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Reconstructing the transport history of pebbles
on Mars
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The discovery of remarkably rounded pebbles by the rover Curiosity, within an exhumed

alluvial fan complex in Gale Crater, presents some of the most compelling evidence yet

for sustained fluvial activity on Mars. While rounding is known to result from abrasion by

inter-particle collisions, geologic interpretations of sediment shape have been qualitative.

Here we show how quantitative information on the transport distance of river pebbles can be

extracted from their shape alone, using a combination of theory, laboratory experiments and

terrestrial field data. We determine that the Martian basalt pebbles have been carried tens of

kilometres from their source, by bed-load transport on an alluvial fan. In contrast, angular

clasts strewn about the surface of the Curiosity traverse are indicative of later emplacement

by rock fragmentation processes. The proposed method for decoding transport history from

particle shape provides a new tool for terrestrial and planetary sedimentology.
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G
ale Crater (Fig. 1), the landing site for the Mars Curiosity
rover, is estimated to have formed B3.6 billion years
ago1. Numerous erosional drainage networks debouch

into the crater, which have built a series of merged alluvial fans
that fringe the interior of the crater rim. Curiosity landed on top
of an exhumed alluvial fan complex, and only several hundred
metres from the distal end of a younger, better preserved alluvial
fan, the Peace Vallis fan (Fig. 1). This fan exhibits a steep and
channelized upper portion (slope, SE3%, length E10 km) that
transitions into a less steep, unchannelized lower region (SE1%,
length E3–4 km)1. The discovery of rounded pebbles, near
the landing site at Bradbury Rise, provided on-the-ground
confirmation of a fluvial depositional environment for the
exhumed Gale crater sedimentary rocks that were of uncertain
origin prior to landing2. Deposits from several sites contained
rounded to sub-rounded particles, millimetres to centimetres in
diameter, that were mixed with sand to form conglomerates2,3.
A paleohydraulic reconstruction indicates that the gravel was
transported as bed load—that is, by rolling, sliding and hopping
along the river bed—and this interpretation is strongly supported
by the observed (imbricated) fabric of the pebbles preserved in
outcrop2,4. Fluvial deposits with interstratified conglomerate
facies extend across a distance of at least 9 km, and define

a stratigraphic succession that is at least many tens of
metres thick5–7. These outcrops are exhumed alluvial fan
deposits that predate the Peace Vallis fan, revealing a complex
depositional history. Based on terrestrial studies, it was suggested
that a transport distance of at least ‘several kilometres’ was
required for fluvial abrasion to produce the observed rounding,
and, therefore, that the associated climate at Gale Crater, Mars
was very different from the hyperarid and cold conditions of
today2. Determining how much abrasion has occurred for these
pebbles, and how far they have travelled, could significantly
improve reconstructions of paleoenvironment and provenance.
To interpret these data further, we seek a generic and quantitative
pattern for the shape evolution of pebbles under collisional
abrasion by bed-load transport.

For the idealized case of a single particle striking a wall, it has
been demonstrated that abrasion is a diffusive process; that is, the
erosion rate at any point on the surface of a pebble is proportional
to the local curvature8,9. Collision among like-sized particles is
different in detail, but remains predominantly diffusive10,11. As a
consequence, initially blocky particles first rapidly round as high-
curvature regions are worn off, and then this rounding slows as
the particle becomes rounder. Abrasion rate depends on collision
energy, frequency of impacts and material properties12,13, factors
not considered in the idealized geometric model (ref. 14 for a first
attempt to include collision energy). However, by casting shape as
a function of mass loss—rather than time or distance—this model
was shown to accurately predict the evolution of an initially
cuboid particle colliding with the wall of a drum9. Of course the
reality of pebble abrasion in a natural river is far from this simple
picture. Some important differences are: collisions are typically
among numerous particles having a variety of sizes; particles
move as bed load driven by a turbulent fluid; and initial particle
shapes are varied, and not cuboid. Despite these differences, a
recent field study demonstrated that the downstream evolution of
pebble shape in a natural river exhibited patterns entirely
consistent with the idealized model15.

