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Direct oriented growth of armchair graphene
nanoribbons on germanium
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Graphene can be transformed from a semimetal into a semiconductor if it is confined into

nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-

defined armchair edges. However, the scalable synthesis of nanoribbons with this precision

directly on insulating or semiconducting substrates has not been possible. Here we

demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour

deposition. The nanoribbons are self-aligning 3� from the Geh110i directions, are self-defining
with predominantly smooth armchair edges, and have tunable width to o10 nm and aspect

ratio to 470. In order to realize highly anisotropic ribbons, it is critical to operate in a

regime in which the growth rate in the width direction is especially slow, o5 nmh� 1. This

directional and anisotropic growth enables nanoribbon fabrication directly on conventional

semiconductor wafer platforms and, therefore, promises to allow the integration of

nanoribbons into future hybrid integrated circuits.
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G
raphene nanoribbons are excellent charge1 and thermal2

conductors that can exhibit high current-carrying
capacity3 and novel magnetic and spin-polarized

edge states4–6 depending on their crystallographic orientation,
edge structure and width. Unlike continuous two-dimensional
graphene, which is semimetallic, one-dimensional (1D) graphene
nanoribbons can be semiconducting, allowing for substantial
modulation of their conductance and enabling their application
in semiconductor logic, high-frequency communication devices,
optoelectronics, photonics and sensors in which a bandgap is
needed to achieve high performance. Their bandgap roughly
varies inversely with ribbon width and the largest bandgaps are
expected for ribbons with armchair edge orientation7.

While achieving a ribbon width of o10 nm is necessary to
induce a technologically relevant bandgap that is substantially
greater than kBT of 25meV at room temperature5,7, sub-10 nm
resolution is beyond the limits of conventional optical and
electron-beam lithography. Moreover, top-down lithographic
techniques in which ribbons are etched from continuous
graphene sheets result in nanostructures with relatively rough,
defective edges, which lead to Coulomb blockade8 and localized
electronic9,10 and phonon states11 and, consequently, degrade the
high charge carrier mobility12–14 and thermal conductivity2 of
graphene.

These deficiencies, in part, can be overcome, via bottom-up
organic synthesis on metal surfaces15–17 and in solution18,19 as
well as by unzipping graphite20 and carbon nanotubes21 in
solution, to yield ribbons with sub-10 nm width and smooth
edges. However, surface-assisted organic synthesis yields short
ribbons (B20 nm) and unzipping graphite and carbon nanotubes
does not offer control over the ribbon crystallographic
orientation. Moreover, the controlled placement and alignment
of ribbons onto substrates from solution has proven to be
difficult.

Scalable nanoribbon fabrication has also been reported via
epitaxial growth on templated SiC nanofacets22 and by chemical
vapour deposition (CVD) on surface features, such as steps23,
twins24 and trenches25, as well as on patterned catalysts in which
growth is confined to predetermined areas that define the ribbon

dimensions26–29. However, with these approaches, ribbons with
sub-10 nm width have not been demonstrated and the catalyst
template determines the ribbon edge structure rather than a more
precise self-defining growth mechanism.

Here we show that the CVD of graphene on Ge(001) can be
controlled to yield oriented nanoribbons with sub-10 nm width
and smooth armchair edges. Previous work on integrating
graphene with Ge has primarily focused on large-area graphene
monolayers. For example, continuous graphene films have been
transferred onto Ge from other substrates30,31. Furthermore,
continuous graphene monolayers have been grown via CVD
directly on Ge(001) by Wang et al.32 and Ge(110) and Ge(111) by
Lee et al.33. However, in these previous studies, nanoribbons were
not observed in partial growth experiments. In this work, we
report that high aspect ratio nanoribbons can be directly grown
on the Ge(001) facet by tailoring the CVD conditions to
maximize the anisotropy of crystal growth. It is critical to
operate in a regime in which the growth rate is especially slow,
o5 nmh� 1 in the width direction. Nanoribbons are grown at
atmospheric pressure using various growth temperatures
(860oTo935 �C), CH4 mole fractions (3.7� 10� 3oxCH4

o1.6� 10� 2), and H2 mole fractions (0.17oxH2o0.33), as
summarized in Supplementary Table 1. By tuning T, xCH4 , xH2

and the growth time (t), the growth anisotropy is tailored to yield
ribbons from the bottom-up with controlled width (w), length (l)
and aspect ratio. Using conditions in which the anisotropy is
maximized, isolated ribbons are prevalent on the Ge(001) surface
even after t418 h. In contrast, Wang et al.32 used a relatively fast
growth rate in which continuous graphene films were synthesized
on Ge(001) in to100min.

