic Institutional Review Board. Normal prostate tissue
was acquired from an archive collection of fresh frozen material obtained from
patients with either radical prostatectomy or cystoprostatectomy. From this
collection, the initial surgical haematoxylin and eosin (H&E) section from over
4,000 cases were reviewed to identify normal tissue samples where prostate tumour
was not present on the archived slide and where the Gleason score was r7 for the
presenting tumour. From 916 cases meeting these criteria, a new H&E slide was
prepared from each normal tissue sample and re-examined to select samples
with the following characteristics: (1) absence of PrCa; (2) absence of high-grade
prostatic intraepithelial neoplasia and benign prostatic hyperplasia; (3) normal
prostatic epithelial glands representing Z40% of all cells; (4) lymphocytic
population representing r2% of all cells; and (5) the normal epithelium was from
the posterior region of the prostate (region most consistent with PrCa). Of these,
565 cases met these inclusion criteria and were eligible for DNA and RNA
processing.

Tissue processing. Frozen tissue samples were processed to obtain sections for
RNA and DNA extraction, with an H&E section obtained at the beginning,
between the RNA and DNA designated section, and at the end of the sectioning.
All H&E sections were re-evaluated by a pathologist utilizing the same inclusion
criteria described above. Fifty samples no longer met those criteria and were
excluded, resulting in 515 eligible cases. DNA was extracted using the Puregene
tissue extraction protocol per the manufacturer’s recommendations. DNA quality
was assessed by examining 260/280 ratio and DNA yield. RNA was extracted using
the QIAGEN miRNeasy Mini Kit and the QIAcube instrument in accordance with
the manufacturer’s instructions. RNA quality was assessed by evaluating the RNA
integrity number (Z7) and the 260/280 ratio. Twenty one cases were eliminated
due to poor quality, yielding 494 samples eligible for DNA genotyping and RNA
sequencing.

To minimize potential batch effects in the final analyses, randomization for
sample processing was performed at three stages. Samples were first randomized
for tissue cutting with respect to Gleason score (r6 versus 7), percent epithelium
present (o60% versus Z60%), presence of inflammatory cells (yes/no) and
procedure type (cryoprostatectomy versus radical prostatectomy). Sample
categories with a larger number of samples were also balanced across tissue cut
groups. After tissue cutting, samples were re-randomized for extraction of DNA
and RNA considering the tissue cut group in addition to the sample characteristics
described above. Finally, after extracting both DNA and RNA, samples were
randomized for a final time for RNA library preparation and DNA plating. In this
stage, we considered the RNA extraction randomization group, Gleason score
(r6 versus 7) and 260/280 ratio (o1.9 versus Z1.9) when randomizing RNA
samples to 96-well plates. DNA samples were randomly assigned to 96-well plates.
After each stage of randomization, we fit one-way analysis of variance models to
verify that randomization group was not associated with any sample characteristics
or the year of sample collection.

RNA sequencing. RNA libraries were prepared using the TruSeq RNA
Sample Prep Kit v2 (Illumina, San Diego, CA) according to the manufacturer’s
instructions. One sample failed library prep and was excluded from the study.
The remaining 493 libraries (19 from patients with cryoprostatectomy and
474 from patients with radical prostatectomy) were loaded onto flow cells at
concentrations of 8–10 pM to generate cluster densities of 700,000mm2

following Illumina’s standard protocol using the Illumina cBot and cBot
Paired-End Cluster Kit Version 3. The flow cells were run as 51 paired-end reads
on an Illumina HiSeq 2000 using TruSeq SBS sequencing kit version 3 and HCS
v2.0.12 data collection software. Base calling was performed using Illumina’s RTA
version 1.17.21.3. A minimum of 50 million total reads per sample was required for
analysis. A total of 234 samples with o50 million total reads were re-sequenced
and if no quality issues were identified with the individual runs, BAM files were
merged.

RNA-sequencing analysis. RNAseq data were analysed with the use of the
MAP-R-Seq pipeline, an integrated suite of open-source bioinformatics tools along
with in-house developed methods33. Paired-end reads were aligned by TopHat
2.0.6 (ref. 34) against the hg19 genome build using the bowtie1 aligner option35.
Gene counts were generated using HTseq software (http://www-huber.embl.de/
users/anders/HTSeq/doc/overview.html)36 and gene annotation files were obtained
from Illumina (http://cole-trapnell-lab.github.io/cufflinks/igenome_table/
index.html). The MAP-R-Seq pipeline provides detailed quality control data to
estimate the distance between paired-end reads, to evaluate the sequencing depth

for alternate splicing analysis, to determine the rate of duplicate reads and to
evaluate coverage of reads across genes using RSeQC software37.