In this paper, we present new experimental results and analysis
of terrestrial field data, that suggest that the shape of river-
transported pebbles is a unique function of the fractional mass
lost due to abrasion. We use this result to show how the distance
a pebble has travelled from its source may be estimated using
shape alone. This new tool is validated on an alluvial fan on
Earth, and then used to interpret the Martian conglomerates. Our
findings indicate that the rounded Martian pebbles have been
transported tens of kilometres, and point to the northern rim of
Gale Crater as a likely source.

Results
New experiments and field data. We seek quantitative relations
between pebble shape and mass loss for particles transported
as bed load. For comparison of Martian and terrestrial data,
shape parameters must be estimated from two-dimensional
image data (Fig. 2) and be sensitive to abrasion. Based on
previous work9,15, we select the following: isoperimetric ratio
(or circularity), IR; convexity, C; and the ratio of short and long
axis lengths (axis ratio), b/a (Fig. 3). Although the qualitative
evolution of pebble shapes under collisional abrasion is general
(Fig. 2a), quantitative trends depend on the initial shapes of
particles9. In the headwaters of rivers, the initial particles are
typically rock fragments produced from weathering16. It has
recently been discovered that rock fragments generated from a
variety of processes—from slow weathering to gentle breakage to
explosion—exhibit similar shape characteristics, as a consequence
of brittle fracture17. This fortunate convergence implies that
pebble shape evolution trends may also be quantitatively similar.
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To examine these ideas, we conducted a new set of experiments
that simulated abrasion in a more natural manner than our
previous work9. Eighty limestone fragments with a size range of
a¼ 15–35mm were placed in a small rotating drum (diameter
20 cm, rotation rate 50 r.p.m.) with a paddle, so that grains were
lifted and dropped causing inter-particle collisions (Fig. 2b). The
pebbles were removed from the drum after a certain number of
rotations (Methods), and their shapes and mass were recorded
(Fig. 3). Shape evolution follows the same trends as previous
single-particle results9, but the curves are shifted in space due to
the difference in initial particle shapes.

We compare field data from a steep, mountain river in Puerto
Rico15 to these new experiments, by re-casting downstream shape
changes as a function of mass loss (Methods). We note first that
the initial shapes of the Puerto Rico volcaniclastic pebbles are,
within error, identical to the crushed limestone particles used in
the experiments (Fig. 3). Shape evolution trends are also in
reasonable agreement with experiments, given the vast differences
in transport conditions between the drum and the natural river
(Fig. 3). This agreement supports the possibility of a generic,

quantitative relation between pebble shape and mass loss for
collisional abrasion.

To explore the consequences of this finding in a depositional
environment more comparable to the Martian deposits, we
collected downstream pebble shape data on the Dog Canyon
alluvial fan in New Mexico, USA (Fig. 2c). Particle shapes were
determined from images while mass was not measured, so the
data are comparable to available measurements on Mars. The
profile of Dog Canyon fan is similar to Peace Vallis—which may
or may not be representative of the older exhumed alluvial fan
deposits—although shorter in length. The upper fan is channe-
lized and steeper (SE4%, length E2 km), with limestone gravel
that decreases from B40 to 20mm (similar to experiments).
Channels disappear at the gravel-sand transition, beyond which
lies a mixed sand-gravel region with a lower slope (SE1%)18. The
latter is indicative of an environment that would produce
conglomerates similar to those seen on Mars. Initial pebble
shapes at the apex of the fan are slightly more rounded than
fragments; this is to be expected, as some abrasion is likely to
occur within the upstream canyon (Fig. 3). Downstream shape
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Figure 2 | Qualitative shape trends from theory and observation. (a) Shape evolution of a single particle constantly colliding with a flat surface is

described by Firey’s equation8 n¼ ck, where n is the speed of abrasion in the inward normal direction, c is a constant and k is the local curvature. This is

illustrated on a quadrangle. b–d show example pebbles from each system studied, with comparable shape parameters as indicated beneath each image

(IR: circularity, C: convexity, b/a: axis ratio, Fig. 3). (b) Sketch of the rotating drum experiment, limestone pebble samples (aE15–35mm) and mean

shape parameter values after 0, 10.6 and 20.7% mass loss. (c) Aerial image of Dog Canyon fan, example limestone pebble contours (aE20–40mm)

and mean shape parameter values at x¼0, x¼ 1.18 and x¼ 2.10 km. Grains were collected from the active channel denoted by the blue line.