Results
Growth behaviour. Several general observations are made
regarding graphene growth on Ge(001) by analysing representa-
tive scanning electron microscopy (SEM), atomic force micro-
scopy (AFM) and scanning tunnelling microscopy (STM) images
in Fig. 1a–c. Following nucleation, graphene crystals evolve
anisotropically, resulting in nanoribbons with high aspect ratio
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Figure 1 | Growth evolution of graphene nanoribbons on Ge(001). (a–c) SEM (a), AFM phase (b) and STM (applied bias � 2V, current 200pA)

(c) images. Scale bars are 400 nm in (a,b) and 10 nm in c. Phase scale bar in b is 4.9�. (d–f) Ribbon w (d), l (e) and aspect ratio (f) plotted against t.

Horizontal lines in the boxes define the 25th, 50th and 75th percentiles, whiskers indicate the 5th and 95th percentiles, circles define the range and squares

give the mean. Insets of (d,e) are the mean Rw and Rl, respectively, plotted against t. (g) Histogram of w from the 1 h growth in d–f. The ribbons in a,c are

synthesized at 910 �C with xCH4 of 0.0092 and xH2 of 0.33 for 2 and 1.5 h, respectively, whereas the ribbons in b are grown at 910 �C with xCH4 of 0.0066

and xH2
of 0.28 for 4 h. The ribbons in d–g are synthesized with the same parameters as a,c but t is varied between 1 and 14 h.
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and smooth, straight edges. Raman spectroscopy indicates that
the 2D:G ratio and the 2D peak full-width-at-half-maximum are
6.0 and 28 cm� 1, respectively, confirming that the nanoribbons
are monolayer graphene34 (Supplementary Fig. 1). The ribbons
preferentially orient closely along the h110i directions of the
Ge(001) template, resulting in two ribbon orientations that are
approximately perpendicularly aligned. These two orientations
exist with equal probability. For ribbons with wo10 nm, the
short ribbon edges form 60, 90 or 120� angles with the long
ribbon edges. However, for wider ribbons, only angles of 60 and
120� are observed, indicating that all edges are oriented along
equivalent crystallographic directions of graphene. While as high
as 90% of the graphene crystals that nucleate evolve as ribbons,
more compact graphene crystals with lower aspect ratio and
edges that are not aligned along Geh110i directions are also
observed. Interestingly, the Ge underneath the ribbons is
nanofaceted, which is studied further below.

Growth kinetics and evolution. We quantify the growth kinetics
to gain insight into the processes that determine the ribbon size
and aspect ratio using constant T of 910 �C, xCH4 of 0.0092 and
xH2 of 0.33. Both w and l increase with t, along with the ribbon-
to-ribbon variation in w and l, which is quantified by the range of
the box and whiskers in Fig. 1d,e. The mean growth rates in the w
and l directions, Rw and Rl, respectively, are compared in the
insets of Fig. 1d,e (where w and l increase on average at twice Rw
and Rl). Initially, Rl is 90 nmh� 1 whereas Rw is only 5 nmh� 1,
giving rise to the anisotropic ribbon evolution. While Rl is
relatively constant with time, Rw increases to 410 nmh� 1 after
several hours. Accordingly, the mean aspect ratio decreases from
20 to 10 with increasing t (Fig. 1f). Stopping growth after t of 1 h
results in ribbons with average w of 9.8 nm (Fig. 1g), which
is below the resolution of optical and typical electron-beam
lithography, and we anticipate that even narrower w are obtained
at earlier t. Figure 1c shows an example of a nanoribbon with w of
7 nm and l of 160 nm.

