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A higher order visual neuron tuned to the spatial
amplitude spectra of natural scenes
Olga Dyakova1, Yu-Jen Lee1, Kit D. Longden2, Valerij G. Kiselev3 & Karin Nordström1,4

Animal sensory systems are optimally adapted to those features typically encountered in

natural surrounds, thus allowing neurons with limited bandwidth to encode challengingly

large input ranges. Natural scenes are not random, and peripheral visual systems in

vertebrates and insects have evolved to respond efficiently to their typical spatial statistics.

The mammalian visual cortex is also tuned to natural spatial statistics, but less is known

about coding in higher order neurons in insects. To redress this we here record intracellularly

from a higher order visual neuron in the hoverfly. We show that the cSIFE neuron, which is

inhibited by stationary images, is maximally inhibited when the slope constant of the

amplitude spectrum is close to the mean in natural scenes. The behavioural optomotor

response is also strongest to images with naturalistic image statistics. Our results thus reveal

a close coupling between the inherent statistics of natural scenes and higher order visual

processing in insects.
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A
major challenge of animal sensory systems is to

appropriately encode incoming stimuli that vary
enormously, while using noisy neuronal signalling with

limited bandwidth. The natural input that biological visual
systems encounter is not random, but contains statistics that
are remarkably constrained in both space and time1,2.
Photographs of natural scenes can be statistically analysed using
the Fourier transform3–6 that describes the image as a set of
spatial frequencies of given amplitudes and phases, and different
orientations. The phase spectrum is linked to the characteristic
contours, edges and features that together identify the unique
structure of a particular image6,7. Consequently, if the phase
spectrum is disturbed, the human observer perceives the new
image as completely unrecognizable8.

The amplitude spectrum of a natural scene tends to follow a
power law1,5:

Aðf Þ ¼ c
f a

ð1Þ

in which the amplitude of a given frequency, A(f), is inversely
proportional to spatial frequency (f) raised to the power a.
Because a is readily apparent as the slope of the log–log plot of
the amplitude spectrum, it is referred to as the slope constant.
If the slope constant of an image is increased, the human observer
perceives this as the image getting blurrier, but the scene itself
remains recognizable4. In natural scenes, the amplitude spectra of
spatial frequencies differ according to orientation. Horizontal and
vertical structures, such as the horizon and tree trunks, increase
amplitudes at horizontal and vertical orientations9,10, and this
effect is more pronounced in built environments11.

In images where a is exactly 1, the image is scale invariant,
which means that it has the same amount of detail regardless
of viewing scale3. In other words, an image with a perfect
1/f amplitude spectrum has equal amounts of energy in each
octave (for example, 1–2, 2–4, 4–8, 8–16 cycles per degree, c.p.d4).
In practice, the slope constants vary across scenes, and published
slope constants show a broad Gaussian distribution with a peak
around 1–1.2 (refs 3,12,13). However, it has been suggested that
the broad spread could be an artefact of the varying densities of
objects and textures subtending small angles and large angles
across scenes4.

Since animal vision has evolved in natural scenes with largely
predictable statistics, it is well established that the role of
peripheral vision is to reduce the predictable redundancy14,15.
For example, low temporal and spatial frequencies predominate
naturalistic visual input12,16. In both mammals and insects
low-frequency redundancy is suppressed via lateral inhibition and
temporal antagonism17–20 in photoreceptors and associated
peripheral neurons. Consequently, retinal filters in fly lamina
monopolar cells (LMCs, the first interneurons in the insect visual
pathway) and ganglion cells of the vertebrate retina ‘whiten’ the
signal2,16,19,20.

In mammals, higher order processing of naturalistic input has
typically been investigated using psychophysics5, functional
magnetic resonance imaging21 or modelling22,23. Such analyses
show that the mammalian visual cortex is optimally tuned to
the spatial statistics of natural scenes. Most insect data come
from the analysis of peripheral visual processing (for example,
photoreceptors or LMCs17–19), or using naturalistic stimuli that
also vary in time24,25. Here, we quantify how the response of
an insect higher order visual neuron depends on the strictly
spatial characteristics of natural scenes. For this, we utilize a
recently described neuron that is excited by flicker, and thus
responds non-directionally to motion, and more valid for our
purposes here, is inhibited by stationary images26. The inhibition
of centrifugal Stationary Inhibited Flicker Excited, cSIFE, by

stationary images provides a unique opportunity for investigating
visual responses to natural scenes that vary only in the spatial
domain, while remaining constant in the temporal domain.
We record intracellular responses of cSIFE and show that
the response inhibition to natural scenes depends strongly on
the slope constant (a in Eq. 1). Indeed, we find a peak inhibition
when the slope constant is close to 1, that is, close to those most
prevalent in natural scenes1,3. We further show that the
behavioural optomotor response depends on the slope constant,
and find that this is strongest when a is close to 1. Our data thus
show that in insects, as in mammals5,21, both higher order neural
mechanisms and behavioural discrimination are tuned to natural
spatial statistics.

