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Quenching of dynamic nuclear polarization by
spin–orbit coupling in GaAs quantum dots
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The central-spin problem is a widely studied model of quantum decoherence. Dynamic

nuclear polarization occurs in central-spin systems when electronic angular momentum is

transferred to nuclear spins and is exploited in quantum information processing for coherent

spin manipulation. However, the mechanisms limiting this process remain only partially

understood. Here we show that spin–orbit coupling can quench dynamic nuclear polarization

in a GaAs quantum dot, because spin conservation is violated in the electron–nuclear system,

despite weak spin–orbit coupling in GaAs. Using Landau–Zener sweeps to measure static

and dynamic properties of the electron spin–flip probability, we observe that the size of the

spin–orbit and hyperfine interactions depends on the magnitude and direction of applied

magnetic field. We find that dynamic nuclear polarization is quenched when the spin–orbit

contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed

light on the surprisingly strong effect of spin–orbit coupling in central-spin systems.
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D
ynamic nuclear polarization (DNP)1 occurs in many
condensed matter systems, and is used for sensitivity
enhancement in nuclear magnetic resonance2 and for

detecting and initializing solid-state nuclear spin qubits3. DNP
also occurs in two-dimensional electron systems4 via the contact
hyperfine interaction. In both self-assembled5–9 and gate-defined
quantum dots10–13, for example, DNP is exploited to prolong
coherence times for quantum information processing. Closed-
loop feedback12 based on DNP, in particular, is a key component
in one- and two-qubit operations in singlet-triplet qubits11,14,15.

Despite the importance of DNP, it remains unclear what
factors limit DNP efficiency in semiconductor spin qubits16. In
particular, the relationship between the spin–orbit and hyperfine
interactions17–20 has been overlooked in previous experimental
studies of DNP in quantum dots, although several works have
shown that the spin–orbit and hyperfine interactions contribute
to spin relaxation21–23 under different conditions. It has been
theoretically predicted, although not observed experimentally,
that the spin–orbit interaction should limit DNP by providing a
route for electron spin flips without corresponding nuclear spin
flops18,20,24.

In this work, we show that spin–orbit coupling competes with
the hyperfine interaction and ultimately quenches DNP in a GaAs
double quantum dot14,25, even though the spin–orbit length is
much larger than the interdot spacing. We use Landau–Zener
(LZ) sweeps to characterize the static and dynamic properties of
DST(t), the coupling between the singlet S and ms¼ 1 triplet Tþ ,
and the observed suppression of DNP agrees quantitatively with a
theoretical model. In addition to improving basic understanding
of DNP in semiconductors, these results will enable enhanced
coherence times in semiconductor spin qubits by elucidating the
experimental conditions under which DNP is most efficient26.

Results
Hyperfine and spin–orbit contributions to the S�Tþ splitting.
Figure 1a shows the double quantum dot used in this work14,25.
The detuning, E, between the dots determines the ground-state
charge configuration, which is either (1,1) (one electron in each
dot) or (0,2) (both electrons in the right dot) as shown in Fig. 1b.
To measure the S�Tþ coupling, DST(t), the electrons are
initialized in |(0,2)Si, E is swept through the S�Tþ avoided
crossing at E¼ EST, and the resulting spin state is measured
(Fig. 2a). When EEEST, we may describe the double quantum dot
by an effective two-state Hamiltonian

HðEÞ ¼
E
2 �B DSTðtÞ
D�
STðtÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4t2c

p
� �

ð1Þ

in the {|Tþi,|Si} basis (Fig. 2b), where tc¼ 23.1 meV is the
double-dot tunnel coupling and B is the external magnetic field
strength. In the absence of any noise, the probability for an
S�Tþ transition is given by the LZ formula27,28:

PLZ tð Þ ¼ 1� exp
� 2p DST tð Þj j2
� �

‘b

� �
; ð2Þ

where b¼ d(ES�ETþ )/dt is the sweep rate, with ES and ETþ the
energies of the S and Tþ levels. Following the LZ sweep, we
interpret the experimentally measured triplet return probability
as the LZ probability, PLZ.

