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An intrinsic timer specifies distal structures
of the vertebrate limb
Patricia Saiz-Lopez1,*, Kavitha Chinnaiya2,*, Victor M. Campa1, Irene Delgado1,w,

Maria A. Ros1,3 & Matthew Towers2

How the positional values along the proximo-distal axis (stylopod-zeugopod-autopod) of the

limb are specified is intensely debated. Early work suggested that cells intrinsically change

their proximo-distal positional values by measuring time. Recently, however, it is suggested

that instructive extrinsic signals from the trunk and apical ectodermal ridge specify the

stylopod and zeugopod/autopod, respectively. Here, we show that the zeugopod and autopod

are specified by an intrinsic timing mechanism. By grafting green fluorescent protein-

expressing cells from early to late chick wing buds, we demonstrate that distal mesenchyme

cells intrinsically time Hoxa13 expression, cell cycle parameters and the duration of the

overlying apical ectodermal ridge. In addition, we reveal that cell affinities intrinsically change

in the distal mesenchyme, which we suggest results in a gradient of positional values along

the proximo-distal axis. We propose a complete model in which a switch from extrinsic

signalling to intrinsic timing patterns the vertebrate limb.
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A
n enigmatic problem in developmental biology is how the
positional values along the proximo-distal axis (that is,
humerus to digits) of the vertebrate limb are specified.

Although this has been a topic of intense investigation, a
consensus model has not been reached. Currently, a variation on
a two-signal model involving proximal signals from the trunk and
distal signals from the apical ectodermal ridge (AER)—the
thickened epithelium that rims the distal mesenchyme of the
limb—is favoured. Mercader et al.1 proposed a model in which
AER-derived fibroblast growth factors (FGFs) repress a proximal
programme that specifies the stylopod (that is, humerus), leaving
it unclear as to how the more distal zeugopod (that is, radius/
ulna) and autopod (that is, wrist/digits) structures are specified.
Instead, Mariani et al.2 suggested that instructive FGF signals
specify presumptive autopod structures early, and that then
intercalation between this domain and the presumptive stylopod
results in the specification of the zeugopod. However, this
sequence of proximo-distal specification has not been confirmed,
as no molecular markers are known. Recently, work on the chick
limb has shown that the stylopod is specified by diffusible signals,
the identity of which is considered to be retinoic acid3,4, although
this is controversial5. Therefore, how the zeugopod and autopod
segments are specified remains contentious and some patterns of
gene expression in the chick wing bud are not consistent with a
signal-based mechanism. Thus, Hairy2 (a gene involved in the
somitogenesis clock) displays an oscillatory expression pattern6

and Hoxa13 (an autopod marker), cannot be prematurely
activated by AER signals that maintain its expression7,8. It has
been proposed that Hoxa13 expression is more consistent with
the earlier progress zone model9 (for recent discussions see refs
10,11). In the progress zone model, derived from embryological
experiments on the chick wing bud, timing by an intrinsic clock
operating in distal mesenchyme cells (the progress zone) is
proposed to specify proximo-distal positional values9. An
additional feature of this model is that extrinsic AER signals
give distal mesenchyme cells the competence to measure time
according to their own intrinsic clock.

To distinguish between intrinsic and signal-based timing
mechanisms for specifying the zeugopod and autopod segments,
we performed heterochronic transplants of small blocks of distal
mesenchyme cells (150 mm) from young green fluorescent protein
(GFP)-expressing12 donor chick wing buds underneath the intact
AER of older wild-type host wing buds: a procedure that

preserves the host limb bud architecture and incorporates the
donor tissue within the signalling environment of the host distal
mesenchyme. It is predicted that, if proximo-distal specification is
intrinsically timed, then grafts of HH20 distal cells made to older
(by 24 h) HH24 buds should behave according to the age of the
donor wing bud; but if fate is controlled by extrinsic signalling,
then the grafted cells should be re-specified and develop
according to the host age. Using this technique, we reveal that
distal cells develop according to their own age and that the
positional values of the zeugopod and autopod are progressively
specified in an intrinsically timed manner.