Results
cSIFE is inhibited by stationary natural scenes. cSIFE is a higher
order neuron of the hoverfly lobula plate. As opposed to the more
well-studied classic lobula plate tangential cells (LPTCs) that are
clearly direction-selective27, cSIFE responds strongly to moving
sinusoidal gratings, regardless of the direction of motion (Fig. 1a,
N¼ 16)26. cSIFE is also inhibited by stationary gratings,
regardless of their orientation (Fig. 1b, N¼ 16)26.

Natural scenes have greater spatial complexity than single-
frequency sinusoidal gratings do. What is cSIFE’s response to
natural images? When the hoverfly views a stationary natural
scene (Fig. 1c) cSIFE’s spontaneous rate is also inhibited (Figs 1d,
n¼ 1), just like it was in response to sinusoidal gratings (Fig. 1b).
To investigate the inhibition by stationary images in more detail
we use both natural and artificial images. The images (Fig. 1c)
have been used previously to investigate the responses of higher
order visual neurons in the hoverfly, and are known to strongly
stimulate the LPTCs that code for directional motion25,28–30. We
find that cSIFE is inhibited by most of these six images too, but
that the level of inhibition varies between them (Fig. 1e, N¼ 16).

cSIFE’s inhibition depends on the slope constant. Across
natural scenes, the slope constants (a in Eq. 1) show a broad
Gaussian distribution with a peak around 1–1.2 (refs 1,11,15,31).
However, hoverfly compound eyes have a limited spatial
resolution, with maximal resolution of around 1 degree32.
Furthermore, cSIFE’s inhibition is not only limited by the
spatial resolution of the eye, but is confined to a specific
bandwidth of spatial frequencies between 0.06 and 1 c.p.d.26.
Therefore, to get a more realistic account of the amplitude
slope constants that are relevant for cSIFE’s inhibition we
calculate the slope constants of the amplitude spectra of 109
natural images using linear curve fitting between 0.06
and 1 c.p.d. (Fig. 2a). The images come from a published data-
base (tabby.vision.mcgill.ca/html/LandWater1.html)33 and also
include the natural scenes used here (Fig. 1c). A Gaussian curve
fit to the slope constants show that the peak is found when this is
1.2 (image a, Fig. 2c), similar to previous descriptions1,11,15.

The data in Figure 1e show that cSIFE’s inhibition varies
between different natural scenes. Is it possible that this variation
is a consequence of the different slope constants of the natural
scenes, to thus give a better match to image statistics typically
encountered? To test this hypothesis, we plot cSIFE’s inhibition
to the natural scenes as a function of their slope constants
(fitted between 0.06 and 1 c.p.d.), and see that the peak inhibition
is found at a slope constant B1–1.2 (Fig. 2b, same data as in
Figure 1e). This suggests that cSIFE’s inhibition is tuned to the
spatial frequency spectrum of natural scenes.

To investigate this potential correlation in more detail we
replot the distribution of slope constants in natural scenes from
Fig. 2a (grey histogram and black Gaussian curve fit, Fig. 2c)
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together with the cSIFE inhibition from Fig. 2b. To allow for
more direct comparison between the slope constants and the
neural response, we plot the inhibition data inverted (blue,
Fig. 2c), and set the baseline at the average spontaneous rate
(dashed line in Fig. 2b). The inhibition (blue, Fig. 2c) appears to
closely follow the probability distribution of amplitude slope
constants (black, Fig. 2c). To statistically verify this observation,
we plot the response to each image as a function of the probability
of the slope constants of the image being present in a natural
scene (Fig. 2d). This analysis shows a high and significant
correlation (Pearson correlation coefficient, R2¼ 0.7682, Po0.05,
N¼ 16) between the slope constant probability and cSIFE’s
response (Fig. 2d). This suggests that cSIFE’s inhibition is indeed
tuned to the spatial frequency spectrum of natural scenes.

