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A novel coarsening mechanism of droplets
in immiscible fluid mixtures
Ryotaro Shimizu1 & Hajime Tanaka1

In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets

suspended in vinegar. Such a demixing process is observed everywhere in nature and also of

technological importance. For a case of high droplet density, domain coarsening proceeds

with inter-droplet collisions and the resulting coalescence. This phenomenon has been

explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal

forces exerted by molecules induce random motion of individual droplets, causing accidental

collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we

demonstrate that the droplet motion is not random, but hydrodynamically driven by the

composition Marangoni force due to an interfacial tension gradient produced in each droplet

as a consequence of composition correlation among droplets. This alters our physical

understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.
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P
hase separation is one of the most fundamental physical
phenomena that lead to pattern formation in various types
of systems1–6, including all kinds of classical condensed

matter, biological systems (both ordinary7 and active matter8),
quantum systems such as liquid 3He–4He mixtures9 and
Bose–Einstein condensates10,11, nuclear matter12 and cosmology13.
In many of these systems, momentum conservation plays a crucial
role in phase separation. The simplest among such systems is a
classical binary liquid mixture, where material can be transported
by both diffusion and hydrodynamic flow. Thus, the relevant field
variables are the composition of one of the components f and the
fluid flow velocity v. The process of phase separation is then
described by the Ginzburg–Landau-type f4 free energy and a set of
coupled dynamical equations of these two variables satisfying
the composition and momentum conservation under the
incompressiblity condition r � v¼ 0 (see Methods for the explicit
forms of the equations). This model is widely known as model H
in the Hohenberg–Halperin classification of dynamical critical
phenomena and phase-separation kinetics to dynamic universality
classes14. Phase-separation behaviour in many of the above-
mentioned systems can basically be described in a similar

framework. Thus, revealing the fundamental physical mechanism
of domain coarsening in model H is of significant importance for
the general understanding of spinodal decomposition (SD) in these
systems.

From a technological point of view, since phase separation
starts at nanoscale and its characteristic size proceeds to grow
indefinitely with time, we can control the domain size of materials
intentionally by freezing the process at a certain time by using
liquid–solid transitions such as glass transition and crystal-
lization, by chemical reaction or by emulsifying liquid droplets
with surfactants. This strategy is widely used in industrial
processes of various materials such as liquid mixtures, emulsions,
polymer blends, metallic alloys, ceramics, cosmetics and foods.
Among various types of phase separation, liquid phase separation
is quite important in materials science since a liquid state is
most suitable for materials processing. Thus, the understanding
of domain coarsening dynamics in the demixing process of
liquid mixtures is not only of fundamental importance but also
of crucial technological importance for controlling domain
structures of materials.

The theoretical framework of model H has a very firm basis
since it replies solely on the composition and momentum
conservation, and there is little doubt on its validity. This
phase-field model is widely used for numerical simulations not
only in physics, but also in materials science and chemical
engineering communities. However, the analytical theoretical
analysis of model H is not an easy task due to its non-locality,
non-linearity, complex non-local dynamical coupling between f
and v, and stochastic nature due to thermal noise. Nevertheless,
the concept of dynamical scaling provides us with a powerful
scaling argument for the self-similar domain growth in the late
stage of phase separation after the formation of a sharp domain
interface1–4,15, on the basis of clear physical pictures on the
elementary process of domain coarsening. Thus, the basic
mechanisms of domain coarsening in immiscible liquid
mixtures are now believed to be reasonably understood1–6.
Recently, research interests have shifted towards other aspects
of phase separation including aging dynamics during the
coarsening process16, geometrical features17, and response
functions of coarsening systems18, inertia effects15,19, and
viscoelastic effects4,20.

Here we summarize the current understanding of liquid phase
separation. We consider a binary liquid mixture, whose
components have the same viscosity Z. A schematic phase
diagram is shown in Fig. 1a, together with typical phase-
separation structures (Fig. 1b,c). The relevant domain coarsening
mechanism depends solely on the volume fraction of the minority
phase F: For small F (case A), the evaporation–condensation
(Lifshits–Slyozov–Wagner (LSW)) mechanism21–23 is responsible
for droplet coarsening: steady diffusion flux from smaller droplets
to nearby larger droplets leads to the growth of the latter at the
expense of the former. In this case, the average domain size hRi
grows as RðtÞh i ffi ½ð4=27ÞD0xt�1=3 (ref. 4), where t is the time,
D0 is the diffusion constant of a component molecule (or atom)
and x is the correlation length of composition fluctuations (or the
interface thickness). In this mechanism, translational diffusion of
component molecules (or atoms) is the main transport process.
Near a symmetric composition (^B1/2) (case B), bicontinuous
SD takes place (Fig. 1b). There, the hydrodynamic coarsening
(Siggia’s) mechanism characteristic to a bicontinuous pattern
leads to rapid coarsening24: hR(t)iD0.1(s/Z)t (ref. 4), where s is
the interface tension between the two phases. In this
mechanism, hydrodynamic flow is the main transport process.
For intermediate F (case C), droplet SD takes place (Fig. 1c).
It has been believed that the Brownian-coagulation (Binder–
Stauffer–Siggia (BSS)) mechanism is mainly responsible for the
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Figure 1 | A schematic phase diagram and typical phase-separated

structures. (a) Schematic phase diagram. In the (light yellow–green region)

metastable region (that is, the low F region (Fo � 0:21)), nucleation

growth type phase separation takes place. For F51, droplets coarsen by the

evaporation-condensation (or, LSW) mechanism: diffusional transport from

smaller to larger droplets. Near the symmetric composition (the light blue

region or F � 1=2), bicontinuous spinodal decomposition (b) takes place

and the domain coarsening is governed by the Siggia’s hydrodynamic

coarsening mechanism: hydrodynamic transport from thin to thick parts of

bicontinuous tube structures. In the intermediate composition region (the

green region), droplet spinodal decomposition (c) takes place and its

coarsening mechanism has been believed to be the Brownian-coagulation

mechanism: random Brownian motion of droplets and the resulting

collisions. Contrary to this, we propose a new coarsening mechanism, in

which droplet motion is induced by the composition Marangoni effect due

to the diffusional composition coupling among droplets, and not by random

Brownian motion. The border between bicontinuous and droplet spinodal

decomposition is located around F¼0.34, according to our simulation.