Results
The host environment appears to determine distal graft fate.
Earlier dye-based fate maps revealed that HH20 cells at the distal
mesenchyme of the chick wing give rise to the zeugopod (radius/
ulna), and at HH24, the autopod (wrist/digits)13,14. To see if our
grafting technique could replicate these earlier fate maps, we
performed homochronic grafts of 150 mm blocks of HH20 and
HH24 GFP-expressing chick wing distal tissue under the AER of
wild-type host buds (Fig. 1a,d). On days 11–12 of development,
the GFP-labelled cells gave rise to the same structures along the
proximo-distal axis as mesenchyme cells labelled at equivalent
stages with dyes13,14—zeugopod and autopod with HH20 grafts
(Fig. 1b,c—blue asterisks, j) and autopod only with HH24 grafts
(Fig. 1e,f—red asterisks, j). These fate maps show that grafts of
distal mesenchyme cells incorporate well and develop like host
tissue. To understand if extrinsic signals or an intrinsic timing
mechanism determines the proximo-distal positional values of
grafted cells, and hence the structures that they contribute to, we
made heterochronic grafts of blocks of HH20 distal tissue to
HH24 buds (Fig. 1g). Analyses of the fate maps on days 11–12
revealed that these grafts gave rise to structures distal to the
zeugopod (Fig. 1h,i—black asterisks, j) comparable with the
presumptive fate of host HH24 distal cells and not donor HH20
cells (Fig. 1j). Therefore, this finding suggests that the signalling
environment provided by the age of the host determines the
positional value of grafted chick wing distal mesenchyme cells.

Hoxa13 is intrinsically timed in distal cells. Previous evidence
suggests that AER-derived FGFs in the chick wing bud are
required to remove retinoic acid signals from the flank that
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Figure 1 | The environment appears to determine distal graft fate. Blocks (150 mm) of GFP-expressing (depicted as green in this and all schematic

representations) HH20 chick wing distal mesenchyme denuded of ectoderm and grafted under the AER of wild-type HH20 buds (a) give rise to structures

distal to the stylopod (n¼ 5/5, b,c, blue asterisks—j). GFP-expressing HH24 distal mesenchyme tissue grafted beneath the AER of wild-type HH24 buds

(d) give rise to structures distal to the zeugopod (n¼ 7/7, e,f, red asterisks—j). GFP-expressing HH20 distal mesenchyme tissue grafted beneath the AER

of wild-type HH24 buds (g) give rise to structures distal to the autopod (n¼ 8/8, h,i, black asterisks—j). Each asterisk represents the proximal boundary of

the grafted tissue for each experiment. Note, h-humerus; u-ulna; r-radius; 1, 2 and 3 are the digits in anterior to posterior sequence. Scale bars: 1mm.
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inhibit the epigenetically timed programme of expression of the
distal autopod marker, Hoxa13 (refs 7,8) (see normal expression
pattern—Supplementary Fig. 1). Therefore, this is not consistent
with the positional values of distal mesenchyme cells being
determined by the age of extrinsic signalling environment
(Fig. 1g–j). To address this discrepancy, we asked whether, in our
heterochronic grafting assay, Hoxa13 expression reflects the age
of the donor distal mesenchyme or the host-signalling environ-
ment. In control homochronic grafts of HH20 distal mesenchyme
cells made to HH20 buds (Fig. 2a), activation of Hoxa13
expression occurred concomitantly in host and donor tissue
and a normal pattern was observed after 24 h, showing that the
grafting process does not affect the dynamics of Hoxa13 tran-
scription (Fig. 2b,c, note serial sections hybridized with Hoxa13
and Gfp riboprobes to show the graft). However, in heterochronic
HH20 grafts made to HH24 buds (Fig. 2d), Hoxa13 expression in
the graft was undetectable until around 24 h after grafting
(Fig. 2e,f). In fact, transcripts were first detected in the
distal part of the grafted tissue (arrows—Fig. 2e,f—then at HH24)
and were absent in the proximal part (asterisks Fig. 2e,f),
despite the entire graft being surrounded by Hoxa13-expressing
host tissue (then at HH27—see also Supplementary Fig. 2). By
48 h, Hoxa13 was expressed throughout the graft (then at HH27)
and was indistinguishable from host tissue expression (then at
HH29, Fig. 2g,h). Together, these data show that, despite
the age of the extrinsic environment appearing to dictate the
proximo-distal level that heterochronic grafts contribute to
(Fig. 1), the activation of Hoxa13 expression is timed on
donor schedule. In addition, our results confirm that AER
signals, either directly or indirectly, are required for Hoxa13
induction, since grafts made to the presumptive zeugopod
do not express Hoxa13 (Supplementary Fig. 3). In addition,
the rapid proximal spread of Hoxa13 expression within the
graft suggests that the establishment of the mature Hoxa13
expression domain (Supplementary Fig. 1) is not just due to
proliferation of a small founder population of sub-AER HH22
distal mesenchyme cells15, but also due to transcriptional
initiation in progressively more proximal tissue. An alternative
explanation for the distal restriction of Hoxa13 expression in
heterochronic grafts is that more proximal cells selectively die,
but TUNEL analyses revealed no evidence of abnormal apoptosis
(Supplementary Fig. 2).

