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Large-scale spatiotemporal spike patterning
consistent with wave propagation in motor cortex
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Matthew D. Best2 & Nicholas G. Hatsopoulos1,2

Aggregate signals in cortex are known to be spatiotemporally organized as propagating

waves across the cortical surface, but it remains unclear whether the same is true for spiking

activity in individual neurons. Furthermore, the functional interactions between cortical

neurons are well documented but their spatial arrangement on the cortical surface has been

largely ignored. Here we use a functional network analysis to demonstrate that a subset of

motor cortical neurons in non-human primates spatially coordinate their spiking activity in a

manner that closely matches wave propagation measured in the beta oscillatory band of the

local field potential. We also demonstrate that sequential spiking of pairs of neuron contains

task-relevant information that peaks when the neurons are spatially oriented along the wave

axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the

underlying organization of motor cortex and may be a general property shared by other

cortical areas.
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P
ropagating waves of neural activity are ubiquitous and have
been documented at different spatial resolutions in a
number of different neocortical areas including visual1–6,

somatosensory5,7–9, auditory10,11 and motor cortices12–14 as
measured via multielectrode local field potential (LFP)
recordings, voltage-sensitive dyes (VSDs) and multiunit
activities. Oscillatory LFPs and electroencephalograms in the
beta frequency range (15–40Hz) are ubiquitous in the motor
cortex of mammals including monkeys15–18 and humans19,20. In
particular, we have previously demonstrated that across the
precentral gyrus of the upper-limb area of primary motor cortex
(MI), these oscillations are not perfectly synchronized but rather
exhibit phase gradients that indicate planar propagating waves
along what we define as a beta wave axis, a rostro–caudal axis in
monkeys13 and a medio–lateral axis in humans14 at a range of
propagating speeds that were consistent across subjects.

However, as both LFPs and VSD measure aggregate potentials
from groups of neurons near the recording site, it has never been
shown whether action potentials from individual neurons
demonstrate spatiotemporal patterning consistent with wave
propagation. This is important because it is still debated as to
what aggregate signals such as LFPs and VSD signify physiolo-
gically, whereas single-unit action potentials are understood to
mediate interneuronal communication. Moreover, the functional
significance of this wave propagation for motor control is unclear
(but see recent computational studies21,22). Here we first show
that MI neurons can be classified, based on the spike waveform
widths, into two groups of neurons exhibiting distinct spectral
properties. We then estimate effective connectivity of networks of
spiking neurons based on this classification using a Granger
causality analysis applied to point processes, and demonstrate
that a class of simultaneously recorded, single-motor cortical
neurons with narrow spike waveforms in non-human primates
spatially coordinates their spiking activity in a manner that
closely matches the orientation of prominent beta wave
propagation. We also demonstrate that sequential spiking
activity of that class of neuron pairs contains task-relevant,
target-direction information whose magnitude varies according to
the spatial orientation of the constituent neurons in a manner
consistent with the beta wave axis.

Results
Beta waves in the motor cortex. We recorded multiple single-
unit and LFP activity from MI using chronically implanted high-
density microelectrode arrays while three rhesus monkeys (Rs,
Mk and Rj) made planar reaching movements using a two-link
robotic exoskeleton (BKIN Technologies, ON, Canada). The
monkeys performed a random target-pursuit (RTP) task23 that
required them to move a cursor (aligned with the position of their
hand) through a sequence of randomly positioned targets.
Movement durations from target to target ranged from 300 to
450ms with mean speeds (±s.d.) of 22.33±11.17 (Rs),
14.12±6.27 (Mk) and 6.11±7.29 cm s� 1 (Rj). Planar beta
wave activity measured from spatially distributed LFP sites was
evident at particular intervals of time throughout the
performance of this task (Fig. 1a). We used a method described
previously13 to characterize the properties of planar beta waves.
We found that the degree of planar wave propagation as
measured by a quantity called phase gradient directionality
(PGD) was strongestB100–150ms after the target onset (Fig. 1b)
when beta power was high (Fig. 1c), and when visual target
information reached the motor cortex13 followed by movement
initiation to the new target (see wrist speed in Fig. 1b). Consistent
with our previous findings using a center-out task13, wave
propagation directions during the RTP task exhibited either a

bimodal distribution (monkey Rs) or unimodal distribution with
a small secondary mode (monkeys Mk and Rj), with one mode
oriented in the rostral-to-caudal direction and a secondary mode
oriented in the opposite direction (Fig. 1d). We denoted the
caudal wave and rostral wave directions defined by the mean
direction of the first or only mode of the wave propagation
distribution and the opposite direction oriented roughly along the
rostro–caudal axis. The distribution of propagation speeds was
always unimodal with means and medians ranging from 23.2 to
26.7 and from 10.1 to 13.5 cm s� 1, respectively (Fig. 1e).