Blue and red colour indicate outer and inner sides of interfaces, respectively.
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coarsening24,25: droplets grow by accidental collisions between
droplets undergoing random Brownian motion, which leads to
the coarsening law hR(t)iD[(6kBTF/(5pZ))t]1/3 (refs 4,26), where
kBT is the thermal energy. In this mechanism, thermal Brownian
motion of droplets (rather than molecules) is the main transport
process. The growth exponents of these coarsening laws
have been confirmed by both experiments27–33 and numerical
simulations19,34–36.

The coarsening mechanisms for case A and B are rather well
established, whereas that for case C is not so clear due to
difficulties associated with many-body effects and hydrodynamic
effects. The simplifications of case A and B come from the fact
that for case A transport is dominated by diffusion and for case B
by hydrodynamic flow. On the other hand, both may play an
important role for case C in a complex manner. Although there
has been a wide belief that the primary coarsening mechanism is
the BSS mechanism, additional mechanisms have also been
suggested. For example, Tanaka26,37 observed the process of
droplet coarsening in a binary liquid mixtures confined between
two glass plates with optical microscopy, and found that droplet
collision enhances subsequent collisions via hydrodynamic flow
(phenomenon 1) and droplets sometimes move directionally,
contrary to the expectation from random Brownian motion
(phenomenon 2). Phenomenon 1 is enhanced for a quasi-two-
dimensional (quasi-2D) situation due to stronger hydrodynamic
interactions38, but even for 3D its importance has been pointed
out when the droplet volume fraction is very high36,39.
On phenomenon 2, some theories were proposed to explain
directional motion of droplets by a coupling between composition
and velocity fields40,41; however, they turned out to be wrong
even on a qualitative level, as will be described later. The difficulty
of this problem stems from the non-local nature of diffusion and
the many-body and long-range nature of its coupling with
hydrodynamic degrees of freedom. Although directional motion
of droplets was experimentally reported for such a quasi-2D
situation26,37, there has so far been no firm experimental evidence
supporting such spontaneous motion of droplets for a bulk 3D
system. Because of this lack of clear experimental evidence
together with the theoretical difficulty mentioned above,
phenomenon 2 has not attracted much attention. Thus, it is
now widely believed that droplet coarsening in immiscible liquid
mixtures can be explained by the BSS mechanism1–6.

In this article, we will demonstrate by numerical simulations
that, contrary to the BSS mechanism, droplet motion is not
random, but hydrodynamically driven by the composition
Marangoni force, which is induced by long-range diffusional
composition correlation among droplets, indicating that a
dynamical coupling between the composition and velocity field
leads to a novel mechanism of efficient droplet coarsening in
droplet SD.

Results
Phase diagram and the setting of basic parameters. Before
presenting results of phase-separation simulation, we summarize
phase-separation behaviour of a binary fluid mixture, focusing on
how it depends on the composition f and the temperature T (see
the schematic phase diagram, Fig. 1a). Here we consider phase
demixing induced by an instantaneous temperature quench at
time t¼ 0 from an initial temperature in the one-phase region
(white region) to a final temperature T in the two-phase region.
First the phase-separation behaviour can be grouped into two
types: nucleation and growth (NG)-type phase separation in the
metastable region (the light yellow region in Fig. 1a) and SD-type
one in the unstable region. Then, SD-type phase separation can
further be classified into droplet and bicontinuous SD. Domain
coarsening is mainly driven by the LSW mechanism for NG-type

phase separation, which takes place for ^oo1, and by Siggia’s
mechanism for bicontinuous SD, which takes place for ^B1/2.
For droplet SD, which takes place for the intermediate F
(roughly, B0.21o^oB0.34; the green region in Fig. 1a), it has
been widely believed that the BSS mechanism is responsible for
domain coarsening. We note that the boundary between NG- and
SD-type phase separation is sharp only in the mean-field limit,
and should be diffuse for ordinary binary liquid mixtures42.

The composition region on which we focus here is the region
of droplet SD. The thermodynamic state of a binary fluid mixture
is characterized by the composition f and the temperature
difference between the critical temperature Tc and the tempera-
ture T. Then the correlation length of the composition fluctuation
x, which also characterizes the interface thickness, is described as
xDa|(T�Tc)/Tc|� n, where the critical exponent vB0.63 for 3D
Ising universality class to which a binary mixture belongs4,14.
On the other hand, the kinetics is characterized by the fluid
viscosity Z. Then the cooperative diffusion constant is expressed
as Dx¼ kBT/(6pZx) and the characteristic lifetime of composition
fluctuations is given by tx¼ x2/Dx¼ 6pZx3/kBT. As shown in
Methods, the phase-separation behaviour of a binary fluid
mixture can be described solely by four dimensionless
parameters. One is the scaled composition ef ¼ f=fe, where fe

is the final equilibrium composition or equivalently the volume
fraction of the minority phase F. The others are the fluidity
parameter A, which is a measure of the relative importance of the
hydrodynamic to the diffusional transport43, the thermal noise
parameter B, which is the strength of the noise term (see
Methods), and the Reynolds number Re, which characterizes the
relative importance of the inertia term to the viscous term.

A and B are defined, respectively, as A ¼ 6p gj jx3f2
e ¼ 18psx2

23=2kBT
,

and B ¼ 2
gj jx3f2

e
¼ 25=2

3
kBT
sx2 (refs 35,43). We note that s in these

relations is the interface tension in an equilibrium two-liquid
coexistence state (see Methods for its expression in the Ginzburg–
Landau model). We set Re¼ 0 since in ordinary droplet phase
separation, we can safely neglect the inertia effects24 (see Methods).