Equation (2) predicts transitions with near-unity probability
for slow sweeps. For large magnetic fields, however, we
experimentally observe maximum transition probabilities of
B0.5. As discussed in Supplementary Note 1 and shown in
Supplementary Figs 1 and 2, this reduction is a result of rapid
fluctuations in the sweep rate arising from charge noise. Even in
the presence of noise, however, the average LZ probability

hPLZ(t)i can be approximated for fast sweeps as 2p DST tð Þj jh i2
‘b , which

is identical to the leading order behaviour in b� 1 of the usual LZ
formula29. Here h?i indicates an average over the hyperfine
distribution and charge fluctuations. To accurately measure

sST �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DST tð Þj j2

� �q
, we therefore fit hPLZi versus b� 1 to a

straight line for values of b such that 0ohPLZio0.1 (Fig. 2a).
We first measure sST versus f at B¼ 0.5 T (Fig. 2b), where f is

the angle between the magnetic field B and the z axis (Fig. 1a).
sST oscillates between its extreme values at 0� and 90� with a
periodicity of 180�. Fixing f¼ 0� and varying B, we find that sST
decreases weakly with B, but when f¼ 90�, sST increases steeply
with B, reaching values 410 times that for f¼ 0�, as shown in
Fig. 2c.

We interpret these results by assuming that both the hyperfine
and spin–orbit interactions contribute to DST(t) and by
considering the charge configuration of the singlet state at EST
(Fig. 1b,c). The matrix element between S and Tþ can be written
as DST(t)¼DHF(t)þDSO. DHF(t)¼ g*mBdB>(t) is the hyperfine
contribution, which is a complex number, and it arises from the
difference in perpendicular hyperfine field, dB?ðtÞ ¼ ðdBx0 ðtÞ
� idBy0 ðtÞÞ=

ffiffiffi
2

p
, between the two dots30. Here x0 and y0 are

coordinates perpendicular to B. (In the following, we set g*mB¼ 1
and give the hyperfine field strength in units of energy.) DHF(t)
couples |(1,1)Si to |(1,1)Tþi when the two dots are symmetric.
DSO is the spin–orbit contribution, which arises from an effective
magnetic field XSO ¼ OSOẑ (see Methods section) experienced
by the electron during tunnelling17. Only the component of
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Figure 1 | Experimental set-up. (a) Scanning electron micrograph of the

double quantum dot. A voltage difference between the gates adjusts the

detuning E between the potential wells, and a nearby quantum dot on the

left senses the charge state of the double dot. The gate on the right couples

the double dot to an adjacent double dot, which is unused in this work. The

angle between B and the z axis is f. (b) Energy level diagram showing the

two-electron spin states and zoom-in of the S�Tþ avoided crossing. (c)

The hyperfine interaction couples |(1,1)Si and |(1,1)Tþiwhen the two dots

are symmetric, regardless of the orientation of B, and the spin–orbit

interaction couples |(0,2)Si and |(1,1)Tþiwhen B has a component

perpendicular to XSO ¼ OSOẑ, the effective spin–orbit field experienced by

the electrons during tunnelling.
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OSO>B causes an electron spin flip. DSO therefore couples
|(0,2)Si to |(1,1)Tþi when fa0�, and OSO is proportional to the
double-dot tunnel coupling tc (ref. 17), which is 23.1 meV here.
At EST, the singlet state |Si is a hybridized mixture:
|Si¼ cosy|(1,1)Siþ siny|(0,2)Si, where the singlet mixing angle
y Bð Þ ¼ arctan B

tc

	 

approaches p/2 as B increases. Taking both y

and f into account, we write17:

DSTðtÞ ¼DHFðtÞþDSO

¼dB?ðtÞcosyþOSOsinf siny:
ð3Þ

The data in Fig. 2b therefore reflect the dependence of DST(t)
on f in equation (3). The data in Fig. 2c reflect the dependence of
DST(t) on y. As B increases, y also increases, and |Si becomes
more |(0,2)Si-like, causing DHF(t) to decrease. When f¼ 0�,
DSO¼ 0 for all B, but when f¼ 90�, DSO¼OSO siny, and sST
increases with B. Fitting the data in Fig. 2c allows a direct
measurement of the spin–orbit and hyperfine couplings (see

Methods section). We find
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dB2

?ðtÞ
�� ��� �q

¼ 34 � 1 neV and

OSO¼ 461±10 neV, corresponding to a spin–orbit length
lSOE3.5 mm (refs 24,31) (see Methods section), in good
agreement with previous estimates in GaAs32–34.