Increasing the contrast of a stationary sinusoidal grating
increases cSIFE’s inhibition26. Is the inhibition that we see
(Fig. 2b–d) in response to natural scenes caused by contrast
differences of the images? Image contrast can be measured in
many different ways34. We here use the root-mean square (RMS)
contrast since it is related to the Fourier coefficients of the image
and it is a good predictor of human perception of contrast13.
We bandpass filter the images between 0.06 and 1 c.p.d. before
calculating the effective RMS contrast, to take the bandwidth
sensitivity of cSIFE into account26. Like the slope constant
(image a), RMS contrast shows a Gaussian distribution across
natural scenes, with a peak at 0.09 (grey histogram and black
Gaussian curve fit, Fig. 2e). cSIFE’s inhibition does not follow the
distribution of RMS contrasts (blue data, Fig. 2e), and there is a
poor correlation between the probability of the contrast being
present in a natural scene, and cSIFE’s response (Fig. 2f, Pearson
correlation coefficient, R2¼ 0.2765, non-significant (ns), N¼ 16).
However, cSIFE’s inhibition increases with the RMS contrast of
the image (Fig. 2e, Pearson correlation coefficient, R2¼ 0.7326,
Po0.05, N¼ 16).

Inhibition by manipulated images with a slope constant of 1.
The data in Figure 2 show that cSIFE’s inhibition by stationary
natural scenes follows the natural distribution of slope constants
(Fig. 2d) and that it also increases with increasing RMS contrast
(Fig. 2e). To investigate which of these two variables has the
largest influence on cSIFE’s inhibition, we create manipulated
versions of the Shadow and the Hill images (Fig. 1c). If the
first option is correct, and the level of inhibition is correlated with
the slope constant, cSIFE’s inhibition should decrease if we
manipulate the slope constant (a) of an image away from 1.
Indeed, we find that when the hoverfly is viewing the manipulated
images, cSIFE is significantly inhibited when these have a slope
constant of 1 (Fig. 3a, b, N¼ 5, two-way analysis of variance
(ANOVA) followed by Bonferroni’s multiple comparison test,
Po0.05), but not slope constants of 0 or 2 (Fig. 3a, b, N¼ 5).
Image slope constants of 0 and 2 are rarely found in natural
scenes (Fig. 2a), and these images thus have highly artificial
amplitude spectra.

Natural scenes have a non-random distribution of features8,31.
To investigate how cSIFE’s inhibition depends on the distribution
of features we generate a new white noise image, with random
phase and a flat amplitude spectrum (that is, a slope constant
of 0). When the slope constant of the image is increased, the
image is no longer ‘white’, so we therefore refer to it as a random
noise image. In response to this random noise image, cSIFE
shows a similar dependence on the slope constant (image a), with
a strong inhibition at a slope constant of 1 (Fig. 3c, N¼ 5,
two-way ANOVA followed by Bonferroni’s multiple comparison
test, Po0.05), but no difference to spontaneous rate at slope
constants of 0 and 2.

To investigate the second option, we quantify whether the
strong inhibition that we see at slope constants of 1 (Fig. 3) is an
artefact of these images having the highest contrast. For this
purpose we replot the data from Fig. 3, but now with the effective
RMS contrast on the x axis. The resulting graph shows that
cSIFE’s inhibition does not increase with image contrast, but
rather shows a scattered distribution (Fig. 4a). Neither is there a
correlation between the effective RMS contrast probability
distribution (histogram, Fig. 4a) and the cSIFE response (blue
data, Fig. 4a). Furthermore, the data in Fig. 4b show the effective
RMS contrasts of the nine images as a function of their slope
constants. Despite the images with slope constants of 1 generating
much stronger inhibition than those with a slope constant of 2
(Fig. 3), these images all have very similar RMS contrasts
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Figure 1 | cSIFE is inhibited by stationary natural images. (a) cSIFE is

excited by sinusoidal gratings moving at 5Hz (8� wavelength) regardless of
the direction of motion. Response in red and spontaneous rate in grey, error
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Hill, Outdoor, Rockgarden, Shadow, Tree images25,28,29, and a filtered

Random image30. The luminance and contrast of the images have been

rescaled for better printing. (d) cSIFE’s inhibition induced by a stationary

natural image, with the peri-stimulus duration (1 s) indicated with a bar

under the raw data. ‘Spont’ and ‘inhib’ show the analysis windows used in
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(Fig. 4b). Furthermore, the images with slope constants of 0 have
very different RMS contrasts (Fig. 4b), despite none of them
generating any inhibition (Fig. 3).

