Article

Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

  • Nature Communications 6, Article number: 7980 (2015)
  • doi:10.1038/ncomms8980
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  2. 2.

    Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005).

  3. 3.

    & The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506–10511 (2007).

  4. 4.

    Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33, 530–546 (2007).

  5. 5.

    & Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 345–359 (2004).

  6. 6.

    & Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. J. Biogeogr. 34, 1473–1489 (2007).

  7. 7.

    , , & On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34, 421–433 (2008).

  8. 8.

    & Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39, 360–372 (2013).

  9. 9.

    Extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. USA 105, 11528–11535 (2008).

  10. 10.

    & Geographical range and speciation in fossil and living molluscs. Proc. R. Soc. B 270, 401–406 (2003).

  11. 11.

    et al. Quantification of extinction risk: IUCN’s system for classifying threatened speciesCuantificación del Riesgo de Extinción: Sistema de la UICN para la Clasificación de Especies Amenazadas. Conserv. Biol. 22, 1424–1442 (2008).

  12. 12.

    , , & The sampling and estimation of marine paleodiversity patterns: implications of a Pliocene model. Paleobiology 39, 1–20 (2013).

  13. 13.

    , , & The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). J. Syst. Palaeontol. 8, 3–47 (2010).

  14. 14.

    Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages. Proc. Biol. Sci. 277, 2547–2552 (2010).

  15. 15.

    , , & The radiation of cynodonts and the ground plan of mammalian morphological diversity. Proc. Biol. Sci. 280,, doi:10.1098/rspb.2013.1865 (2013).

  16. 16.

    , & Assessing the record and causes of Late Triassic extinctions. Earth Sci. Rev. 65, 103–139 (2004).

  17. 17.

    , , & Climatically driven biogeographic provinces of Late Triassic tropical Pangea. Proc. Natl Acad. Sci. USA 108, 8972–8977 (2011).

  18. 18.

    , , , & Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc. Natl Acad. Sci. USA 107, 6721–6725 (2010).

  19. 19.

    et al. Zircon U-Pb geochronology links the end-triassic extinction with the central atlantic magmatic province. Science 340, 941–945 (2013).

  20. 20.

    & Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs. Biol. Lett. 9,, doi:10.1098/rsbl.2013.0095 (2013).

  21. 21.

    in The Fossil Record Vol. 2, ed. Benton M. J. 681–715Chapman and Hall (1993).

  22. 22.

    et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68–100 (2010).

  23. 23.

    , , & The origin and early evolution of dinosaurs. Biol. Rev. 85, 55–110 (2010).

  24. 24.

    & Taxonomic occurrences of Triassic to Jurassic Tetrapoda. Paleobiology Database: (2013–2015).

  25. 25.

    Effects of the mesozoic marine revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20, 274–296 (1994).

  26. 26.

    & Nonprogressive evolution in a clade of Cretaceous Montastraea-like corals. Paleobiology 18, 425–446 (1992).

  27. 27.

    Larval ecology and macroevolution in marine invertebrates. Bull. Mar. Sci. 39, 565–587 (1986).

  28. 28.

    Pulsed origination and extinction in the marine realm. Paleobiology 31, 6–20 (2005).

  29. 29.

    Phanerozoic biodiversity and mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).

  30. 30.

    , , & Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction. Proc. Biol. Sci. 280,, doi:10.1098/rspb.2013.1940 (2013).

  31. 31.

    , , , & Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Spec. Pub. 358, 209–240 (2011).

  32. 32.

    & Estimating the diversity of dinosaurs. Proc. Natl Acad. Sci. USA 103, 13601–13605 (2006).

  33. 33.

    et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).

  34. 34.

    , & Taxonomic structure of the fossil record is shaped by sampling bias. Syst. Biol. 61, 80–89 (2012).

  35. 35.

    & Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41, 43–46 (2013).

  36. 36.

    , & Disentangling geological megabias and common-cause from redundancy in the British fossil record. Nat. Commun. 5, 4818 (2014).

  37. 37.

    , , & Assessing the quality of the fossil record: insights from vertebrates. Geol. Soc. Spec. Pub. 358, 63–94 (2011).

  38. 38.

    , , & Testing the fossil record: sampling proxies and scaling in the British Triassic-Jurassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 404, 1–11 (2014).

  39. 39.

    & Uncovering the diversification history of marine tetrapods: ecology influences the effect of geological sampling biases. Geol. Soc. Spec. Pub. 358, 191–208 (2011).