We note that near a critical point Tc, it is known that the
renormalized value of A is a universal constant, A ¼ 4 � 8
(refs 35,43), since the equilibrium interface tension is given by
s ¼ ð0:2 � 0:4ÞkBT=x2 according to the two-scale-factor
universality4. However, far from a critical point, this parameter
can become very large for typical immiscible binary liquids (for
example, for a water/hexane mixture, A � 100), whereas it
becomes very small for polymer mixtures since A � N � 1 (N: the
degree of polymerization of polymer)4,35. On the other hand, the
estimation of the value of B needs some care, since this represents
the strength of thermal fluctuations that directly lead to the
break-down of the mean-field picture due to renormalization
effects: a larger value of B shifts Tc to a lower temperature. We
estimate that B should be in the order of 1 near a critical point,
and it decreases when the temperature is much lower than Tc.
So, in our simulations, we chose A ¼ 5 and B ¼ 1 as typical
parameters for a system near a critical point. We note that the
choice of these values of A and B does not affect our basic
conclusion on a qualitative level. As shown below, our new
mechanism, where hydrodynamic transport plays a key role,
becomes more important with an increase in the distance from a
critical point, that is, for larger A and smaller B. Note thatA=B is
a measure of the ratio of the hydrodynamic transport to the
noise-driven diffusional transport. This means that our new
mechanism should become more important for a liquid mixture
far from a critical point, which is often the case for realistic
applications, than for a critical mixture.

Finally, we note that our study concerns only the so-called late
stage of phase separation after the formation of a sharp domain
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interface, where the domain size is large enough compared with
the interface thickness: R � x. Below we study F¼ 0.25, which
is in the composition region of droplet SD (see Fig. 1a). Hereafter
we use the scaled domain size ~R ¼ R=x and the scaled time
~t ¼ t=tx to describe the coarsening dynamics.

Results without thermal noise. First, we show a coarsening
process during droplet phase separation in Fig. 2a, which is
simulated by solving the dynamical equations of model H
(see Methods) without thermal noise (see Methods). Because
of the absence of noise (that is, B ¼ 0), the droplet interface
is smooth. The time evolution of the average size h~Ri and the total
number of droplets N for the fluidity parameter A ¼ 5 (black)
and A ¼ 50 (red) are shown in Fig. 2b,c, respectively. In addition
to A ¼ 5, we use the large fluidity parameter A ¼ 50 to access a
large separation between the interfacial thickness and the droplet
size as well as to see hydrodynamics effects clearly. Because of the
composition asymmetry, the symmetry of initial composition
fluctuations around the average composition, which holds in the
initial linear regime, is broken once the non-linear terms in the
free energy start to come into play, and thus many small droplets
are formed by fragmentation in the early stage. As stated above, in
this study we are concerned only with the late stage of coarsening
after the formation of a sharp domain interface. In the late stage,
we find ~R

� �
/ ~t1=3 and N / ~t� 1 for both fluidity parameters

(Fig. 2b,c). Even when thermal noise is absent, we can see
spontaneous motion of droplets and subsequent collisions: the
droplet coarsening proceeds even without thermal noise. This
result can never be explained by the Brownian-coagulation
mechanism, in which thermal noise is the only cause of droplet
motion and coarsening. This is the most direct evidence for the
presence of an unknown coarsening mechanism other than the
BSS mechanism, which is responsible for the spontaneous motion
of droplets and their collisions. Because of the absence of thermal

noise, the droplet coarsening process is perfectly deterministic in
this case, and thus the initial composition noise introduced at
t¼ 0 completely determines what takes place afterwards.

For A ¼ 5, we can see both collisions of droplets and gradual
disappearance of droplets due to evaporation, although the
former is much more frequent than the latter. For A ¼ 50, on the
other hand, the growth of droplets proceeds almost solely through
direct collisions between droplets and evaporation of droplets is
very rare. This difference can be explained by the fact that A is a
measure of the relative importance of hydrodynamic to diffu-
sional transport. Figure 2d,e show, respectively, the average
diffusion flux and the average magnitude of the velocity of
droplets for A ¼ 50 during a coarsening process. Each spike
reflects inter-droplet collision. We can see that, in the late stage,
collisions take place after a complete decay of flow and thus are
not affected by the preceding collision even for A ¼ 50, clearly
indicating that the migration of droplets and the following
collision are due to spontaneous motions of droplets and ‘not’
induced directly by the preceding collision.

Results with thermal noise. Next, we show a coarsening process
during droplet phase separation with thermal noise in both
composition and force fields. We note that the incorporation of
both types of noise in the model H equations has been technically
challenging44–46. However, this has been properly done for 2D in
the framework of model H by Camley et al.44. We have employed
their method to simulate a 3D system (see Methods). The merit of
this method is that we can drop the inertia term.

The process of phase demixing is shown in Fig. 3a (see also
Supplementary Movie 1). The simulation is made for the fluidity
parameter A ¼ 5 and the thermal noise parameter B ¼ 1 (see the
above for the choices of these values). We can clearly see the
temporal growth of droplets, which are induced by spontaneous
droplet motion and the resulting collision and coalescence,
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Figure 2 | Coarsening dynamics of droplet phase separation without thermal noise. (a) Coarsening process of droplet spinodal decomposition at

F¼0.25 for A ¼ 5 and B ¼ 0. Blue and red coloured surfaces show front and back sides of a droplet interface, respectively. Time evolution of the average

droplet size ~Rð~tÞ
� �

and the total number of droplet Nð~tÞ are shown in b,c forA ¼ 5 (black) and A ¼ 50 (red), respectively. The green straight lines have the

slope of 1/3 for a and � 1 for b. (d) Temporal change in the average diffusion flux ~j
� �

for A ¼ 5. Note that the characteristic decay time of the diffusion flux

after a collision is tf � 6pZR2a=kBT. In our unit, this time scale is roughly proportional to ~R2 (for example, B400 for ~R ¼ 20). (e) Temporal change in the

average velocity magnitude ~V
� �

for A ¼ 5. Note that the characteristic decay time of the velocity field after a collision is tv � ZR=s, which is the

characteristic shape recovery time of a deformed droplet to a spherical shape. In our unit, this time scale is roughly proportional to ~R=A (for example,

B4 for ~R ¼ 20). Each sharp spike in d,e reflects inter-droplet collision. The insets in d,e are the same plots but with a semi-log x-axis.
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as observed in Fig. 2a. Unlike in Fig. 2a, however, the interface of
droplets are rough due to thermal fluctuation effects.