In summary, the data in Figs 3 and 4 show that the strong
inhibition at a’s close to 1 is more likely caused by a matching of
the neural coding to naturalistic slope constants than by a
dependence on effective RMS contrast. Furthermore, the data
show that it is the slope constant that affects the inhibition, and
not the phase of the image.

Bandpass filtering tunes cSIFE to natural slope constants. The
data above show that cSIFE’s inhibition is selectively tuned to the

1/f statistics typical of natural scenes. In earlier work, van
Hateren16 showed that neural low- and high-pass filters in the
photoreceptors and LMCs improve responses to natural scenes
with slope constants close to 1 by ‘whitening’ the amplitude
spectrum. We can use a similar approach to van Hateren16

(see also ref. 35) to investigate how cSIFE’s selective spatial
frequency tuning between 0.06 and 1 c.p.d.26 affects the response
to the amplitude spectra of natural scenes.

For this purpose we first quantify cSIFE’s spatial filter. We
calculate the inverse response of cSIFE’s spatial frequency tuning
to stationary sinusoidal gratings26, to which we fit a log-normal
function (which appears Gaussian, Fig. 5a). Note, however, that
the published spatial frequency tuning data26 show inhibition for
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four data points only (Fig. 5a), so the Gaussian curve fit has to be
taken with some caution, and the analysis below as preliminary.
Nevertheless, as in (refs 16,35) we then multiply the spatial filter
(Fig. 5a), with the mean amplitude spectra (Fig. 5b shows the
mean amplitude spectra for the five natural scenes in Figure 1c) to
determine the output of cSIFE. This analysis suggests that the
spatial tuning of cSIFE (Fig. 5a) amplifies the spectral energy of
the images between 0.06 and 1 c.p.d. (Fig. 5c).

The data also show that the smallest output is generated to the
Rockgarden image (Fig. 5c), which was indeed the image that
generated the smallest inhibition (R, Fig. 1e). To investigate this
potential correlation in more detail we plot the mean prediction
(the integral of the spatial filter times the mean amplitude
spectrum) for the 15 images used in this study, against the
measured neural response. This graph shows that the mean
prediction provides a good determinant of cSIFE’s inhibition
(Fig. 5d, Pearson correlation coefficient, R2¼ 0.8654, Po0.0001
N¼ 5 or 16). Our data thus suggest that the unique spatial
frequency tuning of cSIFE26 may selectively enhance responses to
the 1/f statistics typical of natural scenes, but this needs to be
confirmed in future work.

Behavioural responses to manipulated images. In the experi-
ments thus far we have quantified visual responses of the cSIFE
neuron. Are hoverfly behavioural responses also affected by the
slope constant of visual scenes? To investigate this, we measure
the optomotor response of hoverflies walking on a trackball
setup36,37. Trackball setups have been used previously to, for
example, measure the optomotor response of flies38 and the
optokinetic response of mice39. Here we see that when an image
moves past the hoverfly at 110� s� 1 the hoverfly tries to stabilize

the optic flow by turning in the direction of the image motion
(Fig. 6a, N¼ 5, n¼ 43).

For statistical analysis we quantify the accumulated yaw during
10 s of visual stimulation. This analysis shows that the strongest
yaw optomotor response is generated by images with a slope
constant around 1.2, whether the image is artificial (filled
symbols, Fig. 6b, N¼ 5, n¼ 43–58) or natural (open symbols,
Fig. 6b, N¼ 2–6, n¼ 28–71, two-way ANOVA shows a
significant effect of image a, Po0.0001, but no significant
difference between the two images). Above, we showed that the
neuronal responses were correlated with the probability of that
slope constant (a) being present in natural scenes (Fig. 2d).
Similarly, in behaviour, the strength of the optomotor response is
correlated with the probability of that image a being present in
natural scenes (Fig. 6c, Po0.01). These data (Fig. 6b, c) thus
suggest that the optomotor response is also tuned to the 1/f
amplitude spectra of natural scenes.