RNA-sequencing quality control and normalization. Gene counts were
quantified for 23,398 genes based on RefSeq gene annotation. Of all genes,
780 (3.3%) had no counts for all samples and were removed from further analysis
(genes deemed undetectable) leaving 22,618 for analysis. The remaining genes were
distributed across all chromosomes. For genes mapping to both chromosomes
X and Y, only the chromosome X version was retained.

Data were assessed for quality using graphical methods for assessing the
existence and functional form of bias and the success of normalization38. The
influence of flowcell, lane, tissue cut group, extraction group and library prep plate
on global mRNA abundance shifts in the samples was evaluated by examining
per-sample boxplots of log2 gene count across levels of these design factors.
The influence of gene size and gene GC content on expression levels was also
investigated. Finally, we assessed how individual gene counts differed from the
average using residual MA plots.

We filtered out mRNA transcripts that had a median gene counto14, reducing
the number of expressed genes to 17,233 for the final data analysis. To remove
potential biases such as GC content and to account for differences in sequencing
depth, the gene counts were normalized using conditional quantile
normalization39.

Genotyping. Samples (200 ng genomic DNA) were genotyped using Illumina
Infinium 2.5M bead arrays based on the manufacturer’s protocol (Illumina,
San Diego, CA). The DNA samples were plated into 96-well plates, with samples
randomized to plates as described above. One Caucasian parent–child Centre
d’Etude du Polymorphisme Humain (CEPH) trio from the HapMap project was
included as duplicates for quality control.

Extensive quality control analyses were performed to identify any poor-quality
samples or SNPs40. SNPs were assessed for quality via marker genotyping call rates,
duplicate sample concordance and Hardy–Weinberg equilibrium (HWE) P values.
Samples were assessed via sample genotyping call rates, checks for inconsistency
with reported sex, and sample heterozygosity rates. To identify possibly related
samples, we used the genome command in PLINK to calculate the proportion of
loci where each pair of individuals share zero, one or two alleles identical by
descent. We used the Structure software41,42 to address the issue of population
stratification.

A total of 509 samples were genotyped, including 493 normal prostate tissue
samples and 16 replicate CEPH samples. The overall concordance rate for each
CEPH duplicate was 499.99%. Of the 493 normal prostate tissue samples, 22 were
excluded after quality control of the genotypes; 5 samples due to low call rate
(o95%), 10 samples were found to have a high proportion of African–American
ancestry and 7 samples had low genotype concordance compared with mRNA
called variants (concordanceo98%). The final data set consisted of 471 normal
prostate tissue samples (453 from low Gleason grade PrCa cases and 18 from
cryoprostatectomy cases).

From the evaluation of individual called SNPs, a total of 12,588 SNPs (0.005%)
were excluded for quality control reasons: 205 failed completely; 4,920 were
duplicate SNPs (same physical location); 6,240 SNPs had call rateo95%; and 1,223
with Hardy–Weinberg equilibrium P value o1E-5. In addition, we excluded
817,800 SNPs (34.5%) with minor allele frequencyo1% because they have low
power for association analysis. Thus, the final quality control-passed data set
consisted of 1,541,368 observed autosomal and chromosome X SNPs.

Untyped SNPs as well as missing genotypes for typed SNPs were imputed using
SHAPEIT43 and IMPUTE2 (refs 43,44) with reference files from the 1000 Genomes
Phase I integrated variant set. SNPs on the Y chromosome and mitochondrial
SNPs were excluded from imputation. Variants with minor allele frequency 40.5%
in the cosmopolitan 1000 Genomes populations were retained in the reference
panel. We assessed imputation quality using the allelic r-squared metric calculated
using BEAGLE45 (https://faculty.washington.edu/browning/beagle_utilities/
utilities.html) utilities (Version 3). Poorly imputed SNPs, defined as those with
allelic r-squared r0.3, were excluded from further analysis. After imputation and
quality filtering, we had a total of 10,856,681 variants available for analysis.