Spectral properties of the S�Tþ splitting. We further verify
that DST(t) contains a significant spin–orbit contribution by
measuring the dynamical properties of PLZ(t). A key difference
between the spin–orbit and hyperfine components is that DSO is
static, whereas DHF(t) varies in time because it arises from the
transverse Overhauser field, which can be considered a precessing
nuclear polarization in the semiclassical limit30. To distinguish
the components of DST(t) through their time dependence, we
develop a high-bandwidth technique to measure the power
spectrum of PLZ(t).

Instead of measuring the two-electron spin state after a single
sweep, E is swept twice through EST with a pause of length t
between sweeps (Fig. 3a) (see Methods section). Assuming that
Stückelberg oscillations rapidly dephase during t (refs 15,32), and
after subtracting a background and neglecting electron spin
relaxation, the time-averaged triplet return probability is
proportional to RPP(t)�hPLZ(t)PLZ(tþ t)i, the autocorrelation
of the LZ probability (Fig. 3b). Taking a Fourier transform
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Figure 2 | Measurements of rST. (a) Data for a series of LZ sweeps with

varying rates, showing reduction in maximum probability due to charge

noise. The horizontal axis is proportional to the sweep time. Upper inset:

data and linear fit for fast sweeps such that 0ohPLZio0.1. Lower inset: in a

LZ sweep, a |(0,2)Si state is prepared, and E is swept through EST (dashed
line) with varying rates. Here h¼ 2p: is Planck’s constant. (b) sST versus f
(dots) and simulation (solid line). (c) sST versus B for f¼0� and f¼90�
(dots) and fits to equation (3) (solid lines). When f¼0�, DSO is fixed at

zero, and the only fit parameter is sHF. When f¼90�, sHF is fixed at the

fitted value, and DSO is the only fit parameter (see Methods section). Error

bars are fit errors.
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Figure 3 | Correlations and power spectrum of PLZ(t). (a) Pulse sequence

to measure RPP(t) using two LZ sweeps. (b) RPP(t) for f¼0� and
B¼0.1 T. The data extend to t¼ 200ms, but for clarity are only shown to

75 ms here. (c) SP(o) versus f obtained by Fourier-transforming RPP(t).
At f¼0�, the differences between the nuclear Larmor frequencies are

evident, but for |f|40�, the absolute Larmor frequencies appear,

consistent with a spin–orbit contribution to sST. The reduction in frequency

with f is likely due to the placement of the device slightly off-centre in

our magnet, and the reduction in amplitude of the difference frequencies

occurs because the sweep rate b was increased with f to maintain

constant hPLZi (see Methods section). (d) Line cuts of SP(o) at f¼0�,
25� and 80�.
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therefore gives SP(o), the power spectrum of PLZ(t) (Fig. 3c,d).
For PLZ(t)oo1, PLZ(t)p|DST(t)|2, so SPðoÞ / SjDST j2ðoÞ, the
power spectrum of |DST(t)|2. This two-sweep technique allows
us to measure the high-frequency components of SP(o), because
the maximum bandwidth is not limited by the quantum dot
readout time.

Because it arises from the precessing transverse nuclear
polarization, DHF(t) contains Fourier components at the Larmor
frequencies of the 69Ga, 71Ga and 75As nuclei in the
heterostructure, that is, DHFðtÞ ¼

P3
a¼1 Dae2pifatþ ya , where a

indicates the nuclear species, and the ya are the phases of the
nuclear fields. Without spin–orbit interaction, DSTðtÞj j2¼P3

a¼1 Dae2pifatþ ya
�� ��2 contains only Fourier components at the
differences of the nuclear Larmor frequencies. With a spin–orbit
contribution, however, |DST(t)|2¼ |DSOþDHF(t)|2 contains
cross-terms such as DSODae2pifatþ ya that give |DST(t)|2 Fourier
components at the absolute Larmor frequencies. A signature of
the spin–orbit interaction would therefore be the presence of the
absolute Larmor frequencies in SP(o) for f a0� (ref. 35).