Like neural responses to visual stimuli, behavioural responses
depend on image contrast. The natural images that we use here
are spatially filtered through the coarse optics of the hoverfly eye,
with a maximal resolution of B1 degree32, thus working as a
low-pass filter with a cut-off frequency of 1 c.p.d. (ref. 16).
Therefore, we low-pass filter the images before quantifying the
effective RMS contrast relevant for behaviour. The RMS contrast
of 109 low-pass filtered natural scenes also show a Gaussian
distribution, but with a peak at a contrast of 0.23 (grey histogram
and black Gaussian curve fit, Fig. 6d), compared with 0.09 when
the images were bandpass filtered (Fig. 2e). We find that there is
no correlation between the RMS contrast of the images used in
the trackball experiments and the optomotor response, nor
between the optomotor response and the distribution of contrasts
(Fig. 6d). We thus conclude that in response to these images, the
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optomotor response is affected by image a (Fig. 6b, c), and that
this effect is not a consequence of the contrast of the images
(Fig. 6d).

Discussion
Fourier domain analyses of photographs of natural scenes show
that the amplitude has a characteristic fall-off with spatial
frequency, with slope constants close to 1 (ref. 3). Our data here
show that the slope constant influences the level of inhibition
generated in cSIFE, with peak inhibition at slope constants that
are most similar to those of natural scenes (Figs 2, 3). Such tuning
to average spatial statistics would increase the efficiency with
which the information of natural scenes can be processed, which
is important since neurons have an inherently limited capacity to
process information.

When amplitude spectra of natural scenes have slope constants
of exactly 1, they are scale invariant, so that equal energy is found
in each octave (1–2, 2–4 and 4–8 c.p.d. and so on)4. Field31

showed that the receptive fields of the mammalian primary visual
cortex are arranged in a similar way, with increasing bandwidth

with increasing spatial frequency, thus producing the most
efficient coding scheme for scale-invariant natural scenes.
Barlow14 suggested that the visual system should reduce
redundancy by not coding the predictable parts of a signal15,22,
and that the mammalian visual system is efficient because it is
well matched to the statistical redundancy of the visual
environment23,31. Indeed, psychophysical studies show that the
output of the visual system is tuned to the amplitude spectra of
natural scenes11,40–42.

A complementary view to the theory that the role of early
visual processing is to reduce redundancy14,17 is that it maximizes
information transmission19. By increasing redundancy, the visual
system generates a more reliable signal-to-noise ratio, and thus a
maximization of the amount of information that the central
nervous system receives12. Van Hateren19 further showed that
retinal filters that maximize information transmission actually
reduce redundancy at high signal-to-noise ratios, but they
simultaneously increase redundancy (and thus information
transmission) at low signal-to-noise ratios.

cSIFE is a higher order neuron, which gets its input from
peripheral photoreceptors and LMCs, which optimize the coding
of natural scenes by being closely tuned to the average image
statistics2,12,16,35. At high light levels such peripheral filters act as
bandpass filters, and they are thus likely to contribute to the
tuning of cSIFE that we describe here. However, to determine the
contribution of such peripheral filters to the spatial frequency
tuning of cSIFE, and whether additional processing takes place26,
more work is needed. First, we need to measure and model the
spatial frequency responses of the peripheral filters in Eristalis,
under the light conditions used here, to, for example, determine
the spatial extent of the lateral inhibition, which typically takes
place between neighbouring lamina cartridges17,43,44. Second, this
peripheral processing needs to be compared with the spatial
frequency tuning of cSIFE, but with higher resolution: the curve
fit in Figure 5a shows inhibition at only four spatial frequencies
and must thus be viewed as preliminary.

Nevertheless, the model in Figure 5 suggests that cSIFE’s spatial
frequency tuning creates the highest inhibition to images with 1/f
statistics typical of natural scenes, which can be explained with a
simple diagram (Fig. 7). When an image’s slope constant is high
its spatial frequency spectrum rolls off steeply (Fig. 7a). Therefore,
in images with high slope constants, the highest amplitude is
found at low spatial frequencies, where cSIFE’s inhibition is weak
(grey shaded area, Fig. 7a). Reducing an image’s slope constant
reduces the amplitude at lower frequencies while increasing the
amplitude at higher spatial frequencies. When the slope constant
is close to 1 (Fig. 7b), more of the amplitude is found at
intermediate spatial frequencies, where cSIFE is inhibited (white
area, Fig. 7b). When the slope constant is decreased even further,
more amplitude is found at high spatial frequencies (Fig. 7c),
where cSIFE’s inhibition is weak (grey shaded area, Fig. 7c), so
total inhibition decreases. For cSIFE it thus seems that the
optimal balance between low and high spatial frequencies is
found at a slope constant close to 1. This hypothesis should be
tested in future work by selectively manipulating the alpha in
different frequency bands.