The effects of xCH4 , xH2 and T on the nanoribbon growth rate
and the resulting anisotropy are also quantified. The growth rates
increase as xCH4 increases (Fig. 2a), xH2 decreases (Fig. 2b), and
T increases (Supplementary Fig. 2). Each of these parameters can
be independently tuned to vary Rl over an order of magnitude
from 30 to 300 nmh� 1. The anisotropy varies inversely with Rl,
independent of whether xCH4 or xH2 is changed (Fig. 2c). Thus, a
critical parameter for realizing high aspect ratio nanoribbons is to
operate in a regime in which growth is slow. For example, at low
xCH4 of 0.0066 and high xH2 of 0.33, not only is a slow Rl of
40 nmh� 1 achieved, but also a much slower Rw of 1.4 nmh� 1,
yielding ribbons with an aspect ratio of 30, on average, and as

high as 70 (Supplementary Fig. 3). Minimizing Rw also makes it
possible to tailor w with high precision. Empirical rate laws are
identified (insets of Fig. 2a,b), indicating that Rl scales as
x2:23� 0:05
CH4

and x� 4:0� 0:2
H2

. Furthermore, an Arrhenius temperature
dependence is observed with an activation energy of 7.2±0.4 eV
(Supplementary Fig. 2). For comparison, the activation energy for
graphene growth on Cu is only 1–3 eV (ref. 35). However,
graphene growth on Cu at atmospheric pressure yields hexagonal
crystals instead of nanoribbons36, highlighting that different
mechanisms control growth.

We also find that the 1D nature of growth is insensitive to
the bulk Ge dopant concentration (NSbo1.5� 1018 cm� 3),
Ge surface treatment prior to synthesis (OH, H and Cl
functionalization), and annealing time before growth
(Supplementary Figs 4–6). Nanoribbons are not observed
on Ge(110) nor Ge(111) under any growth condition
(Supplementary Fig. 7).

Low-energy electron microscopy and diffraction. Low-energy
electron microscopy (LEEM) and diffraction (LEED) are used to
determine the orientation of the graphene lattice with respect to
the underlying Ge and with respect to the ribbon edges. The
overlaid LEED patterns in Fig. 3a taken at 121 and 135 eV
establish the Ge[110] and �110½ � directions. The LEED pattern in
Fig. 3b obtained at 67 eV shows that the graphene lattice pri-
marily exists within two families of crystallographic orientations,
denoted by the orange and purple hexagons. Dark-field imaging
in Fig. 3c indicates that the purple family of diffraction spots
originates from ribbons that are oriented with their long axis
approximately parallel to Ge[110] whereas the orange family of
spots originates from ribbons that are oriented with their long
axis approximately parallel to Ge �110½ �. Both of these families of
ribbons have edges that are macroscopically aligned with the
armchair direction of graphene. This armchair edge orientation is
unique because graphene crystals grown on Cu and Ni typically
have edges that are aligned along the zigzag direction of
graphene25,37.

Within each family, there are two unique graphene orienta-
tions that are rotated 2.9±0.4� (B3�) relative to the Geh110i
directions, as indicated by the diffraction spots belonging to the
orange family that are circled in red and blue in Fig. 3b. These
nanoribbon orientations are depicted in Fig. 3d. Dark-field
imaging in Fig. 3c indicates that some of the ribbons are single
crystalline, corresponding to either the þ 3� or � 3� graphene
orientation, whereas others are bi-crystalline, in which the crystal
lattice of one half of the ribbon is rotated by 2� 3�¼ 6� with
respect to the other half. This indicates that the nanoribbons
nucleate in their centre and then grow in opposite directions
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Figure 2 | Effect of precursor composition on graphene nanoribbon growth on Ge(001). (a,b) Rl versus xCH4
(a) and xH2

(b). Insets of a,b contain

the same data plotted on a log–log scale with best fit line (red), which is used to find the empirical rate laws. (c) Aspect ratio of ribbons with w of