(d) A few Martian grain contours (bE2–32mm; ref. 2) and mean shape parameter values at Sols 389, 27 and 356. Image credits: (c) Google Earth;

(d) NASA/JPL-Caltech/MSSS.
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evolution appears similar to the other data; however, it cannot be
directly compared since mass loss is unknown.

It has been demonstrated that the mass of pebbles (M)
decreases exponentially with downstream distance (x) in alluvial
rivers,

M ¼ M0e
� kx; ð1Þ

where k is an empirically determined ‘diminution coefficient’9,19

and M0 is initial mass. This decrease is caused both by abrasion,
and by size-selective sorting in which less massive particles travel
farther downstream20,21. Both processes contribute, in unknown
proportions, to the observed value for the diminution coefficient,
that is, k¼ kaþ ks. It is generally accepted that sorting is
dominant over abrasion in many rivers (ks44ka); but abrasion
is still significant, and is likely dominant in settings where
sediment storage is limited. It has recently been shown that the
effects of abrasion (ka) may be isolated by examining pebble
shape9,15. If we assume that the derived shape/mass-loss curve is

general, the Dog Canyon shape data indicate a mass loss due to
abrasion of 15% (M/M0¼ 0.85) over x¼ 2 km (Fig. 3). (Volume
estimates from measured size indicate an overall mass reduction
of close to 90%, consistent with the dominance of size-selective
sorting in this strongly depositional alluvial fan setting18.) The
resulting estimate for the abrasion diminution coefficient from
equation (1), kaB10� 1 km� 1, is consistent with previous
experiments that simulated collisional abrasion of similar-sized
limestone pebbles driven by a water current12. This agreement
indicates that pebble shape alone may be used to provide an
estimate of travel distance.

Analysis of Martian rocks. We measured the shape of 261 and
304 particles at 2 distinct locations across Bradbury Rise (Fig. 1),
where rounded pebbles associated with conglomerate deposits
were identified2,3,22,23. We did not attempt to measure particle
size from these oblique images, but previous studies indicate a
range of 2–32mm with a median diameter bE10mm. Contours
of unobscured pebbles were traced with a resolution of B70
contour points per particle (Methods). We used the same
methods also to examine the shape of angular clasts observed
during Curiosity’s traverse, at three selected locations (Fig. 1).
These angular clasts are strewn about the Martian surface, are not
related to the ancient lithified conglomerates, and have been
interpreted as more recently emplaced impact breccia clasts3.
They are readily distinguished from the ancient stream-
transported rounded pebbles by their shape and lack of
association with any outcrop (Figs 2d and 1f). We remark that
the hypothesized flow direction on the alluvial fan complex differs
from the rover’s transect1, therefore we did not attempt to find
any trend in the shape data along the rover’s transect; the main
consideration in selecting the sites was to obtain a sufficient
sample size of particles within a single image.

Measured shape parameters for the angular clasts are nearly
identical to the terrestrial fragments (Fig. 3, Supplementary
Fig. 1), indicating these particles were formed by fragmentation
processes17 and have experienced no fluvial transport. Although
we do not have shape measurements for particles at the
headwaters of the streams feeding into Gale Crater, we infer
that observed clast shapes are likely representative of the initial
(pre-abrasion) conditions for the rounded pebbles. The rounded
pebbles are distinct from the clasts; all shape parameters indicate
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Figure 3 | Quantitative shape evolution as a function of mass loss. Upper

left insets: definition of shape parameters. (a) Circularity (or isoperimetric
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the pebble’s projection in the a� b plane42. (b) Convexity, C¼A/Ahull,