When changing one image parameter, other parameters
change too. For example, if we change the slope constant of an
image while keeping its total luminance constant (Fig. 7d), the
average amplitude spectra look quite different compared with
when we change the slope constant of an image while keeping its
contrast constant (Fig. 7e). Using our model (Fig. 5), we
see maximum inhibition to images with a slope constant close
to 1 when the contrast is fixed, but when the luminance is
fixed maximum inhibition is generated by images with a slope
constant of 0 (Fig. 7f). This means that we can verify the model
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Figure 6 | The hoverfly optomotor response depends on the slope

constant. (a) The yaw optomotor response of hoverflies walking on a

trackball setup. The random image (a¼ 1.2) was moving at 110� s� 1 and the

behavioural yaw output digitized at 1 kHz (N¼ 5, n¼43). The line under the

data shows the 10s peri-stimulus duration. Scale bar shows 10 deg per

second and 2 seconds. (b) The accumulated yaw optomotor response after

10 s stimulation with a natural (open symbols, Bushes25,28,29) or artificial

(filled symbols) image manipulated to have different a values. (c) The

accumulated optomotor response to the natural and random image

(replotted from c) as a function of the probability of the a being present in a

population of natural images (taken from the Gaussian curve fit in Fig. 2c).

Pearson correlation coefficient indicated, Po0.01. (d) The distribution of

effective RMS contrasts of the 109 images, after they have been low-pass

filtered from 1 c.p.d. (grey), together with a Gaussian curve fit (black). The

open and closed symbols show the optomotor response to the images

(replotted from a). In b–d the error bars show the s.e.m.
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(Figs 5, 7a–c) experimentally by recording cSIFE responses to
images with varied slope constants but other parameters fixed.
Note, however, that the models presented here only assume
spatial filters, and ignore temporal adaptation to, for example,
prevailing luminance conditions (see, for example (ref. 28,45)).

Previous work on cSIFE26 and other visual neurons in flies46,47

and mammals48 show a strong, nonlinear dependence on image
contrast. However, most of those experiments used sinusoidal
gratings or other experimenter-defined stimuli. Here we showed
that cSIFE’s inhibition increased with increasing effective RMS
contrast in the unmanipulated natural scenes (Fig. 2e). This
would suggest that the strength of the inhibition could be caused
by the contrast of the images, and not by the slope constants.
However, there was no correlation between the inhibition and the
effective RMS contrast in the manipulated scenes (Fig. 4b), but a
clear dependence on image slope constant (Fig. 3). Neither in
behavior could we see a correlation between the effective RMS
contrast and the optomotor response (Fig. 6d), despite contrast
previously being shown to affect fly optomotor responses49,50.
This suggests that the natural scene responses that we have
recorded depend more on the slope constant than on image
contrast. Indeed, previous work investigating LPTC responses to
natural scenes, showed that the velocity tuning is remarkably
resilient to the contrast of the images25,29, despite contrast having
a large effect on the LPTC response to sinusoidal gratings46,47. It
is thus non-trivial to directly compare the response dependence
on image contrast between simple experimenter-designed stimuli
and more naturalistic images.

Psychophysics show that the output of the human visual system
is tuned to the amplitude spectra of natural scenes40,41,51. Our
finding that the behavioural optomotor response of hoverflies is
tuned to the slope constants typical of natural scenes provides
further evidence for analogy between the human and insect visual
systems. In human observers, different spatial frequencies serve

different roles, so that for example low spatial frequencies are used
for quick scene categorization6. If the a of an image is artificially
increased, the resulting image appears to human observers as more
blurry. Similarly, in a photo a higher a is typically induced by
features that are blurry, either because they are out of focus, or
because they were moving during the exposure time4. Human
observers are very good at predicting the correct a of previously
unseen natural images4. However, some scenes that are not
perceived by human observers as blurry have inherently high a’s.
These include closeup photos of natural objects such as flowers and
leaves, and human faces and portraits52.

Our description of the responses of a single higher order visual
neuron and a behavioural output that match the spatial statistics
of natural scenes provide an example of striking similarity
between higher order neural processing in the mammalian and
invertebrate visual systems, similar to what has previously been
shown for peripheral visual processing53–55. Despite having vastly
different optics56, and phototransduction mechanisms57, flies and
mammals appear to share the neural processing of natural scenes
(see also24,58,59).

