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Local atomic structure modulations activate metal
oxide as electrocatalyst for hydrogen evolution in
acidic water
Yu Hang Li1, Peng Fei Liu1, Lin Feng Pan1, Hai Feng Wang2, Zhen Zhong Yang3, Li Rong Zheng4, P. Hu2,5,

Hui Jun Zhao6, Lin Gu3 & Hua Gui Yang1

Modifications of local structure at atomic level could precisely and effectively tune the

capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the

local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an

efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as

an alternative to platinum. Structural analyses and theoretical calculations together indicate

that the origin of the enhanced activity could be attributed to the tailored electronic structure

by means of the local atomic structure modulations. We anticipate that suitable structure

modulations might be applied on other transition metal oxides to meet the optimal

thermodynamic and kinetic requirements, which may pave the way to unlock the potential of

other promising candidates as cost-effective electrocatalysts for hydrogen evolution in

industry.
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H
ydrogen, when generated directly from water, would be a
promising chemical fuel for sustainable energy applica-
tions1–5. Development of hydrogen evolution reaction

(HER), 2Hþ þ 2e�-H2, has attracted worldwide interest1,6–8.
Platinum (Pt) can effectively catalyse the electrochemical
reduction of protons in acidic media to form molecular
hydrogen at low overpotentials9, which remains as the most
electrocatalytically active catalyst, but its high cost and low
abundance limit large-scale commercial application of
electrocatalytic hydrogen evolution10. Thus, efficient Pt-free
catalysts are highly desired for facilitating the global scalability
of such potential clean energy technology. However, as a large
and important class of chemical compounds, most transition
metal oxides fail to electrocatalyse hydrogen evolution in acidic
water, although numerous carbides, nitrides, phosphides and
sulfides have shown the capacity for this reaction11–14.

As an important oxide, tungsten trioxide (WO3) is much more
thermodynamically stable in acidic electrolyte than most metal
oxides, and it has attracted intense research interests owing to its
potential applications in a wide range of fields such as catalysis,
photoelectrochemical cells, photochromic devices and gas
sensors15–18. Moreover, recent reports have manifested that
WO3 can act as the support of noble metals and in itself
possessing electrocatalytic activity for hydrogen evolution19–21.
Unfortunately, the adsorption energy of the atomic hydrogen on
W-site is undesirable, leading to the poor activity of WO3 for
HER in acidic media. Noteworthy, as the descriptor of catalytic
activity22, the adsorption energies of reactive intermediates can be
tuned, in principle, by tailoring the geometric and electronic
structures of material, resulting in the enhancement of activity23.
However, modulations of the local structure at the atomic level to
tune WO3 into an active HER catalyst still remains as a great
challenge.

Here we present a facile thermal treatment to activate a
commercial product of WO3 into a highly competitive earth
abundant catalyst, the dark blue tungsten oxide (WO2.9), for
electrocatalysing HER in acidic water (see Fig. 1 for schematic
mechanism). Experimentally observed results demonstrate that
the WO2.9 with tailored structure exhibits excellent HER activity
with a small overpotential of � 70mV at the current density of
10mA cm� 2 and a Tafel slope of 50mV per decade. Further
theoretical calculations indicate that its electrocatalytic capacity
could be attributed to the modest binding energy with adsorbed

atomic hydrogen. The findings in this work may hold the promise
for the development of more practical non-Pt catalysts for
electrocatalytic hydrogen evolution and other scalable technolo-
gies that harness renewable energy and convert it to H2, for
example, the proton exchange membrane electrolysis in acidic
environment.