AER duration is timed by the distal mesenchyme. The AER is
maintained by signalling from the underlying mesenchyme16,17

and is required for limb outgrowth until it regresses at around
HH29/30 in the chick wing18. Therefore, since Hoxa13 expression
is intrinsically timed, we asked if the capacity to maintain the
AER is also an intrinsic property related to the age of the distal
mesenchyme, by examining Fgf8 expression. During normal
development, high-level Fgf8 expression abruptly terminates at
around stage HH29, first in the AER over the interdigits and then
over the digits19. In control homochronic grafts of HH24 distal
mesenchyme cells made to HH24 buds (Fig. 3a), after 48 h
(HH29), Fgf8 expression was indistinguishable between right-
hand experimental and left-hand contralateral buds (asterisks,
Fig. 3b–d). At 72 h (HH30), only residual Fgf8 expression could
be detected in left and right buds, showing that transcription was
terminated at the same time (asterisks, Fig. 3e–g). Instead, in
heterochronic grafts of HH20 distal tissue made to HH24 host
buds (Fig. 3h), after 48 and 72 h, Fgf8 was expressed in the AER
overlying the grafted tissue at higher levels than in the equivalent
AER region of the contralateral bud (asterisks, Fig. 3i–n).
Therefore, the expression of Fgf8 in the AER over the graft was
extended for about 24 h longer than in the corresponding region
of contralateral limb AER—equivalent to the difference in age
between host and donor tissue. This result demonstrates that
distal mesenchyme cells can locally maintain the AER in an
intrinsically timed manner.

Distal cell cycle parameters are intrinsically timed. We have
previously shown that the intrinsic behaviour of Sonic hedgehog-
producing polarizing region cells of the chick wing bud is linked
with stage-specific cell cycle parameters20. Therefore, to test if
adjacent non-polarizing distal mesenchyme cells have stage-
specific cell cycle parameters, we undertook flow cytometric
analyses at a range of stages between HH20 and HH30
(equivalent to the distal 150 mm tissue used in grafting
experiments). We found that the proportion of chick wing
distal mesenchyme cells in G1-phase increases from 56.9 to 64.5%
between stages HH20 and HH27 (B48 h), then abruptly to 85.7%
by HH30 (B96 h after HH20) indicating a loss of proliferative
potential (Fig. 4a) that is comparable with the cells of the
polarizing region20. Accordingly, the proportion of S-phase cells
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Figure 2 | Hoxa13 expression is intrinsically timed. In grafts of HH20 distal mesenchyme cells made to the same stage wing buds (a), the presence of the

grafted tissue does not perturb the establishment of a normal domain of Hoxa13 expression. Note that the graft cannot be distinguished by Hoxa13