Methods
Images. For analysis of image statistics we used 104 landscape images from a public
library (http://tabby.vision.mcgill.ca/html/LandWater1.html)33 and images previously
used by us25. In electrophysiology we selected five naturalistic images from a larger
dataset of over 20 images used previously in investigations of motion vision responses
in the hoverfly25,28,29. In addition, we selected a filtered random noise image30, which
has also been used previously to investigate motion vision in hoverflies. Since we
originally believed that contrast was the determining factor, we opted to use a
random noise image with an RMS contrast of typical natural scenes (see Fig. 2e). In
addition, we generated a white noise texture in Matlab by assigning each pixel in a
480� 640 matrix a pseudo-random value from the uniform distribution and linearly
rescaling the pixels from 0 to 255. For image analysis we assumed that the images
from the database were 100� wide. For the images used in the experiments we
calculated the subtense as seen by the hoverfly during experiments, and quantified
image data for the part of the image seen by the hoverfly.
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To calculate the distribution of slope constants (a’s) across the images
(n¼ 109), we converted them to greyscale and used a Fourier transform to extract
the amplitude spectrum (for step-by-step guides, see Supplementary Methods and
Supplementary Figure 1). We quantified the average amplitude across all
orientations as a function of spatial frequency, and plotted this on a log–log scale.
The slope constant of the amplitude spectrum (image a) was identified by fitting a
linear function to the average amplitude spectrum between 0.06 and 1 c.p.d.
(similar to refs 4, 9, 11).

We calculated the RMS contrast13,34 using the function:

RMS ¼ 1
n� 1

Xn

i¼1
ðxi � xÞ2

� �1=2
ð2Þ

where n is the number of pixels, xi is a normalized grey level value between 0 and 1
and �x is a mean normalized grey level:

x ¼ 1
n

Xn

i¼1
xi ð3Þ

Before calculating the RMS contrast we bandpass filtered the images between
0.06 and 1 c.p.d. to take the sensitivity of cSIFE into account26, or low-pass filtered
the images from 1 c.p.d. to take the optics into account32. The RMS contrasts of the
bandpass filtered images were used to analyse electrophysiology responses and the
low-pass filtered images to analyse behavioural responses. Table 1 shows the slope
constants (a’s) and RMS contrasts for all images used in the experiments.

We manipulated the slope constants as described in Tolhurst and Tadmor41.
Briefly, we first converted each image to greyscale (for step-by-step guides, see
Supplementary Methods). Then we performed a two-dimensional Fourier
transform and calculated the amplitude spectrum, which is the orientation-
averaged amplitude as a function of spatial frequency. We then divided the
Fourier-transformed image by its amplitude spectrum to get a flat one, with an a of
0. By multiplying the result with the coefficient (1þ k*f-a), where k is a constant,
we could generate any desired image a. By then doing an inverse Fourier transform
and rescaling the image matrix from 0 to 255, we recreated the images, but now
with a different a.

Electrophysiology. Eristalis tenax larvae were collected from cow dung at
Cederholms Lantbruk. The larvae were brought to the laboratory to pupate and
hatch in a 12:12 h light:dark cycle at B22 �C. After hatching, adult flies were stored
in a fridge (at 5 �C). Twice a week the hoverflies were brought to room temperature
and fed ad libitum with pollen, honey and water. At experimental time the hoverfly
was immobilized with a bee wax and resin mixture. The head was tilted forward
and a hole cut over the left lobula plate. The fly was placed 12–13 cm in front of a
linearized CRT monitor with a temporal resolution of 160Hz and a spatial reso-
lution of 640� 480 pixels, corresponding to B100� 75 degrees of the fly’s field of

view. Visual stimuli were displayed using Flyfly (www.flyfly.se) and the psycho-
physics toolbox (psychtoolbox.org) in Matlab (www.mathworks.com).

We recorded intracellular responses using sharp alumino silicate electrodes
pulled on a P-1000 Brown–Flaming electrode puller (Sutter instruments,
San Francisco). Data were amplified with a BA-03X amplifier (NPI electronics,
Germany) and 50Hz noise reduced with a Humbug (Quest Scientific, Canada).
The data were acquired and digitized at 10 kHz using a NiDAQ 16 bit
data acquisition card (NI USB-6210, National Instruments) and the data
acquisition toolbox in Matlab. cSIFE neurons were identified based on their
non-directional excitation to the motion of a sinusoidal grating (8�, 5Hz, Fig. 1a,
N¼ 16) and their inhibition to the same gratings when stationary (8�, 0Hz, Fig. 1b,
N¼ 16)26.