where Ahull is the area of the convex hull15. (c) Axis ratio, the ratio of the

short (b) and long (a) axis lengths. Lower right insets: evolution of shape

parameters against transport distance from the apex of Dog Canyon alluvial

fan. Neighbouring sites were paired and averaged to form 11 data points

from the 22 sites sampled (Methods). Main diagrams show evolution of

shape parameters against mass loss in the experiment (black dots), and in

the river from Puerto Rico (grey triangles)15. Coloured markers represent

mean shape parameter values, with error bars showing the s.e. Rounded

Mars pebble values (red markers, Supplementary Table 1) were projected

onto the experimental curves (red horizontal arrows) to estimate mass loss

(red vertical arrows); the difference in shape values between the two
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any trend. Blue markers represent angular clasts from Mars. Dog Canyon
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that significant abrasion has occurred (Fig. 3, Supplementary
Table 1). According to the terrestrial shape evolution curves, the
changes in IR and C associated with the difference between
angular clasts and rounded pebbles correspond to B10 and 20%
mass loss, respectively, for the two sites. Axis ratio measurements
allow for up to 45% mass loss, although there is much greater
uncertainty (Fig. 3).

Discussion
Peace Vallis—and, presumably, the exhumed underlying fan
associated with the Bradbury rise conglomerates—is similar to the
Dog Canyon alluvial fan in many respects. One important
difference, however, is that the Gale pebbles are basaltic in
composition rather than limestone. Experiments by Attal and
Lavé12 indicate that the abrasion rates for (igneous) volcanic
rocks, although highly variable, are an order of magnitude smaller
than for limestone under identical transport conditions.
Accordingly, we expect kaB10� 2 km� 1; this value is also
consistent with compiled field data for rivers with negligible
sorting (that is, kEka) (ref. 20). If we adopt this value for ka, and
take a representative value of 20% mass loss, equation (1) would
produce an estimate that the pebbles exposed at Bradbury Rise
have been transported a distance of xE20 km from their source.

The above calculation does not take into account the reduced
gravity (g) on Mars (for example, ref. 24). The relation between
pebble mass loss and downstream distance should be a function
of: the energy of individual collisions; and the hop length of an
individual pebble, which determines the number of collisions
per unit distance downstream9,13. Abrasion rate is proportional
to kinetic energy¼ 1/2mv2s , where m and ns are pebble mass
and collision velocity, respectively12,13,25. We make the
simplifying assumption that ns is proportional to pebble settling
velocity, which may be approximated in the large-particle limit
(b44100mm) as ws �

ffiffiffiffiffiffiffiffi
Rgb

p
where R is relative submerged

density26. From this, we might naively expect that ka;Mars=ka;Earth
¼ w2

s;Mars=w
2
s;Earth ¼ gMars=gEarthE0.38. Considering pebble hop

length, it has been shown experimentally that a characteristic
hop-length scale (ld) of particles in bed load is ld¼ ustdBbus/ws,
where us and td are the particle horizontal velocity and settling
time, respectively27. Assuming gravity-driven (normal) flow
conditions, us � ffiffiffi

g
p ffiffiffiffiffi

hS
p

�
ffiffiffiffiffiffiffiffiffiffi
t�Rb

p� �
, where h is river flow

depth and t� is the threshold dimensionless stress for initiation
of motion27. If, following others28,29, we assume that t� is the
same for Earth and Mars, we see that us � ffiffiffi

g
p

. From these
arguments it appears that the smaller g of Mars reduces both the
settling velocity and horizontal velocity of sediment grains, the
latter because the smaller gravitational force results in slower
Martian river-current velocities. Considering the hop length of
pebbles, both particle velocity terms scale as

ffiffiffi
g

p
and thus gravity

cancels out of the problem. This stands in contrast to the case of
aeolian (wind-blown) bed-load transport on Mars, where it has
been predicted that particle hops are farther and faster than on
Earth30; however, this is due mostly to the large differences in the
density and viscosity of the atmosphere between the two planets.
Fluvial transport is (presumably) driven by water on both planets,
and its density and viscosity vary only modestly with
temperature. It is worth noting that, in the small particle limit
(boo100mm), the settling velocity scales linearly with g
(ref. 26), and thus the hop length of sand-size and smaller
particles would be expected to depend on gravity as ld � 1=

ffiffiffi
g

p
.