Covariate identification and adjustment. Before performing eQTL analyses,
histologic characteristics and PCs derived from the SNP correlation matrix were
evaluated for their association with global transcript abundance using linear (for
PC) or logistic (histologic characteristics percent lymphocytic population and
percent epithelium present) regression. PC analysis of the SNP correlation matrix
identified two eigenvalues with Tracy–Widom P values o0.05 (ref. 46). The
association of PC1 and PC2 with genome-wide transcript abundance suggested that
neither component appears to affect global expression (minimum linear regression
P value 41E-5). Both histologic characteristics were shown to have large effects on
gene expression and were included as covariates in the eQTL analysis. To account
for latent sources of non-genetic variation in gene expression, we applied PC
analysis to the normalized gene expression matrix, identifying 14 PCs for inclusion
as covariates in the eQTL analysis, each having 41% of variation explained which
cumulatively explain 57% of the total variation.
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PrCa-risk SNP eQTL—primary analysis. To define the set of SNPs analysed for
each risk interval, we calculated the LD between each PrCa-risk SNP and all SNPs
in the risk region. All SNPs with an r240.5 with any of the PrCa-risk SNPs
(LD-SNP) were included in the analysis. eQTL analyses were conducted using the
Matrix eQTL R library6. We evaluated the association of each LD-SNP with gene
expression using linear regression methods, regressing normalized expression levels
on the number of minor alleles of each SNP genotype, adjusted for histologic
characteristics percent lymphocytic population and percent epithelium present,
and 14 PC. A Bonferroni adjustment was used to determine statistical significance
(threshold of 1.96E-07).

Because the variance and the mean of gene expression counts might be related,
we fit Negative Binomial (NB) models using a generalized linear model framework
to model the gene counts with conditional quantile normalization constants
included as an offset term in the generalized linear model. Per-gene estimates of the
over-dispersion parameter were computed with the edgeR package in R (ref. 47).
Results compared with the linear model were essentially unchanged. Thus, for
simplicity, we report only linear models.

Gene-based eQTL—second stage. To define an evaluation range for the target
gene cis-eQTL analysis that would capture the vast majority of underlying effects,
we downloaded the HapMap lymphocytic cell lines eQTL meta-analysis results
from the seeQTL database48. We then merged the cis-eQTL results with the trans-
eQTL results where the associated SNP and gene co-occurred on the same
chromosome. We characterized the empirical distribution of the minimum SNP
distance from either the transcription start or stop site for all findings with a false
discovery rate of 0.05 (ref. 49), and identified the 99th percentile to be B1.1Mb.
Thus, for each PrCa target gene, we evaluated the statistical association for each
SNP within 1.1Mb of the target gene using the same linear regression model used
for the PrCa-risk-SNP analysis described above in the primary analysis. In
addition, we excluded all
LD-SNPs included in the initial PrCa-risk-SNP analysis. Analyses were conducted
using the Matrix eQTL R library6. A Bonferroni adjustment was used to determine
statistical significance (threshold of 3.02E-08). Regional association plots were
generated using a combination of LocusZoom50 and locally written R functions
with LD estimates obtained from PLINK v1.9 (https://www.cog-genomics.org/
plink2) (ref. 51).

Peak-conditioned eQTL. We evaluated the statistical association for each SNP in
the target gene region regressing normalized expression levels on the number of
minor alleles for each SNP genotype adjusting for the peak eQTL signal SNP in
addition to the histologic characteristics and 14 expression PCs. A Bonferroni
adjustment was used to determine conditional statistical significance (threshold
of 3.02E-08).

Mapping of regulatory elements. A variety of bioinformatics tools and publically
available data sets were utilized to map functional regulatory elements to the
peak eQTL regions identified for two genes of interest, CTBP2 and ASCL2
(Supplementary Figs 5 and 6). Prostate-specific mapping information was obtained
from a custom track established by Hazelett et al.30 in the UCSC Genome Browser
with the following data from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).
For areas of open chromatin, the DNase hypersensitivity tracks used were
GSE32970 and GSE29692. The histone modification tracks used were as follows:
H3K4me1 and H3K4me3 (GSE27823); and H3K27Ac (GSE51621) and H3K4me3
(GSM686935 and GSM503906). Transcription factors of interest analysed were
CTCF (GSE33213), AR (GSE28219), NKX3-1 (GSM699633), TCF7L2 (GSE51621)
and FOXA1 (GSM699634 and GSM699635).

Data from Taberlay et al.31, obtained from prostate-specific cell lines (PrEC and
PC3), were utilized to identify tissue-specific chromatin states for the regions of
interest. Taberlay et al. used Chip-seq to obtain data for H3K4me1, H3K27ac,
H3K4me3, H3K27me3, CTCF and RNAPolII, and applied these data to the
multivariate hidden Markov model ChromHMM52 to annotate the epigenome into
nine chromatin states (poised promoter, promoter, promoterþCTCF, insulator,
enhancer, enhancerþCTCF, transcribed, repressed and heterochromatin).

Bioinformatics tools used to map the regions of interest include FunciSNP
(www.factorbook.org) and Regulome (http://regulome.stanford.edu/). By
annotating SNPs with known and predicted regulatory elements, Regulome
combines all of its sources to assign a causal score for a specific variant entered53.
Scores of 1–3 have some evidence for being a causal variant for gene dysregulation
while a score of 4–6 does not. Along with the score, the output provides
transcriptional factor and histone modification binding sites, PWM, DNase and
eQTL information.
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