Data were analysed using Matlab. The spontaneous rate was calculated for
500ms pre-stimulus onset (‘spont’, Fig. 1d). Response inhibition was calculated for
780ms starting 180ms post-stimulus onset (‘inhib’, Fig. 1d). Repetitions (n) within
one neuron were averaged before averaging across animals (N). All responses are
shown as average number of action potentials per second, with error bars
indicating s.e.m.

Behaviour. To investigate the optomotor response we used a trackball setup as
described previously60. Two optical sensors (extracted from Razer Imperator
ergonomic gaming mice, Razer Inc) provided information about the ball’s motion
(for equations see, for example,61) and our in-house Flytracker software written in
Matlab digitized the data at 1 kHz for offline analysis. Wing-fixed, tethered E. tenax
hoverflies were placed on the air supported trackball (a 1.45 g styrofoam ball,
50mm diameter), 8 cm in front of the CRT screen. During each trial a panorama
rotated at 110� s� 1 for 10 s. We used two panoramas: Bushes25,28,29, and the
random noise image described above. Between trials the screen was left at mid
luminance for a minimum of 2 s.

We quantified the accumulated yaw walked during the 10 s of stimulus motion.
Before averaging the accumulated yaw across trials, we removed statistical outliers,
defined as trials where the response deviated more than 2 s.d. from the mean. The
data in the figures show the mean across trials (n)±s.e.m., where N¼ 5 for the
Random image and N¼ 5 for a¼ 0.4 and 1.6; N¼ 2 for a¼ 0.8 and N¼ 6 for
a¼ 1.2 for the Bushes image.

Statistics. Statistical analysis was done using Graphpad Prism software (La Jolla,
CA, USA). For statistical analysis of significance we performed two-way ANOVAs,
followed by Bonferroni correction for multiple comparisons, with significance set
to Po0.05.

We quantified the frequency distribution of image parameters for the 109
images using the histogram function in Prism. We then fitted the probability

Table 1 | Image slope constants and contrasts.

Figure Image a Contrast (electrophysiology) Contrast (behaviour)

1, 2, 5 Hill 1.0731 0.1346
1, 2, 5 Outdoor 1.2142 0.1018
1, 2, 5 Rockgarden 0.9978 0.0692
1, 2, 5 Shadow 1.1619 0.1196
1, 2, 5 Tree 1.0845 0.0976
1–2 Random noise 1.8024 0.0830
3–4 Random noise 0.0001 0.1618
3–4 Random noise 1.0000 0.1232
3–4 Random noise 1.9982 0.1261
3–4 Hill 0.0003 0.1086
3–4 Hill 1.0000 0.1290
3–4 Hill 1.9994 0.1437
3–4 Shadow �0.0006 0.0846
3–4 Shadow 1.0000 0.1136
3–4 Shadow 1.9993 0.1375
6 Random panorama 0.4110 0.1428
6 Random panorama 0.8276 0.1208
6 Random panorama 1.2505 0.1255
6 Random panorama 1.6625 0.1637
6 Bushes panorama 0.3881 0.0924
6 Bushes panorama 0.7719 0.1186
6 Bushes panorama 1.1820 0.1592
6 Bushes panorama 1.5644 0.1710

RMS, root-mean square.
The data show the slope constants (a’s) and the effective RMS contrasts of the images used in the study. For analysis we used the part of the image seen by the hoverfly. The slope constant (image a)
was calculated by polynomial fitting between 0.06–1 c.p.d. The effective RMS contrast for the images used in electrophysiology was calculated after bandpass filtering the images between 0.06–1 c.p.d.
The effective RMS contrast for the images used in behaviour was calculated after low-pass filtering the images from 1 c.p.d.
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distribution with a Gaussian function using least squares optimization:

PðxÞ ¼ A�exp � x�M½ �2

2W2

� �
ð4Þ

Where P is the probability, A the amplitude of the function, M its peak position
and W defines the width of the function. From the Gaussian function we could
extract the probability measure of a parameter (that is, a or effective RMS contrast)
being present in a natural scene. The probability (P) values for the images used in
recordings were then correlated with the biological response to the same image
using Pearson’s product-moment correlation.
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