expression at 24 h. (b,c) n¼ 2/2—note area of grafted tissue is shown by Gfp expression in a serial section (b) and dashed lines. In grafts of GFP-

expressing HH20 distal mesenchyme tissue grafted beneath the AER of wild-type HH24 buds (d) Hoxa13 is expressed in an intrinsically timed manner

shown 24 h (e,f—n¼ 3/3) and 48 h after grafting (g,h—n¼ 3/3). Note that the arrows in (e,f) indicate Hoxa13 expression in distal part of graft and asterisk

absence in proximal part of the graft. Scale bars: 100 mm.
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decreases from 18.0 to 4.4% and G2/M-phase cells decreases from
25.1 to 9.9% over the same time interval (Fig. 4a). To examine
whether, as with the polarizing region, the cell cycle parameters of
the adjacent distal mesenchyme are intrinsically controlled, we
carried out flow cytometry on cells from grafts of HH20 distal
tissue made under the AER of HH24 buds (Fig. 4b). By 48 (host
at HH29) and 72 h (host at HH30), the proportion of G1-phase
cells in the distal most 150 mm of the grafted tissue was
significantly less (6.2 and 7.3% reduction, respectively) than in
equivalent host tissue in contralateral buds (Fig. 4c,d, G1-phase
percentages differ by o2% in left and right distal mesenchyme
cells of normal buds and also those with homochronic grafts, see
Supplementary Tables 1 and 2). In addition, the proportion of
cells in S and G2/M phases in grafted tissue was significantly
higher than in host tissue, consistent with increased proliferative
potential (Fig. 4c,d). Indeed, the cell cycle phase values of grafted
cells are similar to those expected for the stages of the younger
donor embryos (HH27 and HH29—Fig. 4a). These data show
that the cell cycle parameters of chick wing distal mesenchyme
cells are intrinsically regulated.

Distal positional values are intrinsically timed. Having
demonstrated that grafts of HH20 distal mesenchyme cells made
to HH24 buds intrinsically time Hoxa13 expression, AER main-
tenance and cell proliferation, we investigated why their proximo-
distal positional value appears to be influenced by the age of the
host environment (Fig. 1h–j). Positional values are expressed as a
gradient of cell adhesion along the proximo-distal axis of the

limb21 and the differential adhesion between proximal and distal
chick wing bud cells causes them to sort out in culture22,23.
Therefore, we tested if the adhesive properties, and hence
positional values of distal mesenchyme cells, are acquired in
response to extrinsic signals or by an intrinsic timing mechanism
in vivo. To achieve this, we disaggregated blocks of wild-type
HH20 (zeugopod progenitor—Fig. 1j) and GFP-expressing HH24
(autopod progenitor—Fig. 1j) distal mesenchyme cells into single
cells that were then re-aggregated and grafted to HH24 buds (see
Materials and methods). Thus, if positional values are specified by
host HH24 signals, then the grafted HH20 and HH24 cells are
predicted to acquire equivalent adhesive properties and remain
randomly dispersed in the grafts. Alternatively, if positional
values are specified by an intrinsic timer, then grafted HH20 cells
are not expected to be influenced by host HH24 signals, so should
maintain adhesive properties reflective of their programmed fate,
and thus sort out from grafted HH24 cells.

In control grafts of GFP-expressing HH24 and wild-type HH24
distal mesenchyme cells made to HH24 buds (Fig. 5a), there
appeared to be a random distribution of cells as assessed by GFP
immunofluorescence (Fig. 5b–e—see Supplementary Fig. 4 for
detection of Gfp mRNA). To quantitate this behaviour, we
determined the distribution of GFP-expressing cells between the
inner and outer regions of such grafts (inner/outer defined as half
the distance from the centre of the graft to the periphery—see
Materials and methods). At 24 h, the inner/outer distribution of
grafted GFP-expressing HH24 cells was 49%/51% (Fig. 5b,c) and
at 48 h, 55%/45% (Fig. 5d,e). On the other hand, grafts of GFP-
expressing HH24 cells and wild-type HH20 cells made to HH24
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Figure 3 | AER duration is locally controlled by the distal mesenchyme. In grafts of HH24 distal mesenchyme cells made to the same stage wing buds