Results
Electron microscopy. To prepare the WO2.9 electrocatalyst,
commercially available WO3 powder was well grinded and ther-
mally treated in a reduction atmosphere, which would readily
modulate the local atomic structure of WO3 (see more details in
Methods). The colour of the sample changes from light yellow
(commercial product of WO3) to dark blue after the modifica-
tions (Supplementary Fig. 1). Scanning electron microscope
(SEM) images reveal the as-prepared WO2.9 nanoparticles with a
mean diameter of 100 nm, which exhibits negligible difference
comparing to the WO3 sample (Supplementary Fig. 2), indicating
that the modification process in this work may not result in the
aggregation of the nanoparticles. Moreover, the energy-dispersive
spectrometer mapping, together with corresponding SEM image
(Supplementary Fig. 3), clearly shows the existence of the ele-
mental W and O in the WO2.9 sample. To further reveal its
structure, a JEM-ARM200F scanning transmission electron
microscopy (STEM) fitted with a double aberration corrector for
both probe-forming and the imaging lenses is used to perform
high-angle annular dark-field (HAADF) imaging. As the contrast
exhibits an approximately Z1.7 dependency for HAADF imaging,
the arrangement of crystallographic structure after modification
can be identified directly at the atomic scale. Figure 2 presents the
HAADF images of WO3 and WO2.9 samples, where W atoms are
clearly observed (yellow spots for WO3 and blue spots for WO2.9).
As shown in Fig. 2a, WO3 displays continuous lattice fringes with
lattice spacing of 0.382 and 0.366 nm corresponding to the (002)
and (200) atomic planes, respectively (white lines, marked as
A and B), whereas WO2.9 exhibits an extended and ordered defect
structure (Magnéli phase) with a regularly stair-step shape
intermittently (red lines in Fig. 2b)24. Specifically, the bulk atomic
structure of either WO3 or WO2.9 sample can also be extended to
the surface, indicating the similar geometrical structure between
bulk and surface (Fig. 2c,d, marked by white and red arrows). We
emphasize that the surfaces and main parts of the local structures
between WO3 and WO2.9 are similar, except for the stair-step
shape lattice fringes in WO2.9. This suggests that the tailored
electronic structure of the stair-case-shaped lattice fringes would
be responsible for the enhanced HER performance of WO2.9.

X-ray analyses. In addition to the HAADF-STEM study, Fig. 2e
displays the X-ray diffraction (XRD) pattern of the as-synthesized
WO2.9 electrocatalyst. The XRD pattern of the WO2.9 sample
contains an extra peak that might belong to the WO2.83(� 404)
face (JCPDS Card No. 36-0103), and the other peaks are assigned
well to monoclinic WO2.9 bulk (JCPDS Card No. 05-0386). On
the other hand, the XRD pattern of WO3 sample illustrates the
pure WO3 phase (Supplementary Fig. 4, JCPDS No. 43-1035).
Besides, the characteristic peaks in Raman spectrum of the
sample WO2.9 are broad and weak compared with those
of sample WO3 (see details in Supplementary Fig. 5 and
Supplementary Table 1), which could be attributed to the local
lattice imperfections25, revealing the absence of partial O atoms in
WO2.9 sample. Figure 2f reports our surface analysis for both
WO2.9 and WO3 samples with the X-ray photoelectron
spectroscopy (XPS) technique. For the WO2.9 sample, two
major tungsten species, W6þ (4f7/2¼ 34.7 eV) and W5þ

(4f7/2¼ 33.3 eV), are found on its surface, showing the existence
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Figure 1 | Plausible reaction mechanism of electrocatalytic H2 evolution.

By means of local atomic structure modulations, the WO2.9 electrocatalyst

with tailored electronic structure exhibits excellent HER activity, whereas

the original WO3 sample is electrocatalytically inactive for proton reduction

kinetics.
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of W5þ (ref 26). On the other hand, deconvoluted W 4f doublet
peaks of the WO3 sample suggest that tungsten is solely in the
state of W6þ (W 4f7/2¼ 34.7 eV)27. Moreover, the peaks in
the XPS survey scans of the materials before and after the
modulations can be only assigned to the W, O and C elements
(Supplementary Fig. 6), indicating the inexistence of other
elements28. To know the neighbours of the W atoms, the
WO2.9 sample was thus characterized by means of the W L3-edge
X-ray absorption fine structure (XAFS). The W L3-edge white line
derives from electron transitions from the 2p3/2 state to a vacant
5d state, and Fig. 2g presents the W L3-edge X-ray absorption
near-edge structure spectra of the WO2.9 sample and the

reference samples. The Fourier-transformed spectra of W
L3-edge extended XAFS of the samples are shown in Fig. 2h.
The peaks in the range 1–2Å and around 3Å appear in the curves
of bulk WO3 and metallic W samples, respectively, owing to the
W–O shell and W–W shell. Thus, the only peak in WO2.9 sample
at 1–2Å is believed to be the contribution from W–O binding,
indicating the absence of metallic W–W bond, which is consistent
with the results of XPS W 4f region that the metallic
tungsten species (W0, 4f7/2¼ 30.0 eV) could be hardly detected
(Supplementary Fig. 7). On the basis of these results, the tungsten
species in the as-synthesized catalyst could be the WO2.9 phase
with only W–O bond.