  40. 40.

    , , & Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc. R. Soc. B 277, 829–834 (2010).

  41. 41.

    Global taxonomic diversity of Anomodonts (Tetropoda, Therapsida) and the terrestrial rock record across the Permian-Triassic boundary. PLoS ONE 3, e3733 (2008).

  42. 42.

    , & Dinosaur diversity and the rock record. Proc. R. Soc. B 276, 2667–2674 (2009).

  43. 43.

    , , & Estimating the effects of the rock record on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35, 432–446 (2009).

  44. 44.

    Scale and hierarchy in macroevolution. Palaeontology 50, 87–109 (2007).

  45. 45.

    The origins of modern biodiversity on land. Phil. Trans. R. Soc. Lond. B 365, 3667–3679 (2010).

  46. 46.

    The shifting balance of diversity among major marine animal groups. Science 329, 1191–1194 (2010).

  47. 47.

    , , & Phanerozoic marine diversity and the fossil record. Nature 293, 435–437 (1981).

  48. 48.

    Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385, 250–252 (1997).

  49. 49.

    , , , & Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles. Nat. Commun. 5, 3567 (2014).

  50. 50.

    , , , & Ecological specialization in fossil mammals explains Cope’s Rule. Am. Nat. 179, 328–337 (2012).

  51. 51.

    , , , & Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

  52. 52.

    Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol. Bull. 181, 261–268 (1991).

  53. 53.

    , , & Macroecology and extinction risk correlates of frogs. Glob. Ecol. Biogeogr. 17, 211–221 (2008).

  54. 54.

    et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344,, 987 (2014).

  55. 55.

    et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. Biol. Sci. 275, 1441–1448 (2008).

  56. 56.

    , & Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

  57. 57.

    & Body size and activity times mediate mammalian responses to climate change. Global Change Biol. 20, 1760–1769 (2014).

  58. 58.

    Exploring macroevolution using modern and fossil data. Proc. Biol. Sci. 282, 20150569 doi:10.1098/rspb.2015.0569 (2015).

  59. 59.

    , & Atlas of Mesozoic and Cenozoic Coastlines Vol. 99, (Cambridge University Press (1994).

  60. 60.

    , , & The Geologic Time Scale 2012. Vol. 2, 1144 (Elsevier (2012).

  61. 61.

    , & Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

  62. 62.

    , , , & Sea level, dinosaur diversity and sampling biases: investigating the 'common cause' hypothesis in the terrestrial realm. Proc. R. Soc. Lond. B 278, 1107–1113 (2011).

  63. 63.

    Systematists follow the fossils. Paleobiology 3, 328–329 (1977).

  64. 64.

    PALEOMAP Paleogeographic Atlas. 22PALEOMAP. Progress Report #90, Department of Geology, University of Texas at Arlington (1997).

  65. 65.

    & Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proc. Biol. Sci. 278, 681 (2010).

  66. 66.

    , & Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiology 39, 135–148 (2013).

  67. 67.

    Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).

  68. 68.

    Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111, 125–148 (2003).

  69. 69.

    & Integrating evolution and biogeography: a case study involving Devonian crustaceans. J. Paleontol. 79, 267–276 (2005).

Download references

Acknowledgements

We thank Matthew Carrano, Richard Butler and various other data compilers from the Paleobiology Database. This is Paleobiology Database official publication 232. We thank Stephen Brusatte, Michael Benton, Paul Wignall, Nick Priest and Richard Butler for offering valuable critical advice on earlier drafts of this manuscript. A.M.D. is supported by a Royal Commission for the Exhibition of 1851 Fellowship. M.A.W. thanks the Leverhulme Trust (F/00351/Z) and NERC (NE/K014951/1) for support.

Author information

Affiliations

  1. Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK

    • Alexander M. Dunhill
    •  & Matthew A. Wills
  2. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

    • Alexander M. Dunhill

Authors

  1. Search for Alexander M. Dunhill in:

  2. Search for Matthew A. Wills in:

Contributions

A.M.D. designed the project and compiled the data; M.A.W. wrote scripts; A.M.D. and M.A.W. analysed the data and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Alexander M. Dunhill.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figure 1, Supplementary Tables 1-10, Supplementary Note 1 and Supplementary References

Excel files

  1. 1.

    Supplementary Data 1

    Fossil occurrence data and time series data for analysis.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.