To investigate spatiotemporal patterns of spiking activity
(see Supplementary Figs. 1 and 2b,d,f for many examples of
Peristimulus time histograms (PSTHs) of neurons used in the
analysis), we first partitioned the population of recorded neurons
into two potentially distinct, functional classes (Fig. 2a) based on
the observation that their spike waveform widths exhibited a
bimodal distribution. For each data set separately as well as for
pooled data, a two-Gaussian mixture model (that is, bimodal) was
found to be the most parsimonious fit to the distributions based
on the Bayesian Information Criterion (BIC; Fig. 2b). Narrow-
spiking neurons tended to exhibit higher mean spike rates as
compared with broad spiking neurons for all three monkeys
(however, only Mk’s data sets showed a statistically significant
difference in means, unpaired two-sample t-test with unequal
variances): 4.89±4.10 spikes s� 1 versus 2.96±1.94 (P¼ 0.0662)
for Rs; 11.94±11.48 spikes s� 1 versus 4.22±4.48 (P¼ 0.0419)
for Mk; and 11.68±9.00 spikes s� 1 versus 5.59±4.45
(P¼ 0.0907) for Rj. A few examples of PSTHs of neurons for
monkey Mk from both narrow and wide classes used are shown
in Fig. 2c (more in Supplementary Fig. 1 and for other monkeys
in Supplementary Fig. 2). By summing spikes over all neurons
within a class, the population spike rates of the two classes for
monkey Mk were different particularly around the time that LFP
beta power increased (Fig. 2d, and for other monkeys in
Supplementary Fig. 2). Temporally, the spectrogram of the
narrow-spiking population showed sustained power over the beta
range, and the power increased when the LFP beta power
increased (Fig. 2e). In contrast, the wide population exhibited a
systematic power decrease in the beta and higher frequency bands
around the onset of LFP beta power increase (Fig. 2f). Moreover,
the spectrum of the population activity associated with narrow
spike waveforms exhibited a spectral peak that was very close to
the LFP beta frequency peak, whereas the population spectrum
associated with wide spike waveforms exhibited no prominent
beta peak (right side of Fig. 2e,f).

A number of studies have classified cortical neurons based on
their extracellular spike widths, and some have suggested that
narrow-spiking neurons represent local inhibitory neurons23–28.
However, the range of spike widths that defined our narrow class
is larger than that of many of these studies. Given that local
inhibitory neurons comprise only B20% of all neurons in
neocortex29,30, the large proportion of spiking neurons that we
classified as narrow suggests that this class includes excitatory
pyramidal neurons as well as local inhibitory neurons that, as a
whole, have a tendency to synchronously oscillate in the beta
frequency range.

Directed effective connectivity. We developed a generative
model to characterize the spiking responses of a given neuron
based on the past spiking of all other simultaneously
recorded neurons in the network. This model is a generalization
of Granger causality to point processes, and can be used to infer
excitatory- and inhibitory-directed effective connections among
multiple neurons, unlike popular pairwise network estimation
procedures31. Specifically, we estimated the conditional intensity
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function (CIF) of each neuron (a receiving neuron), l(t|H(t)),
given the spiking history, H(t), of all other neurons (sending
neurons) in the network using a generalized linear model (GLM).
The spike history from each sending neuron was composed of five
3ms time windows for a total of 15ms. The history length was
selected based on the time it would take for the beta waves to
propagate across the array at the mean estimated beta wave
propagation speeds (Fig. 1e). The underlying assumptions of the
model are twofold: (1) the present spike count of a receiving
neuron conditioned on the past spike counts of the sending
neurons is Poisson distributed, and (2) the log spike count of the
receiving neuron is a linear function of the spike counts of the
sending neurons. To check the sufficiency of the models used in
the analysis, we performed a model-order selection analysis using
the BIC, and found that the majority of the neurons showed an
optimal spike history duration of o15ms (496%; ref. 32). To
assess model goodness-of-fit (GOF) for each neuron, we used the
time-rescaling theorem33 and Kolmogorov–Smirnov (KS) plots to
define the GOF area (GOFA) and GOFA ratio (GOFR; Methods
and Supplementary Fig. 3a–c). More than 85% of neurons
exhibited GOFA to beo0.05 (Supplementary Fig. 3d) and468%
of neurons showed GOFR to be o0.2 (Supplementary Fig. 3e).
Thus the majority of the neurons used in the analysis were
reasonably well characterized as Poisson GLM.