We deduce from this analysis that, to first order, reduced
collision energy is likely the dominant effect of gravity on pebble
abrasion in bed load. The same may also be true for the case of
erosion of bedrock channels by bed-load abrasion. From the

calculations above, incorporating this effect changes the estimated
transport distance of the Martian pebbles by a factor of 1/0.38 to
xE50 km. Previous studies used compositional information to
suggest that the source area for the conglomerates was the
northern rim of Gale Crater5,31. Our quantitative estimates for
transport distance support this view. In all likelihood, fluvial
transport has carried the pebbles tens of kilometres from their
source. The distance to the northern rim of Gale Crater, and the
outlet of an erosional drainage basin, is B30 km (Fig. 1). We
conclude that the rounded pebbles were sourced from fluvial
erosion of the northern rim, and were deposited along the lower
reaches of an alluvial fan complex. Subsequent erosion, likely by
wind, has exhumed the fan to produce intermittent exposures
across Bradbury Rise.

It is difficult to assign uncertainty estimates to the calculations
presented here, and we emphasize that our results should be
interpreted in terms of order of magnitude. Transport equations
account for the influence of gravity on dimensional grounds, but
include empirical coefficients determined from terrestrial data
that might be influenced by gravity in unknown ways. From a
measurement perspective, it appears that the IR and convexity
provide more reliable estimates for mass loss than does the axis
ratio. One reason for this is that—as pointed out previously9—
pebbles may lose close to half of their mass without a significant
change in the axis ratio. The parameters IR and C are most
sensitive to the initial phase of abrasion, while b/a is least
sensitive. Another possible effect worthy of examination is the
influence of grain fabric on the axis ratio. While Domokos et al.17

found a universal distribution of axis ratios for fragmented rocks
of many lithologies, the samples and simulations examined
homogeneous materials. The range of axis ratios for natural
fragments formed from rocks with significant heterogeneity
(for example, fractures and foliations) may be more varied.

This study takes advantage of two general principles of particle
shape, to provide a new tool for estimating the transport distance
of fluvial pebbles. The first is that particles formed by
fragmentation, regardless of the particular process, have similar
shape17. This recently established result from terrestrial studies17

is now extended to Mars, and is consistent with the hypothesis
that the angular clasts observed along Curiosity’s traverse are
impact breccia3 (although aeolian abrasion may also form angular
ventifacts32). The second principle is that the shape evolution of
these initially fragmented particles under collisional bed-load
abrasion follows a single curve, when cast as a function of mass
loss. This is supported by the similarity of results from a natural
river and a simple drum experiment, and their consistency with
the geometric theory of abrasion9,11. Together these two ideas
provide a means to estimate mass loss due to abrasion from
bed-load transport, using shape alone. Transport distance may
then be estimated using equation (1), if a value for ka can be
reasonably constrained. From field and experimental data, we
determine that ka is of order 10� 2 km� 1 for common quartzite
and igneous gravel in rivers on Earth, and propose that this
parameter may scale linearly with gravity resulting in reduced
abrasion rates on Mars.

The technique applied here to ancient Martian conglomerates
could just as well be used for ancient and modern deposits on
Earth and river pebbles on other planetary bodies such as Titan33.
Determining mass loss from pebble shape could help to
determine the contribution of pebble abrasion to sand and silt
production in rivers34. Estimating transport distance from shape
provides a new means for assessing sediment provenance. The
theory underlying shape evolution is purely geometric11, and
therefore should apply to all scales so long as the basic
assumptions are fulfilled. It has already been shown that the
geometric model captures salient features of the shapes of

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9366 ARTICLE

NATURE COMMUNICATIONS | 6:8366 | DOI: 10.1038/ncomms9366 |www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


asteroids abraded by collisions with meteorites35. We propose
that our findings on pebble shape evolution may be extended to
aeolian settings, which could find similar applications in sediment
provenance studies and for quantifying dust production resulting
from sand abrasion34,36. This would also allow grain-scale rover
measurements to inform our evolving understanding of the
frequency and magnitude of dune activity on present-day
Mars37–39. A quantitative comparison between fluvial and
aeolian environments is not yet possible, as data regarding the
latter are insufficient at present. A recent study of sand shape in a
terrestrial gypsum dune field40 is encouraging, as reported trends
are qualitatively consistent with our findings.