(a), the pattern of Fgf8 expression in the AER is indistinguishable between left and right buds after 48 h (b–d, n¼ 2/2) and 72 h (e–g n¼ 2/2). Note area of

grafted tissue is shown by GFP expression (b,e) and lower panels are higher magnifications of areas marked with asterisks (c,f). In grafts of GFP-expressing

HH20 distal mesenchyme tissue grafted beneath the AER of wild-type HH24 buds (h) Fgf8 is stronger in manipulated right buds compared with equivalent

region of contralateral left buds after 48 h (i–k, n¼ 2/2) and 72 h (l–n, n¼ 2/2). Note area of grafted tissue is shown by GFP expression (i,l) and lower

panels are higher magnifications of areas marked with asterisks (j,m). Left limb photos flipped horizontally for comparison in (c,f,j,m). Scale bars in

(c,f,j,m)—100mm and in their enlarged panels beneath—25 mm.
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buds (Fig. 5f) showed a non-random distribution (Fig. 5g–j, see
Supplementary Fig. 4 for detection of Gfp mRNA). At 24 h, the
inner/outer distribution of grafted GFP-expressing HH24 cells
was 24%/76% (Fig. 5g,h) and at 48 h, 29%/71% (Fig. 5i,j).
Therefore, this result shows that GFP-expressing HH24 distal
mesenchyme cells had sorted out to the periphery of the graft, to
associate with host tissue of the same age (then at HH27, Fig. 5g,h
and HH29, Fig. 5i,j), In addition, this cell sorting confines wild-
type HH20 distal mesenchyme cells (then at HH24, Fig. 5g,h and
HH27, Fig. 5i,j) to the centre of the grafts (Supplementary Fig. 4).
A similar pattern was still observed in 12-day-old wings thus
showing that the distribution of cells caused by this earlier sorting
event is maintained. Therefore, grafted GFP-expressing HH24
cells contact host cells of the same age (then both at day 12)
and surround grafted HH20 wild-type cells (then at day 11,
Fig. 5k–n). This result suggests that the inability of grafted HH20
zeugopod progenitor cells to contact host cells with equivalent

positional values—that would have been displaced proximally at
an earlier stage—entrains them into autopod structures and
explains why grafts comprising HH20 cells made to HH24 buds
are only able to contribute to the autopod (Fig. 5o—see Fig. 1h–j).

In summary, these data show that individual cells of different
ages and proximo-distal fates sort out when grafted beneath the
AER, thus indicating that the adhesive properties of cells, and
hence positional values of the chick wing zeugopod and autopod,
are specified by an intrinsic timer.

Discussion
In this study, we set out to determine the contributions that
extrinsic signalling and intrinsic timing mechanisms play in the
specification of the distal structures of the limb. Our results
provide evidence that an intrinsic timer, operating in distal chick
wing mesenchyme cells, specifies the positional values of the
zeugopod and autopod—consistent with the classical progress
zone model9. Our findings allow us to present a complete model
of proximo-distal limb patterning (Fig. 6a–d).

During limb initiation stages, trunk-derived retinoic acid
specifies the stylopod3,4 (Fig. 6a—HH18/19 in the chick wing
characterized by Meis1/2 expression). Over time, AER-derived
FGFs induce the retinoic acid-degrading enzyme Cyp26b1
(ref. 24), and this, along with limb bud outgrowth, creates a
retinoic acid-free distal mesenchyme domain (Fig. 6b,c). We
propose that this event triggers an intrinsic timer in distal
mesenchyme cells and the switch from proximal (stylopod) to
distal (zeugopod/autopod) specification. Distal mesenchyme cells
that activate this programme first transit through a phase of
zeugopod specification (Fig. 6b—HH20–22, characterized by
Hoxa/d11 expression), and then a second phase of autopod
specification (Fig. 6c—HH23–24, characterized by Hoxa/d13
expression).