As shown in Fig. 3b, the structure factor Sð~kÞ can be scaled by
using the characteristic wavenumber ~k1 (see Methods), indicating
that droplet patterns grow self-similarly1–6. The time evolutions
of the average droplet size ~R

� �
and the number of droplets N

are shown in Fig. 2c. We find ~R
� �

� ~t1=3 and N � ~t� 1.
The exponents are consistent with the prediction of the
BSS mechanism, where the coarsening rate is predicted as
hR(t)i3D(6FkBT/5pZ)t (refs 4,26). In our scaled units, this
relation becomes ~Rð~tÞ

� �3ffi ðð3FABÞ=5pÞ~t ffi 0:24~t for A ¼ 5
and B ¼ 1. However, what we find is ~Rð~tÞ

� �3 ffi 1:6~t. This
indicates that the droplet size ~R

� �
grows 1.9 times faster than the

prediction of the BSS mechanism although the exponent of the
power law is the same. We note that our simulation result is
much consistent with the experimental finding of Perrot et al.31

under microgravity that the droplet size grows twice faster than
the prediction of the BSS mechanism. This supports the validity
of our simulations with the above choices of A and B.

Spontaneous directional motion of individual droplets. To seek
the cause of the non-Brownian nature of droplet coarsening in
simulations without noise (Fig. 2) and the faster coarsening than
the BSS prediction in simulations with noise (Fig. 3), we analyse
trajectories of droplets during the interval of two successive col-
lisions for the case with thermal noise. First, we focus on the
nature of droplet motion, that is, whether it is completely random
as assumed in the BSS mechanism (Fig. 4a) or directional
(Fig. 4b). We carefully choose the observation period to avoid the
effects of flow induced by collisions of droplets and to see only
spontaneous motion of the droplets. In Fig. 4c, a typical trajectory
of a droplet during a certain time period is shown. We can clearly
see that the droplet moves directionally (towards a neighbouring
droplet). We confirm that this type of motion is common to most
of droplets and not special (see, for example, Fig. 4d). Below we
will show that it is this directional motion that leads to the fast
coarsening process. We note that this motion is not due to inertial
effects36 since our simulations are performed under the Stokes

approximation (Re¼ 0, or without the inertia term), which is
valid for ordinary droplet phase separation. Thus, there must be
some thermodynamic force acting on droplets that drives droplets
to spontaneously move directionally.

For a droplet of radius R, which is undergoing random
Brownian motion freely, its mean-square displacement, hDr2i,
should be given by hDr(t)2i¼ dr(t)2¼ (kBT/(5pZR))t. In our
scaled units, for A ¼ 5 and B ¼ 1,

ffiffiffi
~R

p
d~r ¼ AB

10p
~t

� �1=2

ffi 0:4~t1=2 ð1Þ

To compare the displacements of droplets with different radii, we
plot

ffiffiffi
~R

p
d~r for all droplets in Fig. 4d. In this plot, the difference in

the droplet size are scaled out; and, thus, the displacements of all
droplets should agree to the prediction of equation (1) and thus
fall on the blue solid line in Fig. 4d, if droplets are doing free
random Brownian motion. However, we find that most of
droplets have much larger displacements far beyond the
prediction of equation (1) (i.e., the blue solid line), strongly
indicating the non-random directional nature of droplet motion.
During this time interval of observation, the change in the droplet
radius is within a few per cent, so this effect does not play any
role. Hydrodynamic interactions between droplets and finite-size
effects should slow down the self-diffusion of droplets. Further-
more, the displacement should still increase in proportion toffiffi
t

p
as long as the motion is random. Nonetheless, Fig. 4d clearly

shows that the displacements of droplets are much larger than the
prediction of equation (1) and even increase almost linearly at
later times. This cannot be explained by the scenario based on
random Brownian motion.

Without noise, we should be able to see clearly the relation
between the thermodynamic force and the resulting transport,
diffusional and hydrodynamic, without suffering from noise that
obscures the details. Thus, we study the chemical potential on
droplet interfaces for the case without thermal noise, and the
result at a certain time is shown in Fig. 5a. We can clearly see that
the chemical potential on the interface of a droplet, or the
interfacial composition profile, is not spherical symmetric but
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Figure 3 | Coarsening dynamics of droplet phase separation with thermal noise. (a) Temporal change in the droplet structure in the late stages

of the phase-separation process at F¼0.25 for A ¼ 5 and B ¼ 1. Blue and red coloured surfaces show front and back sides of a droplet interface,

respectively. (b) Scaling plots of the normalised structure factor Sð~kÞ. The collapse onto the master curve indicates the self-similar nature of pattern

evolution. (c) Time evolution of the average droplet size ~Rð~tÞ
� �

and the total number of droplets Nð~tÞ during phase separation. The blue and green

lines have the slope of � 1 and 1/3, respectively.
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rather anisotropic, reflecting the spatial configuration of the
neighbouring droplets. As will be shown below, this causes the
composition Marangoni force, which induces spontaneous
directional motion of droplets. Nevertheless, the droplets are
nearly spherical because of the action of the Laplace pressure
Dp¼ 2s/R, which induces a quick hydrodynamic relaxation to
the stable spherical geometry with a characteristic relaxation time
of tv � ZR=s. A small variation of the interface tension, Ds, in a
droplet does not cause shape deformation of the droplet, but
causes a drastic change in the type of droplet motion from
stochastic to deterministic nature. We note that the former is a
relative effect, whereas the latter is an absolute effect.

Figure 5b is an enlargement of the blue small droplet and its
surrounding droplets shown in Fig. 5a. The arrows show the flow
field at their interfaces. The flow field is caused by an imbalance
between the Laplace pressure and the thermodynamic force under
the incompressibility condition: the break-down of the spherical
symmetry of the interfacial chemical potential in a droplet and
the resulting tangential force acting along the interface allow the
directional flow field to be induced even under the condition of
r � v¼ 0, unlike the case of an isolated spherical droplet. We can
see that the smaller bluish droplet in a higher free energy state is
slowly evaporating and the neighbouring droplets in lower energy
states are growing. Thus the interface of a neighbouring droplet

that is closer to the evaporating small droplet has smaller
chemical potential (more bluish) than the opposite side. This
anisotropy of the chemical potential on the interface of each
droplet is the origin of the deterministic directional motion of the
droplet. The variation of the chemical potential on a droplet
interface is less than a few per cent, but the resulting composition
Marangoni force is strong enough to overwhelm the thermal
force acting on a droplet.