Electrochemical hydrogen evolution reaction. The electrodes for
HER were prepared by drop casting a fixed volume and
concentration of catalysts from an aqueous suspension onto
glassy carbon disc (see more details in Methods). The HER with
WO2.9 nanoparticles as the catalyst on glassy carbon electrode
(GCE) was measured using a standard three-electrode electro-
chemical configuration in 0.5 M H2SO4 electrolyte deaerated with
hydrogen. The electrodes were prepared by depositing approxi-
mately one continuous layer of WO2.9 sample over the electrode
surface area. The polarization curves (not iR corrected) showing
the normalized current density versus voltage (j versus V) for the
WO2.9 catalyst along with commercial Pt/C (5%) and commercial
WO3 powder for comparison, are shown in Fig. 3a. Compared
with blank glassy carbon, the electrode coated with bulk
WO3 exhibits a poor overpotential (Z) value of � 637mV at the
current density of 10mA cm� 2, demonstrating the electro-
catalytically inactive for proton reduction kinetics of the com-
mercial WO3 powder. In contrast, WO2.9 catalyst exhibits a small
Z value of � 70mV at the current density of 10mA cm� 2,
indicating that the tailored structure effectively reduces the energy
input for activating the HER. Moreover, for driving a current
density of 20mA cm� 2, WO2.9 electrocatalyst only requires an
overpotential of � 94mV (not iR corrected), indicating a
performance evidently exceeding most of the reported noble-
metal-free HER catalysts (see details in Supplementary Table 2).
These results imply that fast electron transfer and HER activation
occur on the WO2.9 electrocatalyst (Supplementary Movie 1).
Further, the linear portions of the Tafel plots (Fig. 3b) were fit to
the Tafel equation (Z¼ b log jþ a, where j is the current density
and b is the Tafel slope)29, yielding Tafel slopes of B30,B50 and
B120mV per decade for Pt/C, WO2.9 and WO3 samples,
respectively. The turnover frequencies (TOFs) were estimated for
the Z value of � 100 and � 200mV using both theoretical and
experimental surface areas for the HER in 0.50M H2SO4
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good agreement with the calculated diffraction pattern of bulk WO2.9 with

an extra peak (inverted triangle). theta, diffraction angle. (f) X-ray

photoelectron spectroscopy spectra showing the W 4f core level peak

region of the samples WO2.9 and WO3. (g) The normalized X-ray

absorption near-edge structure spectra at the W L3-edge of the metallic
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(Supplementary Note 1)13,30. The surface area of the WO2.9

catalyst is about 48.3m2 g� 1 determined by Brunauer–Emmett–
Teller study, and the TOFs (per surface W atom) were calculated
to be 8.04 s� 1 at � 100mV and 24.76 s� 1 at � 200mV.
Theoretical TOF values, estimated geometrically by assuming
100-nm spherical particles of WO2.9, can be 4.64 s� 1 at
� 100mV and 14.29 s� 1 at � 200mV. In addition, the HER
inherent activity of these catalysts was evaluated by the exchange
current density (j0). The j0 of WO2.9 catalyst is 0.40mA cm� 2

with a surface area of 0.97 cm2 on the working electrode (0.02mg
loading), which outperforms the value of 5.0� 10� 5mA cm� 2

for bulk WO3 (Table 1) and can be superior to those for other
reported nonprecious HER catalysts (Supplementary Table 2).
The high electrode kinetic metrics (including the overpotential of
� 70mV at the current density of 10mA cm� 2 and the Tafel
slope of 50mV per decade) and large j0 (only half lower than the

value of 0.93mA cm� 2 for Pt) highlight the exceptional H2

evolving efficiency of the WO2.9 catalyst.
Cyclic voltammetry (CV) was swept between � 0.3 and