Importantly, we demonstrated that this intrinsic programme
results in the acquisition of stage-specific cell adhesion properties,
which are a read-out of proximo-distal positional values21–23. The
fact that cells are being constantly displaced from the distal
mesenchyme by an intrinsically timed programme of
proliferation thus provides a robust mechanism by which a
precise gradient of positional values can become established
(Fig. 6d). Our findings therefore support the early idea that an
intrinsic cell cycle clock25, sustained by AER signalling, is part of
the timing mechanism that specifies the positional values of the
zeugopod and autopod.

It has previously been shown that the switch from proximal to
distal specification is associated with the epigenetic activation of
the distal autopod marker, Hoxa13 (ref. 8). We have extended
these studies in showing that timing of Hoxa13 expression is
related to the age of the mesenchyme and is activated in a distal to
proximal wave, which we suggest reflects the removal of
inhibitory retinoic acid from the limb bud. Although it is
unclear how the specification of positional values relates to the
final limb anatomy, it is intriguing that Hoxa13 regulates cell
adhesion molecules such as EphrinA7 (ref. 26). Therefore, given
that the dosage of 50 Hoxa/d gene products modulates the number
of elements forming in the autopod by a Turing-type reaction-
diffusion mechanism27, it is tempting to speculate that a link
between this process of self-organization and cell adhesion exists.

Our finding that the intrinsic timing mechanism is not affected
by the age of the AER supports the early proposal that AER
signalling in the chick wing fulfils a permissive role in proximo-
distal patterning (Fig. 6a–c)28, rather than the instructive role
suggested by genetic experiments on the mouse limb2. Moreover,
we showed that distal mesenchyme cells locally maintain the
overlying AER for the appropriate duration to sustain outgrowth
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difference in cell distribution between the homochronic and heterochronic mixed grafts was very significantly different (Mann–Whitney–Wilcoxon U-test—

P-value o0.0001). Autopod progenitor cells (then at HH27—g or HH29—i) predominantly localize to the periphery of the grafts (between the yellow

rings) to aggregate with host cells of the same age and zeugopod progenitor cells (then at HH24—g or HH27—i) are confined to the centre of the grafts.

Development of grafts comprising of HH24 GFP-expressing autopod progenitor cells and wild-type HH20 zeugopod progenitor cells made to HH24 buds

(k). Autopod progenitor cells (then at day 12) localize to edge of grafted tissue to contact host cells of same age and zeugopod progenitor cells (then at day

11) are confined to the centre of the graft (l,m n¼4/5). Such grafts contribute to the autopod (n,o –purple asterisks n¼ 5/5; compare with HH20–20

grafts, blue asterisks; HH24-HH24 grafts, red asterisks and HH20–24 grafts black asterisks). Note in (n) u-ulna; r-radius; 1, 2 and 3 are the digits in anterior

to posterior sequence). Scale bars—100 mm in (b,d,g,i; 1 mm in l,n).
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(Fig. 6b,c). It is possible that the AER and subjacent mesenchyme
mutually maintain each other’s maturation stage and that the
AER reverts to a less mature stage upon our transplantation
experiments. The possibility that permissive AER signals increase
over time, which has never been demonstrated, cannot be
excluded and requires further investigation.

A fundamental issue is whether extrinsic signals or an intrinsic
timer re-specifies missing positional values during limb regenera-
tion. It was recently demonstrated that amputated adult axolotl
limbs regenerate missing structures in a proximal to distal
sequence29, rather than by intercalation as previously suggested30.
Thus, since it is difficult to conceive that signalling gradients can
operate over the sheer size of the adult limb, an attractive
alternative is that an intrinsic timer, recapitulating the embryonic
one we have described here, governs limb regeneration—of at
least the zeugopod and autopod segments. On a more general
note, it is likely that the timers operating during proximo-distal
limb patterning and somitogenesis share common components,
such as the Hairy2 gene, that has an oscillatory expression profile
in both systems6,31. Moreover, an emerging theme is that both
signal and time-based mechanisms operate together during
embryogenesis32. Whether timing in other patterning systems is
an intrinsic property remains largely undetermined.