The emerging physical picture is as follows. An small
(evaporating) droplet causes deterministic flow fields on its
neighbouring larger droplets, which lead to motion of the
neighbouring droplets towards it and eventually induce an
inter-droplet collision, if the droplet does not evaporate before
collision. In other words, a larger droplet tends to eat a
neighbouring smaller droplet by direct collision. This hydro-
dynamic eating speed is much faster than the diffusional one in
the evaporation–condensation (LSW) mechanism, as long as
hydrodynamic transport is faster than diffusional transport.
More precisely, however, the composition correlation between
neighbouring droplets induces both the hydrodynamic and
diffusional transport. Thus, the crossover between the present
mechanism and the evaporation–condensation mechanism
should be controlled by the competition between hydrodynamic
and diffusional transport. The former is always dominant as long
as F is not so low. For lower F, however, the direct compositional
correlation between droplets, which is the origin of the
thermodynamic force inducing hydrodynamic droplet motion,
becomes weaker due to the less overlap of the composition fields
around droplets. For very low F, thus, droplets interact with each
other via the mean-field matrix, as assumed in the original
mean-field theory of the LSW mechanism21,22. In this regime, the
LSW mechanism becomes dominant. We speculate that the
crossover takes place around F � 0:21 separating NG and SD
(see Fig. 1), since by definition droplets are formed rather
independently for NG whereas in a correlated manner for SD. But
this crossover composition may also depend on the value of A.
Although this is a very interesting problem, we leave it for future
investigation.

a

b

c

d
R

(t
)1/

2 �
r(
t)

~
~

~ t
~

t
~

t
~1/2

~

103102

102

101

120

116

124
128

180

184

y

x

z~

~

~

Figure 4 | Evidence for directional motion of droplets. Schematic pictures

for random and directional motion are shown in a,b, respectively. Case a is

for non-interacting droplets and case b for interacting droplets. (c) An

example of a trajectory of the centre-of-mass of a single droplet during
~t ¼ 12; 120� 13; 520 in the process shown in Fig. 3. The arrow indicates the

direction of the motion. The result clearly shows directional translational

motion in the phase-separating process, strongly suggesting that the

droplet motion is the type depicted in b and not in a. (d) An example of

displacements normalized by radius,
ffiffiffiffiffiffiffiffi
~Rð~tÞ

q
d~rð~tÞ, of droplets during a time

interval (open symbols: ~t ¼ 11; 320� 11; 720; filled symbols:
~t ¼ 12; 120� 13; 520) in the process shown in Fig. 3. We note that during

this time interval no collisions take place. Symbols with different colours are

for different droplets in the simulation box. The blue straight line is
ffiffiffi
~R

p
d~r ffi

0:4~t1=2 (see equation 1) and the red dashed line has the slope of 1. The

displacements are always much larger than the prediction of Brownian

motion (the blue straight line) for non-evaporating droplets. Note that

droplets having displacements smaller than the prediction are

evaporating ones.

a b

�max�min

Figure 5 | Coupling between composition and velocity fields.

(a) A snapshot of droplets during phase separation without thermal noise.

The colour reflects differences of the chemical potential on the interface.

Reddish and bluish colour means higher and lower chemical potential,

respectively. As shown in the colour bar, the colour is assigned for each

droplet, which is bound by the minimum and maximum value of the

chemical potential m. This is because the amplitude of the change of m
inside each droplet interface is much smaller than the fluctuations of the

absolute value of m of each droplet. We note that the magnitude of

difference relative to mean value is o3% even for a droplet which has the

largest intradroplet variation. (b) Enlargement of the blue small droplet in a

and its surrounding droplets. The meaning of colour is the same as in a. The

velocity field at the droplet interfaces is also shown by the arrows. A longer

arrow means high velocity.
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Analysis of a pair of droplets. To elucidate the exact physical
mechanism, we also study the motion of pairs of droplets (see
Methods). Typical results are shown in Fig. 6a,b, where the
chemical potential and the flow field on the interfaces are shown
as in Fig. 5b. Figure 6c,d show the composition profile of two
droplets along the line connecting the centres of mass of the two
droplets for case a and b of Fig. 6. Figure 6e,f are their enlarge-
ments, which clearly show the presence of the composition dif-
ference by D~f between the two sides of a droplet. We can see that
such an asymmetric interfacial profile of a droplet induces a
chemical potential gradient in the droplet and leads to sponta-
neous directional droplet motion. Finally, the temporal change in
the centre-of-mass velocities of the two droplets are shown in
Fig. 6g,h, respectively, for case a and b of Fig. 6.

For the case of Fig. 6a, we calculate the interfacial tension s
for each interface by integrating ~F~f ¼ �r2~fr~f (ref. 40) across
the interface along the radial direction. A part of this
thermodynamic force is balanced by the Laplace pressure
Dp¼ 2s/R. For the left droplet whose radius is 11.5 and
velocity is � 0.0045, the interfacial tension is 0.9286 for its left
side and 0.9296 for the right side. This small variation of the
interfacial tension is consistent with a nearly spherical shape of
droplets, as discussed above. It is the interfacial tension gradient
due to the composition gradient on the interface that leads to the
motion of a droplet. This is known as the composition Marangoni
effect47,48. We note that it is well-known that this effect induces
spontaneous droplet motion for droplets with weak surfactants49

and those subjected to composition or temperature gradients50,51.
We stress that unlike these well-known cases, for the present case
the interfacial tension gradient in a droplet is produced by a non-
trivial coupling between the composition fields around droplets.

The analytical expression for the droplet velocity under a uniform
composition gradient is given as V¼ � (R/(5Z))(ds/dx)47. By
inserting to this relation the above values of s estimated from the
simulation, we estimate the droplet velocity as ~V

�� �� � 0:0050,
which is much consistent with the directly measured one
( ~V
�� �� � 0:0045) (see Fig. 6g). A slight difference may come
from the difference in the geometry, that is, a single particle under
a uniform composition gradient (theory) versus a droplet pair
under diffusional coupling (our simulation), and the finite size of
the simulation box. To avoid the finite-size effects, we need to
perform larger size simulations, but unfortunately a large
numerical cost of hydrodynamic simulations does not allow us
to do so. The velocities of the droplets in Fig. 6b are also
estimated from the same analysis, and they also agree well with
the measured ones (see Fig. 6b and its caption). These results
strongly support our mechanism.