30±5 nm plotted against Rl for conditions in which xCH4
(blue triangles) and xH2

(red circles) are varied. The ribbons in a,c are grown at 910 �C with xH2
of

0.33 and xCH4
varied from 0.0066 to 0.016. The ribbons in b,c are grown at 910 �C with xCH4

of 0.0066 and xH2
varied between 0.22 and 0.33. Error bars

indicate standard deviation.
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along their length. These dynamics potentially explain why the
ribbons are elevated in their centre (Fig. 1c); the sublimation of
Ge may be locally suppressed under the ribbons as they grow.
Interestingly, the lattice of the non-ribbon graphene crystals with
lower aspect ratio and edges not aligned on Geh110i, like the one
observed in Fig. 1a, is rotated with respect to the lattice of the
nanoribbons, typically by 15� as observed in Fig. 3b. This
difference indicates that the anisotropic nanoribbon growth is
driven only when there is a specific relative orientation between
the graphene lattice and the Ge(001) surface.

Scanning tunneling microscopy. Ultra-high vacuum STM is
performed to substantiate the LEED data and to determine the
atomic nature of the graphene nanoribbon edges on Ge(001). The
STM image and its corresponding fast Fourier transform (FFT) in
Fig. 4a indicate that the ribbon edges are straight and parallel to
the armchair direction of graphene with little edge roughness
and that the graphene lattice is rotated 3� from the Geh110i

directions, consistent with the LEED data. The Ge underneath the
nanoribbons retains the common (2� 1) dimer reconstruction
(Fig. 4b–d) even after ambient exposure. Contamination of the
bare Ge surface upon exposure to ambient often precludes precise
topographical imaging of the nanoribbon edge structure. Using
the topographic data alone, we can set an upper limit on the edge
roughness. For example, the representative 40 nm ribbon segment
in Fig. 4a has roughness of o0.5 nm (two lattice constants of
graphene). However, we can learn more about the edge structure
from quantum interference patterns caused by intervalley back-
scattering (Fig. 4e) of charge carriers at the ribbon edges. The
ring-like shapes with a

ffiffiffi
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p
�

ffiffiffi
3

p� �
R30� unit cell highlighted with

the rhombuses in Fig. 4g and the armchair-like patterns with
periodicity (lf) of 3.7 Å in Fig. 4g are consistent with electron
backscattering at armchair edges16,38 and are clearly revealed by
the prominence of the K/K0 points in the FFT in Fig. 4f. The
presence of these coherent interference patterns combined with
the small line edge roughness indicates that the edges consist
primarily of smooth armchair segments. The interference
patterns decay into the interior of the ribbons with length
scales comparable to graphene on SiC38 and metals39. The atomic
structure of the hexagonal graphene lattice is observed past these
decay lengths in the interior of the nanoribbons (Fig. 4g).

Scanning tunneling spectroscopy (STS) is used to probe the
electronic density of states of nine nanoribbons with w ranging
from 5 to 19nm (Supplementary Figs 8–9 and Supplementary
Discussion). While it is difficult to make conclusive deductions
about the bandgaps from the tunneling spectra due to thermal
broadening and tunneling into Ge surface states, the spectra are
consistent with those previously reported for semiconducting
graphene nanostructures16,17,40,41, with suppressed density of
states near the Fermi level compared with continuous monolayer
graphene on Ge and with the possible development of band edges.

Charge transport measurements. Charge transport measure-
ments are conducted to investigate the electrical properties of
33 nanoribbons using a field-effect transistor geometry (Fig. 5).
The ribbons are relatively wide (w410 nm), because these
ribbons are more conducive to transfer onto insulating SiO2/Si
wafers (Fig. 5e). Transfer is required to measure the electrical
properties of the ribbons independent of parallel conduction
pathways through the Ge substrates used for growth.

The magnitude of the ribbon conductance modulation caused
by varying an applied back-gate voltage (that is, the on/off ratio)
generally increases as w is reduced below 15 nm (Fig. 5a,d),
consistent with the opening of a bandgap that scales inversely
with w. The on/off ratios are comparable to those of high-quality
chemically exfoliated nanoribbons of similar w (for example,
on/off of B1, B5 and B100 have been demonstrated for w of
B50, B20 and B10 nm, respectively)20. However, the largest
gains in on/off ratio are not expected until w is reduced to
3–5 nm.