As in the standard Granger causality protocol, an effective
connection from the sending neuron to the receiving one was
inferred by comparing the log-likelihoods of the data under

models with and without a particular sending neuron’s spiking
history. If the performance of the model decreased significantly
(Po0.05, w2-test) when a sending neuron was removed, an
effective connection was inferred, and the sign of the sum of the
five history terms determined whether the connection was
excitatory or inhibitory34. We estimated the complete network
of significant directed connections between recorded neurons
with narrow spike waveforms and mean spike rates of at least
1Hz (to ensure numerical stability) in different time windows.
The temporal evolution of the networks in 150ms windows
incremented by 50ms steps is illustrated in Fig. 3a for monkey Rs
with 38 narrow neurons, Fig. 4a for monkey Mk with 21 narrow
neurons and Supplementary Fig. 4a for monkey Rj with 33
narrow neurons. The largest number of connections was observed
between 100 and 350ms after the appearance of a new visual
target at a time slightly after LFP beta power and the PGD
reached their peak values. The temporal evolution of network
topology estimates, based on the number of excitatory, inhibitory
and all connections, was highly reliable as determined by
calculating networks on non-overlapping subsets of data within
each data set (Fig. 5 and Supplementary Fig. 5). Furthermore, in
order to check whether our connectivity results depended on the
precise spike timing among neurons or were a consequence of
rate modulation (neurons with very high spike rates are more
likely to have effective connections), we randomly shuffled the
trial order for each neuron and within each of eight target
directions, and recomputed network interactions. We found that
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Figure 1 | Properties of LFP beta waves. (a) Temporal snapshots of the LFP voltages across the array indicating wave propagation. The LFP voltage on each

electrode was band-pass filtered in the beta frequency range (that is, ±3Hz centred at the beta peak of the power spectrum). Time in milliseconds

labelled above each plot is with respect to the onset of the visual target. The red arrow in the bottom right panel shows the propagation direction of the

wave. (b) Temporal evolution of the GOF measure of planar wave activity (PGD in blue ranging from 0.295 to 0.335, as well as the mean hand speed

(green) ranging from 5 to 36 cm s� 1. (c) Averaged spectrogram of a single-channel LFP revealing the temporal dynamics in beta frequency power relative

to the visual target onset. (d) Circular distributions of wave propagation directions for monkeys Rs (cyan), Mk (magenta) and Rj (brown). A solid black line

denotes the rostro–caudal axis on the cortical surface. A dashed line in each rose plot connecting Cw (caudal wave direction) and Rw (rostral wave

direction) denotes the axis defined by the first or only mode of beta wave propagation axis. Each panel below the circular distributions depicts the location

of the multielectrode arrays (4�4mm) in the arm area of MI for the corresponding subject. A red horizontal bar in the right lower corner in each panel is

4mm. Landmarks and orientations: Cs, central sulcus; As, arcuate sulcus; C, caudal; R, rostral; M, medial; L, lateral. (e) Distributions of estimated

propagation speeds for monkeys Rs (cyan), Mk (magenta) and Rj (brown).
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the number of connections were significantly lower as compared
with the unshuffled networks (Supplementary Fig. 6 for monkeys
Rs and Mk), suggesting that effective connections reflect single-
trial coordination across neurons, rather than overall rate
modulations or tuning properties.

To place the estimated networks in a spatial context, we
computed the orientation of each connection on the cortical
surface. For each cortical orientation, we summed up each
effective connection weighted by its strength (as determined by
the log-likelihood ratio, see Methods section), and normalized the
sum of the weighted connections by the total number of possible
connections for that orientation. This normalization was
performed to account for anisotropies in the spatial arrangement
of the recorded neurons. Between � 50 and 100ms relative
to visual target onset, few connections were observed and very
little spatial structure was evident. The number of connections
increased in subsequent epochs, and peaked between 50 and
250ms after the onset of a new visual target. The clear bimodality
in the circular distribution of the excitatory connection
network emerged between 150 and 250ms after the visual target
onset (Fig. 3c for monkey Rs, Fig. 4c for monkey Mk and
Supplementary Fig. 4c for monkey Rj, and Supplementary Fig. 7).

Furthermore, this bimodality remained even when we used one
spike-width threshold value, the weighted average of the means of
the two Gaussians fit on all spike widths (Supplementary Fig. 8).