In the particular configuration in Fig. 6a, due to the perfect
symmetry around the centre-of-mass of the two droplets and the
absence of noise, coarsening does not proceed. We note that the
same situation should be realized for the LSW mechanism. This is
not the case for the asymmetric situation in Fig. 6b, where two
particles approach each other and eventually collide. For real
droplet phase separation, the randomness of droplet size and
many-body interactions always lead to such asymmetric
situations and their continuous presence is responsible for
continuous coarsening. We emphasize that the randomness is a
direct consequence of thermal fluctuations and thus intrinsic to
any phase-separation phenomena. Combining this result on pairs
of droplets and the results shown in Fig. 5a,b, we can conclude
that the composition Marangoni effect stemming from the
randomness of droplet size is responsible for spontaneous
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Figure 6 | Motion of a pair of growing droplets. (a) Motion of two growing droplets of the same size. The centre-of-mass distance between the two

droplets is 35 and the initial radii of the two droplets are both 10. The velocity field and the chemical potential at the droplet interfaces are also shown, as in

Fig. 5. The interfacial tension of the left droplet is 0.9286 for its left side and 0.9296 for the right side around ~t ¼ 100. The theoretically estimated velocity

from these values is �0.0050, which is consistent with the measured velocity. The colour bar is the same as in Fig. 5. We can see the higher interface

tension at the side of a droplet near another one. This leads to the motion of the droplets increasing their separation, due to composition Marangoni effects.

(b) Motion of a pair of droplets with different size. The centre-of-mass distance between the two droplets is 45, and the initial radii of the left and right

droplets are 10 and 15, respectively. The sides of the droplets nearest each other have lower interfacial tension and the two droplets approach each other.

The interface tension of the left and right side of the right droplet is 0.9303 and 0.9294, respectively, and the velocity estimated from these values is

�0.0045, whereas the interface tension of the left and right side of the left droplet is 0.9289 and 0.9313, respectively, and the velocity estimated from

these is þ0.012, around ~t ¼ 100. These velocities estimated around ~t ¼ 100 are consistent with the measured ones. The simulation box size is 1923 for

both a and b. Because of its small size, the results suffer from finite-size effects. (c,d) The composition profile of the droplets along the line connecting their

centres of mass for a and b, respectively. (e,f) Enlargement of the composition profile of the left droplet shown in c,d, respectively. (g,h) The temporal

change of the centre-of-mass velocity of the two droplets for a,b, respectively. The final steep change of the velocity in h is due to a direct overlap of the

interfaces of the two droplets on collision.
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directional motion of droplets and the resulting coalescence. The
importance of randomness indicates that there should be a non-
trivial feedback between the coarsening and the droplet size
distribution. We find that the normalized droplet size distribu-
tions at various phase-separation times can be superimposed on
the universal curve (see Fig. 7), consistent with the self-similar
nature of pattern evolution. We speculate that more frequent
collisions between particles with large size difference may be
responsible for the self-similarity, but this problem should be
studied carefully in the future. Our mechanism cannot lead to
domain coarsening for a mono-disperse emulsion. However, the
Brownian-coagulation mechanism should work even in such a
situation; and once a collision happens and produces the droplet
size difference, our mechanism should become operative.

Roles of other non-trivial mechanisms. Finally we briefly con-
sider other possibilities. In our previous papers26,37, we suggested
two other non-trivial droplet collision mechanisms: multiple-
collision and collision-induced collision mechanisms, which were
confirmed experimentally and numerically38,39,52. Here we show
that neither of them can explain the above-described phenomena.
The former mechanism is a rather obvious one. When two
droplets collide with each other, the shape of the droplet interface
is strongly deformed and relaxes to a spherical shape,
accompanied by the interfacial-tension-driven flow. This flow
induces hydrodynamic motion of the surrounding droplets,
which leads to subsequent collisions. The latter mechanism is, on
the other hand, a result of a coupling between droplet collision
and composition diffusion. After droplet collision, strong
diffusion flux towards the resulting merged droplet is created
due to what we call the interface quench effect43 (see Fig. 2d),
which is the process of local equilibration of the droplet with the
matrix. This strong diffusion affects the translational motion of
other neighbouring droplets due to the dynamical coupling of the
diffusion and flow fields, which leads to subsequent collisions.
Both mechanisms are expected to enhance successive collisions,
but are effective only immediately after previous collisions. To
reveal whether the coarsening behaviour can be described by
these mechanisms or not, we calculate the average diffusion flux
and the average magnitude of the velocity during a coarsening
process without noise, respectively, in Fig. 2d,e. Occasional inter-
droplet collisions accompany sharp spikes and subsequent
relaxation for both quantities. The characteristic decay times of
diffusion flux and flow are given by tf¼R2/D0¼ 6pZR2a/(kBT)
and tv¼ ZR/s, respectively. As can be seen in Fig. 2d,e, in the late

stage a collision takes place after the diffusional and
hydrodynamic fluxes induced by the preceding collision have
completely decayed, suggesting that it is not affected directly by
the preceding collision: there are no chain collisions. This
strongly indicates that the coarsening behaviour we observe in the
late stage of phase separation can be explained by neither of the
above-mentioned mechanisms.

Discussion
The dynamical scaling argument on domain coarsening in the
late stage of phase separation has been so successful1–6. In this
argument, it has been assumed that the compositions of the two
phases already reach the final equilibrium one fe in the late stage.
For droplet phase separation, thus, it is implicitly assumed that
the interfacial tension s is uniform over a droplet’s interface. In
liquid mixtures, which are incompressible in ordinary conditions,
the hydrodynamic flow can be induced only by the interfacial
force, which acts normal to the interface in the above assumption.
For a spherical droplet, this leads to the conclusion that the
spherical symmetric force fields which act along the interface
normal unit vector n of a droplet cannot cause any flow under the
constraint ofr � v¼ 0 and accordingly the interfacial force should
be balanced by the Laplace pressure Dp¼ 2s/R (s being the
interfacial tension)20. This is the basis for the long belief that
droplet motion is not induced hydrodynamically but solely by its
thermal diffusion.