The on-state conductance (Fig. 5b) and transconductance
(Fig. 5c), normalized by w, are not correlated with w and, thus, do
not generally deteriorate as w is decreased. The nanoribbon
channel resistance and the Pd–nanoribbon contact resistance are
not separately quantified. However, the on-state conductance is
high (generally ranging from 500 to 5,000 mS mm� 1) and the
on-state resistance (average of B700Omm) is similar to literature
values for Pd–graphene contact resistance (150–1,640Omm)42–49.
Therefore, the data suggest that at the relatively short channel
length used here of o220 nm, charge transport is not limited by
edge scattering or by channel resistance, but instead by the
Pd–nanoribbon contacts. The variability in the on-state
conductance (Fig. 5b) and the transconductance (Fig. 5c) data
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Figure 3 | LEEM characterization of graphene nanoribbons on Ge(001).

(a) Overlaid LEED patterns taken at 135 and 121 eV showing the {01}

(cyan), {02} (brown) and {11} (magenta) diffracted beams from the

unreconstructed Ge(001) surface. (b) LEED pattern obtained at 67 eV

showing the purple and orange families of graphene orientations rotated by

30� and the splitting of the spots by 6� within each family. An additional set

of sixfold diffraction spots (with one spot circled in black) is also observed,

corresponding to a low aspect ratio, non-ribbon crystal with a lattice that is

rotated 15� relative to that of the nanoribbons. Arrows indicate the Geh110i
directions as shown in a. A fast Fourier transform bandpass filter is applied

to the LEED images in a,b in order to remove the background attributed to

diffuse scattering and secondary electrons. (c) Superposition of dark-field

images taken at 26 eV of graphene nanoribbons on Ge(001) in which green,

blue and red channels of the image originate from the {01} graphene

diffraction spots circled with the same colour in b. Scale bar is 1mm. The

ribbons in a–c are grown at 910 �C with xCH4
of 0.0092 and xH2

of 0.33 for

6 h. (d) Schematic depicting the four nanoribbon orientations that are

detected on an unreconstructed Ge(001) surface. The ribbon edges are

aligned along the armchair direction of graphene, which is rotated 3� from
the Geh110i directions. The top two layers of Ge atoms are blue while all

other layers of Ge atoms are red. It is not yet clear if the ribbons run

parallel, perpendicular, or both parallel and perpendicular to the blue rows

of Ge atoms.
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is likely caused by contact-length variability, which increases as
the ribbons become narrower and thus shorter (Supplementary
Discussion).

Characterization of the graphene/germanium interface. As
growth progresses, the ribbons eventually merge to form a
continuous graphene film that is self-limiting to a monolayer. We
analyse these continuous films to characterize the graphene/Ge
interface and the Ge nanofaceting beneath graphene. The films
have negligible Raman D-band intensity (Supplementary Fig. 10),
indicating an sp2 graphene lattice with low defect density and a
relatively weak graphene/Ge interaction. Similar to graphene on
Ge(110) and Ge(111)33, the continuous films can be peeled off of
the Ge(001) surface using a thin Au layer, indicating that the
interaction strength is o60meV (ref. 50). This weak interaction
is consistent with the STM data, which show that the underlying
Ge(2� 1) reconstruction is unaffected by the ribbons (Fig. 4b–d)
and that the quantum interference patterns near the ribbon edges
are not disrupted by the substrate (Fig. 4f,g).

Raman spectroscopy shows that the graphene films on Ge(001)
are stable in ambient conditions, even at 200 �C for 424 h,
and X-ray photoelectron spectroscopy (XPS) indicates that the
underlying Ge(001) remains unoxidized in ambient conditions
for 44 weeks after growth (Supplementary Fig. 10). Thus, the
direct synthesis of nanoribbons on Ge(001) yields a pristine

nanoribbon/substrate interface compared to that of ribbons
deposited from solution or transferred from another surface,
during which disorder and impurities are introduced.