Figure 3b shows RPP(t) measured with B¼ 0.1 T and f¼ 0�.
Fig. 3c shows SP(o) for 0�rfr90�. At f¼ 0�, only the
differences between the Larmor frequencies are evident, but as
f increases, the absolute nuclear Larmor frequencies appear, as
expected for a static spin–orbit contribution to DST(t). These
results, including the peak heights, which reflect isotopic
abundances and relative hyperfine couplings, agree well with
simulations (Supplementary Fig. 3).

Dynamic nuclear polarization. Having established the impor-
tance of spin–orbit coupling at the S�Tþ crossing, we next
investigate how the spin–orbit interaction affects DNP. Previous
research has shown that repeated LZ sweeps through EST increase
both the average and differential nuclear longitudinal polarization
in double quantum dots11. However, the reasons for left/right
symmetry breaking, which is needed for differential DNP
(dDNP), and the factors limiting DNP efficiency in general are
only partially understood. Here we measure dDNP precisely by
measuring dBz, the differential Overhauser field, using rapid
Hamiltonian learning strategies36 before and after 100 LZ sweeps
to pump the nuclei with rates chosen such that hPLZi¼ 0.4
(see Methods section; Fig. 4a).

Figure 4b plots the change in dBz per electron spin flip for
B¼ 0.2 and 0.8 T for varying f. In each case, the dDNP decreases
with |f|. Because the spin–orbit interaction allows electron spin
flips without corresponding nuclear spin flops, dDNP is
suppressed as |DSO|¼ |OSO sinf siny| increases with |f|. The
reduction in dDNP occurs more rapidly at 0.8 T because y, and
hence DSO, are larger at 0.8 T than at 0.2 T. We gain further
insight into this behaviour by plotting the data against sHF/sST,

where sHF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DHFðtÞ2
�� ��� �q

(Fig. 4c). Plotted in this way, the

two data sets show nearly identical behaviour, suggesting that the
size of the hyperfine interaction relative to the total splitting
primarily determines the DNP efficiency.

It is interesting to note that the peak DNP efficiency is less at
B¼ 0.2 T than at B¼ 0.8 T. A possible explanation is that the
electron–nuclear coupling becomes increasingly asymmetric with
respect to the quantum dots at higher fields, because the singlet
state becomes more |(0,2)Si-like as y increases37. The gradient
build-up could also be due to an asymmetry in the size of the
quantum dots38. As a result, we expect that the dDNP should be
proportional to the total DNP, with a constant of proportionality
that depends possibly on B, but not b or f, in agreement with
forthcoming theoretical and experimental work. We therefore
explain our measurements of dDNP using a theoretical model in
which we have computed the average angular momentum hdmi

transfered to the ensemble of nuclear spins following a LZ
sweep as:

dmh i / s2HF
P0
LZðDSTÞ
DSTj j

� 

; ð4Þ

where P0
LZðDSTÞ is the derivative of the LZ probability with

respect to the magnitude of the splitting. (See Supplementary
Note 2 for more details.) Neglecting charge noise, we have the
usual LZ formula (equation (2)), and equation (4) reduces to

dmh i / s2HF
2p
‘b

1� PLZh i: ð5Þ

The data in Fig. 4b,c can therefore be understood in light of
equation (5) because as the splitting sST increases with |f|, the
sweep rate b was also increased to maintain a constant hPLZi.
Because the hyperfine contribution sHF is independent of f, hdmi
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therefore decreases. The data collapse in Fig. 4c can also be
understood from equation (5), assuming constant DST(t) and
fixed PLZ. In this case, bp|DST|2, as follows from equation (2),
and hence dmh i / s2HF= DSTj j2. Measurements with fixed rate b
also exhibit a similar suppression of dDNP (Supplementary Fig. 4
and Supplementary Note 2). In this case hPLZi increases with |f|,
because of the increasing spin–orbit contribution to sST, and
according to equation (5), hdmi therefore decreases.