In the above, we have shown that this physical picture is not
correct and the interfacial tension is actually inhomogeneous over
each droplet’s surface due to diffusional composition correlation
among droplets, which allows interfacial-tension-driven flow even
for a spherical droplet. The key is the fact that droplets exchange
the component molecules (or atoms) with neighbouring droplets
via the surrounding matrix phase by diffusion. The time
necessary for a component molecule (or atom) (size a) to diffuse
over the same distance is ts¼ L2/D0. On the other hand, the
average time necessary for a droplet of radius R to diffuse over an
average inter-droplet distance L is estimated as tD¼ L2/DR, where
DR is the diffusion constant of a droplet. Since D0 and DR are
inversely proportional to the size of a component molecule (or
atom), a, and the domain size, R, respectively, the ratio tD/ts
becomes very large in the late stage of droplet SD, where R � a.
Thus the composition correlation between neighbouring droplets
develops via molecular (or atomic) diffusion long before an
accidental collision between them by thermal Brownian
motion takes place. It is this composition correlation
among neighbouring droplets that is responsible for internal
inhomogeneity of the interfacial tension over a droplet’s interface
and the resulting Marangoni force.

Here we note24,26 that van der Waals attraction between
droplets is too weak to affect the motion of droplets in the late
stage. Furthermore, directional motion of droplets observed in
our previous experiments in a quasi-2D situation, where neither
gravitational force nor electrostatic interactions are relevant, can
be explained by the present mechanism.

Here it is worth mentioning that the mechanism we find here is
essentially different from mechanisms previously proposed by
one of the authors (H.T.)40 and Kumaran41. Above, we reveal that
the force acting on a droplet comes from the non-uniformity in
the amount of the composition jump across the interface in the
droplet and thus is localized on the interface, whose characteristic
width is given by x. This non-uniformity of the interfacial tension
due to the coupling of the composition fields around droplets
causes the composition Marangoni flow, which leads to the
spontaneous motion of droplets. In both of the previous theories,
however, the non-uniformity of the Gibbs–Thomson condition
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on the droplet interface was completely ignored and only the
composition gradient in the matrix phase was considered. The
characteristic lengthscale of this inhomogeneous composition is
in the order of R. Thus, the strength of the composition
Marangoni force in the new mechanism is much stronger than
the composition-gradient-induced force in the previous ones
since 1=x � 1=R. Furthermore, there is another important, even
qualitative, difference between them; for example, both of the
previous theories40,41 (wrongly) predict that for a pair of large
(growing) droplets or for a pair of small (shrinking) droplets the
two droplets should come towards each other, whereas for a pair
of large (growing) and small (shrinking) droplets the two droplets
should move away from each other. We stress that this is opposite
to what is shown in Fig. 6a,b.

The novel mechanism reported here can be explained on an
intuitive level as follows. There is a difference in the local free
energy between droplets, reflecting the difference in the size
between them. Larger droplets are more stable and in a lower free
energy state simply because the interface energy cost is smaller.
This leads to the diffusion flux from small droplets to nearby
larger droplets due to the chemical potential difference. This
correlation of the composition field between droplets evolves
much faster than any significant diffusional centre-of-mass
motion of the droplets. This is exactly the same process as that
of the LSW mechanism: if there are neither hydrodynamic
degrees of freedom nor translational droplet diffusion, this leads
to the coarsening of the LSW type. However, the presence of
hydrodynamic degrees of freedom in a system entirely changes
the kinetic route for lowering the free energy. An intradroplet
gradient of the interfacial tension generates hydrodynamic
motion of droplets towards the side with lower interfacial
tension. Thus, larger droplets tend to eat nearby small droplets,
as in the case of the LSW mechanism. However, the crucial
difference comes from the fact that the transport process is
dominantly controlled by hydrodynamic translational motion of
droplets due to the composition Marangoni effect in our
mechanism, whereas by translational diffusion of molecules
(or atoms) in the LSW mechanism.

In a more general perspective, we may say that domain
coarsening is under the influence of the free energy at any
moment. This has a significant implication for the unified
physical picture of domain coarsening: all coarsening
mechanisms, including the evaporation–condensation mechan-
ism (for F � 1), the hydrodynamic coarsening mechanism (for
F � 1=2) and the mechanism found here (for intermediate F),
have a common principle of material transport: transport can be
either diffusion, flow or by their coupling, but always takes place
from smaller to larger domains: domain coarsening obeys a rule
that ‘big always wins over small’. We note that there is no such a
rule for the BSS mechanism, in which the process is purely
random and stochastic.

Finally, we stress that our new mechanism may play an
important role in phase separation of many binary mixtures in
practical use, which takes place in a state far from a critical point.
We note that our mechanism should be more operative for a
mixture of lower viscosity, as mentioned earlier. We also stress
that our mechanism can operate even near zero temperature, as
shown in Fig. 2, unlike the Brownian-coagulation mechanism,
and thus it should be relevant to SD in quantum systems, which
often takes place at extremely low temperatures9–11. We note that
in such a condition, quantum diffusion associated with tunnelling
mass transfer can be operative but there is little thermal motion
of droplets. Our study shows that the coupling between the
composition and velocity fields alone can lead to domain
coarsening even with little thermal noise. The relative
importance of the velocity field to the composition field

monotonically increases with an increase in the volume
symmetry between the two phases, and thus the primary
mechanism of coarsening changes from the LSW, to our
mechanism, to the Siggia’s mechanism with an increase of F
from 0 to 1/2. We hope that our mechanism will provide a novel
perspective for SD of classical and quantum fluid systems in
various fields.