Germanium nanofacet formation. As previously observed in
Figs 1b,c and 4a, the Ge surface selectively forms nanofacets
underneath the nanoribbons. These hill-and-valley structures are
similar to surface faceting that has been observed for other
combinations of surfaces and adsorbates51. These facets are more
easily visualized and characterized below continuous graphene
films (Fig. 6a). The facet angle (Fig. 6b inset) is shallow for
thin ribbons and becomes steeper as the ribbons grow wider
and eventually merge to form a continuous graphene film.
Underneath continuous films, the angle measured via AFM
(Fig. 6b), LEED (Fig. 6c) and X-ray reflectivity (XRR;
Supplementary Methods) is 8.1±1.1�, 8.5±1.0� and 7.8±1.1�,
respectively, which is consistent with the Ge(107) facet.
Interestingly, the faceting below the nanoribbons is reversible
upon annealing at 800 �C in high vacuum, resulting in a planar
interface (Supplementary Fig. 11).

Discussion
Our experimental data, which show that growth is anisotropic
only when the armchair direction of graphene is rotated 3� from
the Geh110i directions, provide insight into the mechanisms
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Figure 4 | STM studies of graphene nanoribbons on Ge(001). (a) STM image of a graphene nanoribbon with w of 8.2 nm (scale bar 2 nm, applied bias

� 1 V, current 400pA). Inset contains the corresponding FFT illustrating the graphene lattice (white circles) with the armchair (AC) direction forming a 93�
angle with the Ge[110] direction. (b) High-resolution FFTof the nanoribbon in a illustrating the sixfold graphene reciprocal lattice (white circles) in addition

to the twofold Ge(001) (2� 1) dimer lattice with periodicity of 4/8Å (green circles). (c) Schematic illustrating the Ge dimerization and the resulting

periodicity. (d) STM image of a nanoribbon in which the underlying Ge dimer reconstruction is clearly visible (scale bar 1 nm, applied bias � 1 V, current

400pA). Green boxes correspond to the structure shown in c. (e) Schematic of the intervalley backscattering process leading to quasiparticle interference

patterns in which kf is the Fermi wavevector. (f) FFT showing the graphene reciprocal lattice (RL) points (outer hexagon) in addition to the six K/K0 points

(inner hexagon) observed due to intervalley backscattering. (g) STM image of a nanoribbon in which quantum interference patterns near the edge

(armchair-like and rhomboid regions) and regular graphene lattice in the interior (hexagonal region) are observed (scale bar 1 nm, applied bias 25mV,

current 50 pA). The ribbons in a,b,d,f,g are grown at 910 �C with xCH4
of 0.0092 and xH2

of 0.33 for 1.5 h.
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governing the 1D nature of growth. It is likely that this
crystallographic relationship is set during the early stages of
nucleation; as the graphene nucleus becomes larger, the energy
barrier associated with its rotation significantly increases, which,
consequently, fixes the orientation of the nanoribbon lattice
during the subsequent growth52. The Ge(001) surface consists of
two types of terraces that have the same structure but are rotated
90� with respect to each other. It is plausible that on one set of
terraces, the armchair direction of the graphene nuclei is rotated
3� from Ge[110] and on the other set of terraces, the armchair
direction is rotated 3� from Ge �110½ �, giving rise to the two
families of orientations observed in the LEED and STM data.
Nucleation does not seem to be strongly correlated with the
density or directionality of steps that exist before nucleation
(Supplementary Figs 12–14 and Supplementary Discussion).

After nucleation, several factors could drive anisotropic ribbon
evolution. While step edges may play a role in setting the

crystallographic orientation of the nuclei on each terrace,
subsequent preferential growth along step edges cannot solely
account for the formation of ribbons with smooth edges over long
segments. Furthermore, we do not observe residual nanoparticles
at the ribbon ends or tapered ribbon growth that might indicate
that the ribbon evolution is driven by a catalyst particle like in
conventional nanowire growth53. Anisotropic diffusion of
intermediate hydrocarbons on the Ge surface cannot alone
account for the ribbon evolution because low aspect ratio crystals
are also observed.