The two theoretical curves in Fig. 4b,c are calculated using
equation (5) multiplied by fitting constants C, which are different
for the two fields, and agree well with the data. As discussed in
Supplementary Note 2 and shown in Supplementary Fig. 5, we do
not expect charge noise to modify the agreement between theory
and data in Fig. 4b,c beyond the experimental accuracy.
Finally, the peak dDNP value also approximately agrees with a
simple calculation (Supplementary Note 3) based on measured
properties of the double dot.

Discussion
In summary, we have used LZ sweeps to measure the S�Tþ
splitting in a GaAs double quantum dot. We find that the
spin–orbit coupling dominates the hyperfine interaction and
quenches DNP for a wide range of magnetic field strengths,
unless the magnetic field is oriented such that B||XSO.
A misalignment of B to XSO by only 5� at B¼ 1 T can reduce
the DNP rate by a factor of two, and DNP is completely
suppressed for a misalignment of 15�. The techniques developed
here are directly applicable to other quantum systems such as
InAs or InSb nanowires and SiGe quantum wells, where the
spin–orbit and hyperfine interactions compete. On a practical
level, these results will improve coherence times in gate-defined
quantum dot spin qubits by enabling more efficient DNP12, and
the high-bandwidth correlation measurements demonstrated
here offer a new tool to investigate nuclear dynamics in
semiconductors. On a fundamental level, our findings suggest
avenues of exploration for improved S�Tþ qubit operation32

and underscore the importance of the spin–orbit interaction in
the study of nuclear dark states37,38 and other mechanisms that
limit DNP efficiency in central-spin systems.

Methods
Device details. The double dot is fabricated on a GaAs/AlGaAs hetereostructure
with a two-dimensional electron gas located 90 nm below the surface. Au/Pd
depletion gates are used to define the double-dot potential. The double dot is
cooled in a dilution refrigerator to a base temperature of B50mK. The double-dot
axis is aligned within E5� of either the �110½ � or [110] axes of the crystal, but we do
not know which. In the latter case, both the Rashba and Dresselhaus spin–orbit
fields are aligned with the z axis, and their magnitudes add17. In the former case,
the Rashba and Dresselhaus contributions are also aligned with the z axis, but their
magnitudes subtract. Because the spin–orbit field is aligned with the z axis in each
case, we do not expect the orientation of the double dot to qualitatively change our
results. When f¼ 90�, B lies in the plane of the crystal and parallel to the double-
dot axis.

Measuring rST, DSO and rHF. In order to extract sST, we fit the measured hPLZi
versus b to a function of the form PLZh i ¼ 2p s2STh i

‘b . We calibrate the sweep
rate b using the spin-funnel technique25. We extract the spin–orbit and
hyperfine strengths by fitting the data in Fig. 2c to a function of the form

sST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

SO sin2 y sin2 fþ s2HF cos
2 y

q
, with OSO and sHF as fit parameters.

The singlet mixing angle yðBÞ ¼ arctan B
tc

	 

is computed using the measured

double-dot tunnel coupling tc¼ 23.1 meV.
DSO is held at 0 when fitting data for f¼ 0� to determine the hyperfine

coupling. We also exclude data points for Bo0.2 T in the fit, as the hyperfine
contribution appears to decrease at very low fields. We determine the spin–orbit
length as lSO ¼ tcd=

ffiffiffi
2

p
OSO

� �
(refs 24,31), where tc is the interdot tunnel

coupling, and dE100 nm is half of the interdot spacing. The curve in Fig. 2b is a
simulation, not a fit, and is generated using the same equation with the fitted values
of DSO and sHF.