Methods
Chick husbandry and tissue grafting. Wild-type and GFP-expressing fertilized
Brown Leghorn chicken eggs were incubated, opened and staged according to
Hamilton Hamburger33. For tissue grafts, wing buds of GFP-expressing HH20 or
HH24 embryos were used, the posterior border containing the polarizing region
was discarded and a stripe of 150mm of distal sub-AER mesenchyme was dissected.
The overlying ectoderm was dissected away after incubation in 0.25% trypsin at
room temperature for 2min and the mesenchyme stripe was then cut into two or
three cuboidal pieces. These were then placed in slits made using a fine sharpened
tungsten needle along the junction between the AER and subjacent mesenchyme in
the mid-distal region of wing buds of normal host embryos at HH20 or HH24.
Hosts were immediately returned to the incubator and harvested for analyses as
desired. Before fixation, the development of the graft was examined and
photographed under UVA light. For the grafts of re-aggregated distal tissue, stripes
of distal tissue of GFP-expressing and wild-type wing buds were obtained following
the above protocol. The tissue was disaggregated to single cells by gentle pipetting
that were counted to make a ratio of 1 GFP-expressing to seven wild-type cells.
Pilot experiments determined this ratio of labelled versus unlabelled cells was
optimal for detection of labelled cells. The cells were then centrifuged at
2,500 r.p.m. for 8min and resulting pellets were incubated for 20min at 38 �C for
consolidation, and then sectioned to generate blocks of 150 mm for tissue grafts.

In situ hybridization. Digoxigenin-labelled antisense riboprobes were prepared for
Gfp, Fgf8 and Hoxa13. Gfp (Aequorea victoria) is the full-length open reading
frame, cloned into the pGEM T easy vector (Promega) and transcribed with SP6
polymerase (Roche); Fgf8 (Gallus gallus) is the full-length open reading frame
cloned into pBlueScript and transcribed with T7 polymerase (Roche); Hoxa13
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Figure 6 | Model for chick wing proximo-distal patterning. At early limb initiation stages (HH18/19) trunk-derived retinoic acid (RA) specifies the

positional value of the stylopod (humerus, a,d—orange) and then (HH20–22) intrinsic timing specifies the positional values of the zeugopod (forewing, b,d

-blue) and later still (HH23–24) the autopod (wrist/digits, c,d—green). AER-derived FGFs are permissive factors that sustain growth of the limb bud and

suppress the proximal programme including Meis1/2 expression by inducing Cyp26b1 that degrades retinoic acid (red line). Elimination of retinoic acid from

the distal mesenchyme of the wing bud triggers the switch to intrinsic timing and mesenchyme cells express 5’Hoxa/d genes and maintain AER-derived

FGFs. Following the phase of proximal specification (a), cell adhesion properties and hence positional values intrinsically change over time (b,c, greater

adhesion of cells shown by additionalþ symbols in lower insets) and this results in a spatial gradient of positional values along the proximo-distal axis as

cells are displaced from the distal mesenchyme by an intrinsic programme of proliferation (arrows—lower insets a–c—graded blue/green on skeleton, d).
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(Gallus gallus) is a partial clone (80–290 of a 290 amino acid protein) in pBlue-
Script and transcribed with T3 polymerase (Roche). Briefly, for in situ hybridiza-
tion in tissue sections, the samples were fixed overnight in 4% PFA, dehydrated,
cleared, embedded in paraffin and sectioned at 7 mm. Consecutive sections were
placed on separate slides to be analysed with different probes. The sections were
de-paraffined, rehydrated, mildly digested with proteinase K (10 mgml� 1 for
10min) and hybridized overnight. Sections were then washed with decreasing
concentrations of SSC in 50% formamide (at 65 �C), and then blocked at room
temperature with 10% sheep serum before overnight incubation at 4 �C in the
standard anti-digoxigenin antibody conjugated to alkaline phosphatase
(Roche,1:2,000). Finally, the staining reaction was carried out with NBT/BCIP and
allowed to develop for the desired time.