þ 0.1V (versus the reversible hydrogen electrode potential,
RHE) were applied to the WO2.9-decorated working electrodes
(Fig. 3c). After 1,000 CV sweeps, the overpotential required to
achieve current densities of 10mA cm� 2 shows negligible change
(from 70 to 71mV), which remains higher than those of the
benchmark catalysts (Supplementary Table 2). Moreover, we
swept the CV towards positive potential up to þ 1.0 V (versus
RHE) with scan rate of 0.02 V s� 1 for 50 times (Supplementary
Fig. 8). However, the WO2.9 catalyst shows an undesirable
degradation of HER performance, indicating that it could hardly
withstand excursions to positive potentials. Continuous HER at a
static overpotential was also conducted. As shown in Fig. 3d,
when an overpotential of � 0.1V was applied, a continuous HER
process occurred to generate molecular H2. The as-measured
time-dependent curve is in typical serrate shape, which could be
attributed to the alternate processes of bubble accumulation and
bubble release (inset in Fig. 3d). The amount of the decay of the
WO2.9 catalyst is about 5.9% current loss after 14,000 s, which
might be owing to the partial detachment of the catalyst caused
by the continues bubbles releasing or the remaining of H2 bubbles
on the surface of the electrode that hindered the reaction.
The current density levelled out at an average of 19.6mA cm� 2

with the WO2.9 working electrode (0.07 cm2 surface area,
0.285mg cm� 2 loading), resulting in passage of 19.2 C of charge.
On the other hand, control experiments run under identical
conditions, but with the WO3 sample and without the catalyst,
both showed no current. We further established the HER scale
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Table 1 | Comparison of catalytic parameters of different
HER catalysts.

Catalyst Current
density

(j, mA cm� 2)

Corresponding
overpotential

(g, mV)

Tafel slope
(mV per
decade)

Exchange
current density
(j0, mA cm� 2)*

WO3 10 �637 120 5.0� 10� 5

WO2.9 10 � 70 50 0.40
Pt/Cw 10 � 31 30 0.93

HER, hydrogen evolution reaction; RHE, reversible hydrogen electrode.
*j0 was calculated from Tafel curves using extrapolation method.
wJohnson–Matthey, 20wt% Pt/XC-72.
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after the static overpotential test of the WO2.9 catalyst via a gas
chromatograph (GC-2014C) with the argon as carrier gas. The
total H2 amount is about 95 mmol, which is consistent with the
theoretical value of 99.5 mmol by assuming that every electron is
used for the reduction of protons.

In addition, we performed the XRD and XPS techniques to
determine the structure of the WO2.9 catalyst after these
electrocatalytic tests. As shown in Supplementary Fig. 9, diffrac-
tion peaks in pattern of sample WO2.9 remains at the similar
intensity and position compared to those in Fig. 2e, revealing the
unchanged local structure of WO2.9 catalyst. Moreover, the
deconvoluted W 4f doublet peaks of the catalyst after the tests
exhibit negligible difference. The dispersion of W5þ in both
samples, which can be evaluated by the relative XPS intensity
ratio of W5þ atom to W6þ atom, shows negligible change,
remaining as 0.182 for the before and after samples. Specifically,
we also detected the Pt 4f core level peak region to check for the
possible impurities, and the existence of Pt can be thus safely
ruled out. All results suggest that the origin of the excellent HER
capacity could be attributed to the tailored electronic structure of
WO2.9 catalyst by means of local atomic structure modulations.

Density functional theory studies. On the basis of the above
experimental investigations, we thus systematically examined the
binding ability of their respective most stable surface, that is,
WO2.9(010) and WO3(001) by virtue of extensive first-principle
density functional theory (DFT) calculations (see details in Fig. 4,

Supplementary Figs 10–13 and Supplementary Note 2). The
calculated parameters (Supplementary Table 3) show that the
adsorption energy on WO2.9(010) is largely enhanced relative to
that on WO3(001). For example, the adsorption energy can be
� 0.19 eV on WO2.9(010), and accordingly, the free energy
change of the discharge step (Hþ þ e�-H*) for HER at the
standard condition (U¼ 0V versus USHE, pH¼ 0) can be
calculated to be 0.01 eV, fulfilling the DGH¼ 0 eV requirement,
and thus its high catalytic activity could be expected. Moreover,
the formed terminal OH could further adsorb H and form H2O,
resulting in the possible reduction. We thus considered the
surface reduction by removing all the terminal O from the
p(1� 1) WO2.9(010) slab, corresponding to a W/O ratio of
W60O154, whose adsorption energy can be further improved by
the order of only B0.30 eV compared with the clean WO2.9(010)
surface (Supplementary Table 4). From Fig. 4c, the activity can
remain at a high level, despite being a little lower to some extent
relative to clean WO2.9(010). Therefore, it could be rationalized
that WO2.9 exhibits a high and stable activity. We further
performed a brief electronic analysis to provide insight into the
enhanced H adsorption strength of WO2.9(010). One can see that
the highest occupied d-orbital of surface W5c largely affects the
binding ability toward H atom (Supplementary Figs 14–16), and
the appearance of d-band around the Fermi level for WO2.9(010)
would be an important factor for the strengthened binding ability
compared with WO3. In addition, the calculated work function
suggests that WO2.9 has a higher Fermi level than WO3 by
0.70 eV, which may facilitate the reduction process to occur
kinetically.