By comparing the network topology during early and late time
windows (Fig. 6a, left and right respectively), we observed the
emergence of a larger number of significant connections and a
strong anisotropy of directed excitatory connections. The circular
distribution of excitatory connection directions became bimodal
and closely oriented to the beta wave axis during the later time
window in all three monkeys. By fitting the beta wave directional
distributions with a mixture of two von Mises distributions, we
determined the mode and the circular s.d. (CSD). We found that
the modes of excitatory connections fell within 1.1 times the CSD
of the beta wave modes. In particular, the beta wave primary/
secondary modes measured with respect to the anatomical medial
direction (±CSD) versus excitatory connection modes were 123/
279±34/52 degrees versus 130/290 degrees (Rs), beta wave
modes of 120/258±18/60 degrees versus 140/50 degrees (Mk)
and beta wave modes of 297/104±72/51 degrees versus 270/90
degrees (Rj; Fig. 6b, left). The circular distributions of inhibitory
connection directions were also bimodal but oriented almost
orthogonal to the beta wave axis (Fig. 6b, right). In contrast to the
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narrow-spiking neurons, there were few, if any, statistically
significant connections among wide-spiking neurons in each time
window (Fig. 6c).

For excitatory connections between narrow-spiking neurons,
we took the mean of the five time delays weighted by their model
coefficient values, and computed the average time delay between
each excitatory connection. Dividing the distance of each
excitatory cell pair projected along the beta wave axis by the
average time delay provided an estimate of the ‘conduction’
velocity of each excitatory connection along the beta wave axis.
Estimated velocities ranged from 10 to 30 cm s� 1 across all six
time windows and four data sets, in rough agreement with our
estimated wave propagation speeds.

Spatial anisotropy and target information. In order to investi-
gate any behavioural relevance to the spatial anisotropy of exci-
tatory connections among narrow neurons, we next investigated
the information content of the sequential spiking activities
between neuron pairs with excitatory connections. Sequential

spiking activity at time t was defined as the product of the
receiving neuron’s activity at time t and the integrated activity of
the sending neuron’s activity in the 15-ms time interval preceding
time t. We found systematic differences in sequential spiking
activity as a function of target direction. To assess this quanti-
tatively, we calculated the mutual information between target
direction and the sequential spiking of narrow neuron pairs that
possessed excitatory effective connections as a function of time
(Fig. 7a). For each of 18 cortical orientation bins, the information
was summed across all cell pairs with excitatory connections and
divided by the total number of possible connections in that
orientation. It should be noted that we added information across
cell pairs in order to capture relative information trends in time
and across different cortical orientations. Absolute information
values cannot be inferred because addition assumes a lack of
redundancy across cell pairs, an assumption that may not be
warranted. Spike sequencing provided peak target-direction
information B150–250ms for monkey Rs, 100–150ms for
monkey Mk and 150–300ms for monkey Rj. The circular dis-
tribution of mutual information exhibited spatial anisotropy
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whose peaks were oriented along the beta wave axis, 130 degree
for monkey Rs, 140 degree for monkey Mk and 90 degree for
monkey Rj with respect to the medial direction, and they were all
within the beta wave primary mode direction±CSD (Fig. 7b).
Cross-correlation coefficient peaks (within ±1 orientation bin)
between the mutual information and beta wave distributions were
0.520, 0.353 and 0.252 for monkey Rs, Mk and Rj, respectively.
Spike sequencing of narrow-spiking neurons that were not
effectively connected showed an order of magnitude of smaller
amount of total mutual information compared with those pairs
with excitatory effective connections, and the spatial pattern of
information did not resemble the distribution of beta wave
directions (Fig. 7c). To verify that this spatial pattern of infor-
mation was specific to the sequential firing of neuron pairs, we
computed target-direction information from single-unit spiking
activity (Supplementary Fig. 9a,b). The circular distribution of
orientations of neuronal pairs weighted by the mean single-
neuron mutual information values averaged over the two neurons
with an excitatory connection between them revealed a weaker
alignment to the beta wave axis (Supplementary Fig. 9c) than that
of mutual information of sequential spiking of neurons with
excitatory connections. Cross-correlation peaks (within ±1
orientation bin) between mean single-neuron information and
beta wave distributions were � 0.165, � 0.135 and 0.102 for
monkey Rs, Mk and Rj, respectively (Supplementary Fig. 9d,e).