Methods
Data collection. Laboratory particles were created from soft limestone blocks with
initial sizes in the range 50–70mm, sourced from Sóskút, Hungary. These rocks
were chosen because: they are easily crushed, allowing creation of a desired initial
particle size range; and they erode quickly by abrasion—but do not fragment—in
the drum, so experiments may be conducted efficiently. The blocks were crushed
with a hammer to produce naturally shaped fragments in the size range of
a¼ 15–35mm, similar to Mars pebbles and also Dog Canyon. We checked that
their shape distribution matched that of natural rock fragments, which are known
to follow a universal distribution regardless of the rock type17 (Supplementary
Fig. 1). The crushed limestone grains were abraded at 50 r.p.m. in the rotating
drum. Using a drop height of h¼ 20 cm equal to the drum diameter, collision
velocity may be approximated as

ffiffiffiffiffiffiffi
2gh

p
¼ 2m s� 1; this produces collision energies

comparable to those expected for fluvial transport of similar-sized grains34. The
experiment was stopped every n rotations, at which point: dust was removed from
the drum to prevent frictional abrasion; the total weight of the grains was
measured; and all grains were imaged on a large black board, which provided high
contrast (Fig. 2). The interval n was increased approximately logarithmically as the
experiment progressed, to sample at intervals of roughly equal mass-loss fraction
(equation (1)); n¼ 5 from 0 to 10 rotations, n¼ 10 from 10 to 80 rotations, n¼ 20
from 80 to 200 rotations, n¼ 50 from 200 to 1,000 rotations, and n¼ 100 from
1,000 to 2,500 rotations.

Grain size data from the Dog Canyon alluvial fan were reported previously18,
including details on the setting and sampling locations. Here we report new shape
data measured at these same locations, which represent 22 cross-sections of the
active channel (Fig. 2). At each site, 20 pebbles were collected from the channel
bottom following the Wolman pebble count method41. Each pebble was placed on
a rigid, high-contrast board and imaged. Since sample size at each site was small,
spatially neighbouring data were paired to form 11 data points on Fig. 3, thus
each of them averaging the data of 40 pebbles. Pebble shape data for the Rio
Mameyes—the mountain stream in northeastern Puerto Rico referenced in this
paper—were collected following a similar procedure. Main results and details on
the sampling and imaging methods were reported previously15. Shape data from
that study were re-plotted here against fraction mass loss resulting from abrasion
(instead of transport distance), where the mass-loss fraction was estimated from
M=M0 ¼ e� 0:053x based on a numerical model fit to the data15 (Discussion in the
cited paper). This translates to a value ka¼ 0.053 km� 1 in equation (1).

Image analysis. Grain contours were manually traced in Adobe Photoshop for the
Martian pebbles, since image contrast was too low for automated methods. For the
Dog Canyon fan pebbles, contours were semi-automatically traced by the Quick
Selection Tool in Adobe Photoshop, which is able to detect edges of objects based
on contrast and colour changes between the object and its background. This same
procedure was used to process the Puerto Rico river pebbles15 and laboratory
experiments. After determining the contours, all images were converted to binary
images (Supplementary Fig. 2) and imported to Matlab.

Measured shape parameters are sensitive to the resolution of the contours,
a factor that has not been quantitatively assessed up to now. We examined this
scale dependence by downsampling experimental images at different resolutions
(Supplementary Fig. 3), which showed a significant effect. To circumvent this issue
and allow comparison of data from different settings, pebble contours should be
determined from approximately the same resolution for all images. The resolution
for individual Martian pebbles is very low, on average 70 pixels per grain contour.
Accordingly, all other images were resized so that the mean resolution was
B70 pixels per grain contour for each population (Supplementary Table 2).
Resizing was performed with Matlab’s bicubic interpolation method, where the
output pixel value is a weighted average of pixels in the nearest four-by-four
neighbourhood.

Martian images were checked for statistical convergence of shape parameters,
and results verify that sample numbers for each image were sufficiently large
(Supplementary Fig. 4). This is reflected also by the very small errors of the mean
values (Supplementary Table 1).
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