Methods
Basic dynamic equations of model H. For our simulations, we employ the
following kinetic equations known as a fluid model or model H1,4,14:

@f
@t

¼ � v � rfþ Lr2 dðbHÞ
df

þ y: ð2Þ

r
@v
@t

þ rðv � rÞv ¼ Ff �rpþ Zr2vþ f: ð3Þ

where f is the composition, v is the fluid velocity, p is a part of pressure, r is the
density, Z is the viscosity, L is the kinetic coefficient and b¼ 1/kBT (kB, the
Boltzmann constant). The pressure p is determined to satisfy the incompressiblity
condition r � v¼ 0. Since our primary concern is the dynamical coupling between
the composition and flow field, we do not care about the detailed properties of the
mixture and thus adopt the following standard Ginzburg–Landau free energy
functional:

bH ¼
Z

dr
g
2
f2 þ u

4
f4 þ K

2
rfj j2

� 	
; ð4Þ

where g¼ g0(T�Tc) and g0, u and K are positive constants. In equation (3), Ff is
the thermodynamic force density acting on the fluid due to spatial inhomogeneity
of the composition field and Ff¼ �frm¼ �rpþ kBTKfr2rf (p, osmotic
compressibility), where m ¼ dH=df is the chemical potential. Here y and z are the
thermal noise terms in composition and force, respectively, which satisfy the
following fluctuation–dissipation relation1,4.

yðr; tÞyðr0; t0Þh i ¼ � 2Lr2dðr� r0Þdðt� t0Þ; ð5Þ

and

zi r; tð Þzj r0; t0ð Þ
� �

¼ � 2kBTZdijr2dðr� r0Þdðt� t0Þ; ð6Þ

Here we rewrite equations (2) and (3) by scaling the space and time unit by the
correlation length of critical composition fluctuations x¼ (K/|g|)1/2 and the
characteristic lifetime of fluctuations tx¼ x2/(|g|L). Then we define new variables,
~r ¼ r=x (r being the position vector), ~t ¼ t=tx and ~v ¼ ðx=tÞv. The composition is
normalized as ~f ¼ f=fe, where fe¼ (|g|/u)1/2 is the equilibrium composition of
the coexisting phase. The scaled equation which corresponds to equation (2) is then

@~f
@~t

¼ � ~v � r~fþr2½ � ~fþ ~f3 �r2 ~f� þ ~y; ð7Þ

and equation (3) with the Stokes approximation becomes

~vi ¼
Z

d~r0 Tð~r�~r0Þij½ð� ~fþ ~f3 �r2 ~fÞr~fþ~zj; ð8Þ

where Tij is the Oseen tensor given by

Tð~rÞij ¼
A
8p~r

dij
~r

þ ~ri~rj
~r3

� �
: ð9Þ

~y and ~f are scaled thermal noises which satisfy the following fluctuation–
dissipation relations:

~yð~r;~tÞ~yð~r0 ;~t0 Þ
D E

¼ �Br2dð~r�~r
0 Þdð~t�~t

0 Þ; ð10Þ

and

~zið~r;~tÞ~zjð~r
0
;~t

0 Þ
D E

¼ �ðB=AÞdijr2dð~r�~r
0 Þdð~t�~t

0 Þ: ð11Þ

Here we note that s/(kBT)¼ (23/2/3)|g|xfe
2, which is the interface tension in an

equilibrium two-liquid coexistence state.

Simulations without thermal noise. We performed simulations without thermal
noise to show that droplet coarsening takes place even without thermal noise (that
is, B ¼ 0). We note that the Brownain coagulation mechanism fully relies on the
presence of thermal force noise. Simulations without thermal noise are also useful
to see the spatial distribution of physical quantities such as the chemical potential
and the fluid velocity without suffering from thermal noise. For these simulations,
we introduce Gaussian random noise into ~f with an intensity d~f ¼ 0:01 around
the averaged composition ~f0 ¼ � 0:5 (that is, F¼ 0.25) as an initial condition
only at ~t ¼ 0, switch off noise for ~t40 and follow the pattern evolution process.
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Details of simulations with thermal noises. Here we explain how thermal
composition and velocity fluctuations can be incorporated in our simulations.
Although we have written equations (7) and (8) as two separate equations, they can
be unified into only one kinetic equation in the Stokes regime, since the velocity
field is set solely by the composition field. Substituting equation (8) into
equation (7), the dynamic equation of composition is given by4,35

@~fð~r;~tÞ
@~t

¼
Z

d~r0Lð~r;~r0Þ dH
d~fð~r0Þ

þ yRð~r;~tÞ; ð12Þ

where the kinetic coefficient is given as

Lð~r;~r0Þ ¼ r2dð~r�~r0Þ þr~fð~rÞ � Tð~r�~r0Þ � r~fð~r0Þ;

and the random noise term yRðrÞ ¼ � vRð~rÞ � r~fþ ~y satisfies the following
fluctuation–dissipation relation

yRð~r;~tÞyRð~r0;~t0Þ
� �

¼ 2Lð~r;~r0Þdð~t�~t0Þ: ð13Þ

Here the random velocity noise vR is given by vRð~r;~tÞ ¼
R
d~r0Tð~r�~r0Þfð~rÞ. Since

the kinetic coefficient of the above equation depends on the composition field ~f,
the noise term is multiplicative and should be treated via the Stratonovich
interpretation53. Thus we adopted a Stratonovich scheme with semi-implicit terms
developed by Camley and Brown44 under a periodic boundary condition with a
staggered grid. This scheme was originally conceived to study the phase-separation
process in a 2D membrane. We modify their approach by using the Oseen tensor
appropriate for a 3D Newtonian fluid in the Stokes regime. Here it is worth noting
that 3D simulations of model H with thermal noises were also performed by a
Lattice–Boltzmann method46. The system size was set to 2563 lattices, which is
large enough to study the late stage of phase separation. We set the grid size to be
Dx¼Dy¼Dz¼ 1. The volume fraction of the minority phase F is set to 0.25 and
the composition is set to spatially homogeneous at ~t ¼ 0.

Simulations of the motion of a pair of droplets. We place two droplets whose
interfacial profile is described by a step function at ~t ¼ 0 and then follow the
process of equilibration by solving the model H equations. In this simulation, the
fluidity parameter A is 50 and the thermal fluctuations are not included (that is,
B ¼ 0). Here the large fluidity is used to access a large separation between the
interfacial thickness and the droplet size within a limited simulation time, as well as
to see hydrodynamics effects clearly. Note that the process is much slower without
thermal noises. The simulation box size is 1923.

Analysis. We analyse the sizes and positions of droplets by counting the number
of lattice points belonging to each droplet and calculating the positions of the
centre-of-mass of the lattice points after binarization of the composition field. We
also obtain the velocity of a droplet by calculating the average of velocity over
lattice points inside the droplet. The structure factor Sð~kÞ is obtained by spherically
averaging the power spectrum of the Fourier transformation of ~fð~rÞ. The
characteristic wavenumber ~k1 is calculated as ~k1 ¼

R
d~k ~kSð~kÞ=

R
d~k Sð~kÞ.
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