Discussion
Propagating wave activity is ubiquitous throughout the cortex but
has never been characterized at the single-neuron level. Although
our results do not directly demonstrate that single units propagate
their spiking activity in a wave-like manner across the motor
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cortical sheet, we show for the first time spatiotemporal spike
patterning that closely matches propagating wave activity as
measured by LFPs in terms of both its spatial anisotropy and its
transmission velocity. Although the horizontal anisotropy of
directed effective connections among the narrow-spiking neurons
has never before been experimentally documented (however,
effective anisotropy was used in a modelling study22), anatomical
data on the horizontal connectivity of motor cortex may shed
light on these observations. By staining degenerating axons and
terminals after localized lesions within MI, Gatter and Powell
documented a preponderance of horizontal axons in layers 2/3
and 5 in non-human primates that were more spatially extensive
along the rostro–caudal dimension as compared with the medio–
lateral dimension35. In addition, Huntley and Jones36 used
retrograde labelling injections in primate motor cortex and found
weak strips of labelled cell bodies arranged in the rostro–caudal
dimension. However, these data do not provide evidence for
stronger (anatomical or functional) connections in the rostro–
caudal dimension.

Physiological data also suggest that the functional connections
we observed may reflect properties of horizontal connectivity
within motor cortex. Electrical stimulation and current-source
density analysis in rat motor cortical slices found long-distance
excitatory, monosynaptic interactions mediated by horizontal
connections in layers 2/3 and 5 with a conduction velocity of
B10 cm s� 1, which is on the same order of magnitude as the
propagation velocities we documented with the LFP wave and the
excitatory connections in our effective connectivity analysis37.
Based on spatially smoothed multiunit responses recorded from
the auditory cortex, propagating activity was documented with

comparable propagation speeds of B20 cm s� 1 using a similar
gradient field method11.

Although the beta wave propagation axes and propagation
speeds were consistent across all the animals used in the study,
there are two issues to be resolved in future studies. First, the
orientation of the primary beta wave direction was not consistent
across the three monkeys. It is not obvious why this would be the
case, but it may be owing to the exact placement of the arrays in
the medial/lateral dimension along the motor strip. Second, our
monkeys exhibited a fairly wide range of hand movement speeds
while wave propagation speeds were fairly consistent. We would
like to investigate in more detail whether there is a relationship
between the kinematics, kinetics and muscle activity of the limb,
and the statistical properties of the beta waves.

Our observation that population activity among narrow-spiking
neurons exhibited a pronounced beta spectral peak suggests that
beta oscillations in the motor cortex may be mediated by a network
of functionally distinct cells38. Simulation studies have suggested
that beta oscillations emerge in network interactions of local
inhibitory neurons22, which in turn entrain excitatory pyramidal
neurons to fire rhythmically39. These local inhibitory and excitatory
pyramidal cells may represent the population of narrow-spiking
neurons that tend to oscillate at the beta frequency range. In
contrast, wide-spiking neurons as a population do not resonate at
any particular frequency, and, moreover, exhibit a reduction in
oscillatory power in the beta and higher frequency bands around
the time at which LFP beta power increases.

The temporal dynamics of planar wave activity, spatially
oriented effective connections and motor behaviour indicate the
following chain of events. The degree of planar wave activity
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connections weighted by their strength and normalized by the total number of possible connections. The circular distribution of excitatory connections for
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begins increasing at target appearance and reaches a maximum at
100–150ms later. Thus, this enhancement of planar wave
activities in the beta oscillation range appears to be triggered by
arrival of information about the visual target in MI. At roughly
150ms after target onset, the rostro–caudal anisotropy of
excitatory effective connections emerges (Figs 3 and 4, and
Supplementary Fig. 4), and sequential firing among these
connected neurons begins carrying information about target
direction. Finally, movement speed begins to increase 200ms
after target appearance resulting in movement to the target. It is
our view that spatiotemporal dynamics of the LFP provides a
mesoscopic perspective of patterning that is generated by
spatiotemporal arrangements among groups of single units.
Therefore, planar wave activity reflects the underlying spatio-
temporal distribution of spiking activity among the units. A
recent modelling study22 showed spatial anisotropy among
inhibitory cells, while our study showed spatial anisotropy in
excitatory connections. However, a recent study using an
immature cerebral cortex preparation showed that cortical
waves in layer III were blocked by glutamatergic receptor
antagonists, but not by GABAergic receptor antagonists40.
Furthermore, a modelling study showed that long-range
coherent oscillations with some delay were partially induced by
interactions of excitatory cells41.