Stability of WO2.9 electrocatalyst. To further probe the stability
of the WO2.9 catalyst during electrocatalytic hydrogen evolution
in 0.5 M H2SO4, the CV of WO2.9 catalyst was swept between
� 0.3 and þ 0.1V for 10,000 times (Supplementary Fig. 17).
As with many metal oxides, WO2.9 nanoparticles also suffer from
the undesired structure change in acidic water for a long time;
they are slightly soluble after these additional accelerated degra-
dation studies, which results in the degradation of electrocatalytic
activity. The overpotential increased from � 94 to � 162mV at
the current density of 20mA cm� 2 after 10,000 CV sweeps. XRD
pattern in Supplementary Fig. 18 reveals partial formation of
WO2.8 phase in catalyst, and the XPS spectrum also shows an
enhancement of the W5þ doublet peaks in the spectrum from
those of fresh WO2.9 sample (Supplementary Fig. 19), indicating
the high oxygen vacancies of the atomic structure in acidic water
for the rigorous tests. It should be noted, however, that the WO2.9

catalyst is still much more thermodynamically stable in acidic
water than most metal oxides. Further investigation is needed to
obtain a clear picture of the exact microscopic changes to their
surface chemistry and lattice structure. We believe that, with
further research, the deactivation may be reduced or eliminated,
for example, by integrating WO2.9 nanoparticles with a graphene
shell or other nanostructures31–33.

Discussion
The WO2.9 electrocatalyst prepared in this work exhibits excellent
HER activity with a very low cathodic overpotential of � 70mV
at the current density of 10mA cm� 2 and a small Tafel slope of
about 50mV per decade. By modulating the local atomic
structure of WO3 at the atomic scale, an extended and ordered
defect structure (Magnéli phase) is formed, resulting in
preferentially exposed W sites with modified electronic structure
that show a greatly enhanced catalytic activity for hydrogen
evolution. We anticipate the transition metal oxide materials with
suitable metal hydrogen binding energy may also hold the
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promises to compete against the best precious metal catalysts
available for HER, compared with the well-studied carbides,
nitrides, phosphides and sulfides.

Methods
Synthesis of catalyst. In the preparation of the material, a two-step synthesis
process was involved. First, 1 g of commercial WO3 (of analytically pure grade,
99.9%, Sinopharm) was carefully ground, which was carried out in a ball mill with
the wet grinding method (ethanol, 24 h under rotation speed of 300 r.p.m.). Then,
we prepared the thermally treated samples through annealing ground WO3 in
hydrogen atmosphere (1 bar, 10% H2, 90% Ar, 100 s.c.c.m. flow) in a tube furnace
at 500 �C for 60min. The resulting powder can be collected after the tube furnace
cooling down to room temperature.

Electrochemical measurements. Four microgram of catalyst and 80 ml of 5 wt%
Nafion solution (Sigma-Aldrich) were dispersed in 1ml of 4:1 v/v water/ethanol by
at least 30-min sonication to form a homogeneous ink. Then, 5 ml of the catalyst
ink (containing 20 mg of catalyst) was loaded onto a GCE of 3mm in diameter
(loading 0.285mg cm� 2). The area of coated electrodes may exceed that of the
glassy carbon disc, but we calculate all the current densities using the geometric
value. The WO2.9 modified GCE was left to dry at 40 �C. For comparison, GCEs
were also modified with commercial WO3 from Sinopharm (99.9%) and Pt/C (5%)
from Alfa Aesar.