Immunofluorescence and quantification of cell distribution. Detection of
GFP-expressing cells was performed by immunofluorescence on 7 mm paraffin
sections. The sections were de-waxed, and blocked for 1–2 h with blocking buffer
(1% bovine serum albumin, 1% goat serum in phosphate-buffered saline (PBS)).
Cells were then incubated overnight at 4 �C with a rabbit polyclonal antibody for
GFP (Life technologies) diluted 1:1,000 in washing buffer (blocking buffer diluted
1:10 in 1� PBS), and immune complexes were detected with an Alexa-488 con-
jugated anti-rabbit antibody (Invitrogen) diluted 1:250 in washing buffer (in all
cases, fluorescence was only observed in transgenic tissue expressing GFP and not
in wild-type tissue). Finally, sections were counterstained with 0.5mgml� 1 of
DAPI, mounted in Vectashield and 1.5 mm thick Z-stacks (five optical sections per
Z-stack) were acquired using a SP-5 laser-scan confocal microscope (Leica
Microsystems) with a � 20, 0.7 NA objective, a 2 Airy pinhole and 400Hz scan-
ning speed. Cells were excited sequentially with 405 and 488 nm laser lines and
fluorescence emission captured between 415 and 480 nm (DAPI) and 499 and
578 nm (GFP). Image analyses were performed with Image J: a maximum pro-
jection of the Z-stacks was generated after images were median-filtered to reduce
noise. First, the perimeter of the graft was used to create an initial region of interest
that was reduced by 50% using the transform tool in Adobe Photoshop to generate
an inner region and outer region. Following this, the images were automatically
thresholded and the GFPþ and DAPIþ area within the inner and outer regions
of the graft were determined. The GFPþ / DAPIþ areas were calculated and
compared between the two types of graft in both the outer and inner regions. To
quantitate the immunofluorescence, three sections from each specimen were
analysed. The proportion of the area occupied by the GFP-positive cells in the
inner and outer regions of the grafts was determined. The calculation of the P-value
was performed using three tests of the R software (that is, two t-tests with and
without the homoscedasticity assumption and the nonparametric Mann–Whitney–
Wilcoxon U-test).

TUNEL-labelling. Detection of apoptosis was performed in sections of paraffin
embedded tissue (7 mm) using terminal deoxynucleotidyl transferase mediated
dUTP nick-end labelling (TUNEL) with the Apoptag Fluorescein Direct In Situ
Apoptosis Detection Kit (Intergen) following the manufacturer’s instructions.

Flow cytometry. Wild-type and GFP-expressing distal mesenchyme tissue was
dissected in ice cold PBS under a LeicaMZ16F UV microscope using a fine surgical
knife pooled from replicate experiments (between 10 and 12), and digested into
single cell suspensions with trypsin (0.5%, Gibco) for 30min at room temperature.
Cells were washed in PBS (2� ), fixed in 70% ethanol overnight, washed in PBS
(2� ) and re-suspended in PBS containing 0.1% Triton X-100, 50 mgml� 1 of
propidium iodide and 50mgml� 1 of RNase A (Sigma). Dissociated cells were left
at room temperature for 20min, aggregated cells were removed by filtration and
the single cells then analysed for DNA content with a FACSCalibur flow cytometer
and FlowJo software (Tree star Inc). Based on ploidy values cells were assigned in
G1, S or G2/M phases and this was expressed as a percentage of the total cell
number (approximately 10,000 in each case). To obtain stage-specific cell cycle
profiles between three and six replicate experiments (pools of 10–12 blocks of tissue
from separate embryos in each case) were performed and the standard error was
calculated. Statistical significance of numbers of G1, S and G2/M phase cells
between pools of left and right cubes of distal mesenchyme cells (10–12 in each
cases) from the same embryos in homochronic, heterochronic grafting
experiments—and also left and right controls was determined by Pearson’s w2 tests
to obtain two-tailed P-values (significantly different being a P-value of o0.05).
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