We hypothesize that the anisotropic growth is due to
preferential attachment of intermediate hydrocarbons from the
Ge surface to the short (faster growing) ribbon edges over the
long (slower growing) ribbon edges, which is consistent with
the observation that the low aspect ratio crystals have different
lattice orientation than that of the nanoribbons. During
attachment, the transition state and the corresponding energy

100

101

101 102 101

102

103 101

100

10–1

102

103

104

105

102

O
n 

/ o
ff 

ra
tio

G
on

 / 
w

 (
μS

 μ
m

–1
)

g m
 / 

w
 (

μS
 μ

m
–1

)

0 5 10 15
0

w = 52 nm

w = 23 nm

w = 12 nm O
n/

of
f =

 3
6

O
n/

of
f =

 5
.9O

n/
of

f =
 3

.9

5,000

4,000

3,000

2,000

1,000G
 / 

w
 (

μS
 μ

m
–1

)

–15 –10 –5
Gate bias (V)

w (nm)
101 102

w (nm)
101 102

w (nm)

Figure 5 | Charge transport of graphene nanoribbon field-effect transistors. (a–c) On/off current ratio (a), on-state conductance per width (Gon/w)

(b) and transconductance per width (gm/w) (c) plotted against w. (d) Conductance per width (G/w) plotted against applied back-gate voltage for

representative ribbons with w of 52 nm (red), 23 nm (blue) and 12 nm (green), respectively. The transfer curves in d correspond to the data points circled

with the same colour in a–c. (e) Scanning electron micrographs of the nanoribbon channels corresponding to the data points in a–c and transfer curves in d

with the same colour. Scale bars in e are 100nm. All measurements are conducted at room temperature in ambient conditions using a source voltage

of �0.1 V.

0 200 400

0
4
8

d (nm)

�

[110]

h 
(n

m
)

[1
–
10]

Figure 6 | Characterization of continuous graphene films grown on Ge(001). (a,b) SEM image (a) and AFM topographic map (b) of a graphene

monolayer on Ge(001). Scale bars, 200nm (a,b); height scale bar, 11.8 nm (b). Inset of b is height (h) plotted against projected surface distance (d)

showing the profile of the facets across the dotted line in b. (c) LEED pattern taken at 19 eV showing the {01} spots from the unreconstructed Ge(001)

surface (magenta) and the {00} spots from the Ge facets (cyan).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9006

6 NATURE COMMUNICATIONS | 6:8006 |DOI: 10.1038/ncomms9006 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


barrier will depend on the relative orientation between the
nanoribbon edge and the Ge surface. Similar growth phenomena,
such as the formation of polygonal graphene crystals with
relatively straight edges and sharp vertices54 and the synthesis
of other 1D structures on the (001) face of zinc-blende
semiconductors55–57, have also been attributed to attachment-
limited kinetics. The increase in Rw with time (Fig. 1d) may
indicate that the barrier for hydrocarbon attachment to the long
(slower growing) ribbon edges decreases as w increases. Rw begins
to noticeably increase after w exceeds about 30 nm, potentially
corresponding to when ribbons begin to outgrow the Ge terrace
on which they nucleate. The Ge hill-and-valley structures increase
in height and width as w increases; this evolution may also
perturb the interactions of the nanoribbon edges with the
underlying Ge and, thus, may also modify the attachment barrier.

Several challenges in synthesis and fabrication have inhibited
progress in nanoribbon research and development. Specifically,
(1) the synthesis of nanoribbons with armchair edges, (2) the
definition of nanoribbons with width o10 nm and (3) the direct
integration of nanoribbons onto insulating or semiconducting
platforms have been difficult. This work overcomes these
challenges. We demonstrate that by controlling graphene
synthesis on Ge(001) via CVD, it is possible to realize oriented
nanoribbons with sub-10 nm width, controlled crystallographic
orientation and smooth armchair edges. This direct, self-defining
growth offers precise control over the ribbon structure beyond the
fidelity of top-down lithography and yields a relatively pristine
nanoribbon/substrate interface. The ribbons are self-aligning, and
ribbons with wo10 nm can still be hundreds of nanometres in
length, opening the door for exploration of dense nanoribbon
arrays as logic, photonic and sensing components in integrated
circuits. Improved control over the ribbon placement will
enhance the viability of these applications. These results are also
technologically important because they enable a scalable, high
throughput pathway for integrating nanoribbons directly on
conventional large-area semiconductor wafer platforms that are
compatible with planar processing, like Ge wafers and potentially
epitaxial Ge films on Si (ref. 33) or GaAs (ref. 58) wafers.