All electrochemical studies were performed using a CHI 660 potentiostat
(CH Instruments, China) in a three-electrode setup with a modified glassy carbon
working electrode, an Ag/AgCl/KCl (3.5M) electrode as a reference, a graphite rod
(spectral purity, 3-mm diameter) as a counter electrode and deaerated with
hydrogen before use. The electrocatalytic activity of WO2.9 towards HER was
examined by polarization curves using linear sweep voltammetry at a scan rate of
5mV s� 1 in 0.5M H2SO4 at room temperature. All of the potentials in this work
were calibrated to a RHE. The amount of evolved H2 was monitored by a gas
chromatograph (GC-2014C) with argon as carrier gas.

Catalysts characterization. The crystal structure was determined using XRD
(D/MAX 2550 VB/PC) and Raman spectroscopy (Renishaw, inViaþReflex). The
structure of the catalysts was examined by SEM (S-3400N) and TEM (TECNAI
F-30, 300 kV). Further, the chemical states of the elements in catalysts were studied
by XPS (ESCALAB 250Xi), and the binding energy of the C 1 s peak at 283.9 eV
was taken as an internal reference. W L3-edge absorption spectra (extended XAFS)
were performed on the 1W1B beamline of the Beijing Synchrotron Radiation
Facility, China, operated at B200mA and B2.5GeV. W foil and WO3

powder were used as the reference samples. All samples were measured in the
transmission mode. Brunauer–Emmett–Teller surface area measurement was
performed at 77 K on a Micromeritics ASAS 2460 adsorption analyzer in N2

adsorption mode.

Theoretical calculation. All the spin-polarized calculations were performed with
Perdew–Burke–Ernzerhof functional within the generalized gradient approxima-
tion using the Vienna Ab-initio Simulation Package (VASP) code, unless otherwise
specified. The project-augmented wave method was used to represent the core-
valence electron interaction. The valence electronic states were expanded in plane
wave basis sets with energy cutoff at 450 eV. The occupancy of the one-electron
states was calculated using the Gaussian smearing (SIGMA¼ 0.05 eV). The ionic
degrees of freedom were relaxed using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) minimization scheme until the Hellman–Feynman forces on each ion
were o0.05 eVÅ� 1. The transition states were searched using a constrained
optimization scheme, and were verified when (i) all forces on atoms vanish; and
(ii) the total energy is a maximum along the reaction coordination but a minimum
with respect to the rest of the degrees of freedom.

To model the monoclinic WO3(001) surface, a nine-layer c(O2�O2)R45� slab
(10.772� 10.805Å2) with a vacuum layer of 15Å was adopted, corresponding to
(WO3)32 (128 atoms). For WO2.9(010) surface, an enough large seven-layer
p(1� 1) slab (23.839� 12.202Å2) was used as the model. Because of the large size
of the WO2.9(010) supercell, k-point sampling was restricted to the G point only.
It is worth noting that, all the atomic layers in the optimization of WO2.9(010) were
allowed to relax and the surfaces were constructed based on the pre-optimized bulk
unit cell (see the optimized lattice constants of the monoclinic WO3 and WO2.9 in
Supplementary Table 5).

Free energy calculation method. To obtain the free energy of the each elementary
step, when involving Hþ þ e–, the standard hydrogen electrode (SHE) was used as
the reference in standard Gibbs free energy calculation of HER. As derived in our
previous work, Gibbs free energy change (DG) of each elementary step can be
calculated as follows:

DG1 ¼ EH
ad þ 1=2TDSþ eU � kTlnCHþ ð1Þ

DG2 ¼ � 2EH
ad � TDSþ kTlnPH2 ð2Þ

in which U is the electronic voltage versus SHE, while PH2
and CHþ are the relative

partial pressure of H2 and the relative concentration of Hþ in the aqueous
solution, respectively. At the standard condition, there are approximately
DG1¼EadH þ 0.20 eV. The adsorption energy (EadH) for hydrogen was obtained from
the DFT calculation at 0 K relative to gas phase H2 molecule, which is defined as
equation (3).

EH
ad ¼ EH=sur � Esur � 1=2EH2 ð3Þ

where EH/sur and Esur are the energy of the surface slab with and without atomic H
adsorption, and EH2

is the total energy of the H2 molecule in the gas phase. The
more negative EadH is, the more strongly the species H binds on surface.
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