Measuring RPP(s). Here we derive the triplet return probability after two
consecutive LZ sweeps with a pause of length t in between. In experiments, both
sweeps were in the same direction, and E was held in the (0,2) region between
sweeps (Fig. 3a). If the first LZ sweep takes place at time t with probability PLZ(t),
the probability for the two electrons to be in the Tþ state is PLZ(t), whereas the
probability to be in the S state is 1� PLZ(t). Then, the detuning is quickly swept
into the (0,2) region, where electron spin dephasing occurs rapidly, and there is
negligible Tþ occupation in thermal equilibrium because the S and Tþ states are
widely separated in energy. After a wait of length t, but before the second sweep,
the triplet population is PLZðtÞe� t=T1 and the singlet population is
1�PLZðtÞe� t=T1 , where T1 is the electron relaxation time. After the second sweep,
the triplet occupation probability is

PT ðtþ tÞ ¼ ð1� PLZðtÞe� t=T1 ÞPLZðtþ tÞþ PLZðtÞe� t=T1 ð1�PLZðtþ tÞÞ ð6Þ

¼ � 2PLZðtÞPLZðtþ tÞe� t=T1 þ PLZðtþ tÞþPLZðtÞe� t=T1 : ð7Þ
The second and third terms in equation (7) vary slowly with t. Experimentally,
these terms are found by fitting the measured triplet probability to an exponential
with an offset and are subtracted. When T144t, relaxation can be neglected,
and the predicted time-averaged signal is hPT(tþ t)ipRPP(t), where
RPP(t)�hPLZ(t)PLZ(tþ t)i, the autocorrelation of the LZ probability. When f¼ 0�,
T144tmax¼ 200 ms, where tmax is the largest value of t measured. The shortest
relaxation time T1E100ms in these experiments time occurs when f¼ 90�, which
is consistent with spin–orbit-induced relaxation23.

The effect of T1 relaxation is to multiply the measured correlation by an
exponentially decaying window, which reduces the spectral resolution of the
Fourier transform, but does not shift the frequency of the observed peaks. We
expect statistical fluctuations in the amplitude of the hyperfine field to affect the
spectrum in a similar way, although we expect this effect to be less than that of
electron relaxation. The raw data, (Fig. 3b) consisting of 667 points (each a result of
two sweeps with a 40% chance of a LZ transition), spaced by 300 ns, were zero
padded to a size of 1,691 points to smooth the spectrum, and a Gaussian window
with time constant 150ms was applied to reduce the effects of noise and ringing
from zero padding before Fourier transforming.

The magnetic resonance frequencies in Fig. 3c decrease with f. The
inhomogeneity of the x-coil in our vector magnet is 1.6% at 0.6 cm offset from the
centre. Thus, the field could easily be reduced by 43% for a misplacement of the
sample by 1 cm from the magnet centre. We have simulated the data in Fig. 3c in
the main text based on the measured hyperfine and spin–orbit couplings and the
known sweep rates. Assuming a 4.4% reduction in the field from the x-coil, we
obtain good agreement between theory and experiment (Supplementary Fig. 3).
The difference frequencies also decrease in strength with increasing f, which
happens because the sweep rate b was increased with f to maintain constant hPLZi.
This effect can be understood for fast sweeps, where the amplitudes of the
difference frequencies should scale as D1D2/b, where the subscripts indicate
different nuclear species.

We argued in the main text that only the difference frequencies should appear
in the spectrum SP(o) without spin–orbit coupling by considering the time
dependence of |DST(t)|2 and because SPðoÞ / SjDST j2 ðoÞ when PLZ(t)oo1. Since
PLZ(t) contains only even powers of |DST(t)|, SP(o) can generally be expressed in
terms of differences of the resonance frequencies, but will not contain the absolute
frequencies in the absence of spin–orbit coupling, regardless of the value of PLZ(t).

Measuring dBz. We measure dBz by first initializing the double dot in the |(0,2)Si
state and then separating the electrons by rapidly changing E to a large negative
value25. When the electrons are separated, the exchange energy is negligible, and
the magnetic field gradient dBz drives oscillations between |Si and |T0i. In our
experiments, we measure the two-electron spin state for 120 linearly increasing
values of the separation time. The resulting single-shot measurement record is
thresholded, zero padded and Fourier transformed. The frequency corresponding
to the peak in the resulting Fourier transform is chosen as the value of dBz. This
technique is related to a previously described rapid Hamiltonian estimation
technique36.
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