Methods
Graphene synthesis. Before growth, Ge(001) (Wafer World, resistivity 440O
cm, miscut o1�), Ge(110) (University Wafer, resistivity 0.1–0.5O cm with Ga or
Sb dopants) and Ge(111) (Semiconductor Wafer, resistivity 430O cm) substrates
are cleaned via sonication in acetone and isopropyl alcohol for 15min followed by
etching in deionized H2O (18MO cm) at 90 �C for 15min. The Ge substrates
are loaded into a horizontal tube furnace with a quartz tube inner diameter of
34mm and the system is evacuated to B10� 6 torr. The system is then filled to
atmospheric pressure with a mixture of Ar (99.999%) and H2 (99.999%) using a
constant total flow rate of 300 s.c.c.m. The Ge samples are annealed for 30min at
the selected growth temperature and then CH4 (99.99%) is introduced to begin the
synthesis. In order to terminate growth, samples are rapidly cooled in the same
atmosphere used during synthesis by sliding the furnace away from the growth
region. Specific growth conditions are provided in Supplementary Table 1.

Graphene transfer. In order to transfer the ribbons from Ge to SiO2/Si for Raman
spectroscopy and charge transport measurements, poly(methyl methacrylate)
(PMMA) is spin coated onto the graphene/Ge substrate. The PMMA/graphene/Ge
stack is floated on a solution of 28:1:1 H2O:HF:H2O2 to etch the Ge layer. The
PMMA/graphene stack is transferred to H2O to clean the ribbons and then lifted
out of the H2O using a SiO2/Si substrate. The PMMA is dissolved in acetone and
the sample is washed with isopropyl alcohol.

Characterization. After growth, the samples are characterized with SEM (Zeiss
LEO 1530) and AFM (Veeco MultiMode SPM) in tapping mode. For each
nanoribbon synthesis, the w and l ofB250 ribbons are measured from SEM images
using ImageJ. Raman spectroscopy (Thermo Scientific DXRxi) in Supplementary
Fig. 1 is performed using excitation wavelength of 532 nm, power of 10mW and
spot size of 0.6 mm. Graphene degradation studies in Supplementary Fig. 10 are
conducted with Raman spectroscopy (Horiba Jobin Yvon LabRAM Aramis) with
excitation wavelength of 442 nm, power of 0.01mW and spot size of 1 mm.

XPS (Thermo Scientific K-Alpha) is performed with spot size of 30 mm and energy
resolution of 0.57 eV. LEEM and LEED (SPECS Fe-LEEM/PEEM P90) are
conducted using incident electron energies of B25 eV and between 19–135 eV,
respectively. STM and STS (Omicron VT, base pressure of 10� 12mbar) are
performed simultaneously at 300K using electrochemically etched W tips. STS data
is generated by superimposing a 30mV modulation at 10 kHz on top of the bias
voltage and analysing the tunnelling current with a SR830 Lock-In Amplifier. XRR
measurements (Bruker D8 Discover with a VÅNTEC 500 Area Detector) are
performed with a Cu Ka X-ray source.

Device fabrication. The nanoribbons are transferred onto SiO2/Si wafers as
described, above. Electron-beam lithography is used to define source and drain
electrodes with channel lengths between 75 and 220 nm. Thermal evaporation is
used to deposit Pd electrodes 35 nm in thickness. The back-gate electrode and
back-gate dielectric are the Si wafer and 15 nm of thermally grown SiO2,
respectively. Each field-effect transistor is measured at room temperature in
ambient conditions using a source voltage of � 0.1 V.
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