These results may have implications for the development of
cortically controlled brain machine interfaces. Current decoding
algorithms for brain machine interfaces have ignored the spatial
organization of cortical neurons and their functional interactions.

In principle, by augmenting the GLM framework, we used here
by including external movement covariates, we could invert these
spike prediction models to decode movement parameters.
Furthermore, a recent study has speculated that spatiotemporally
patterned electrical stimulation in motor cortex (similar to the
recorded patterns we have observed in our study) could replace
deep brain stimulation to treat symptoms of Parkinson’s
disease42.

Our information analysis of sequential firing may have
important behavioural implications. First, we have shown that
functionally connected, narrow-spiking neurons carry more task-
relevant information in their sequential firing than do uncon-
nected, narrow-spiking neurons. This implies that there is a
subnetwork of neurons within the motor cortex that may be
playing a special role in representing and transmitting informa-
tion to guide behaviour. Second, this behavioural information is
most pronounced in the sequential firing of neurons that are
spatially aligned along the rostro–caudal axis, implying that the
motor cortex possesses information-carrying, spatial structure
beyond somatotopy. Future work will investigate whether down-
stream targets such as the muscles are sensitive to and may take
advantage of this spatial structure when driving motor behaviour.

Methods
Behavioural tasks. Three male macaque monkeys (Macaca mulatta) were oper-
antly trained to move a cursor appearing above the monkey’s hand location to
targets projected onto a horizontal, reflective surface in front of the monkey. The
monkey’s arm rested on arm troughs secured to links of a two-joint exoskeletal
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Figure 7 | Target-direction information content of spike sequencing between neurons with narrow spike waveforms. Data from monkeys Rs (top), Mk

(middle) and Rj (bottom). (a) Time-resolved, mutual information between spike sequencing and target direction (that is, the direction from the location

of the acquired target to the new target). Information was calculated for only pairs of neurons with excitatory connections. The colour map consists of 18

rows corresponding to 18 orientations (20-degree bins) aligned to anatomical orientations denoted with M, medial; C, caudal; L, lateral and R, rostral,

with information in bits in blue-red false colour. (b) Circular distributions of spike sequencing information with respect to the orientation of neuron pairs on

the cortical surface. Spike sequencing information was summed over the time window in [100, 350] ms and over pairs within each orientation and

then normalized. The dashed black lines represent the beta wave axis defined by Cw (caudal wave direction) and Rw (rostral wave direction) as in Fig. 1d.

(c) Target-direction information content of sequencing firing of non-connected narrow-spiking neurons.
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robotic arm (BKIN Technologies, ON, Canada) underneath the projection surface.
The shoulder joint was abducted 90 degrees such that shoulder and elbow flexion/
extension movements were made in the horizontal plane. The shoulder and elbow
joint angles during movements were sampled at 500Hz by the robotic arm’s motor
encoders. The position of the hand was computed using the forward kinematics
equations. The monkeys performed the random RTP task, in which a sequence of
seven targets appeared on the projection surface. At any one time, a single target
appeared at a random location in the workspace, and the monkey was required to
move the cursor to it. As soon as the cursor reached the target, the target dis-
appeared and a new target appeared in a new, random location. After reaching the
seventh target, the monkey received water reward.

Electrophysiology. A silicon-based electrode array composed of 100 electrodes
(1.0mm electrode length and 400 mm interelectrode distance) was implanted in the
arm area of MI of each monkey. During a recording session, signals from up to 96
electrodes were amplified (gain, 5,000), band-pass filtered between 0.3 and 7.5 kHz,
and recorded digitally (14-bit) at 30 kHz per channel using a Cerebus acquisition
system (Blackrock Microsystems, Inc., UT). Only waveforms (1.6ms in duration;
48 sample time points per waveform) that crossed a threshold were stored and
spike sorted using Offline Sorter (Plexon, Inc., TX). Signal-to-noise ratios were
defined as the difference in mean peak-to-trough voltage divided by twice the mean
s.d. The mean s.d. was computed by measuring the s.d. of the spike waveform at
each of the 48 sample time points of the waveform and then averaging. All isolated
single units used in this study possessed signal-to-noise ratios of 3:1 or higher.
The data for each neuron were converted to a binary time series at a 1-ms time
resolution.

A total of four data sets (one data set for animal Rs, two data sets from animal
Mk, which were 4 days apart, and one data set for animal Rj,) were analysed, where
a data set is defined as all simultaneously recorded neural data collected in one
recording session. Each data set contained between 59 and 115 simultaneously
recorded units from MI. A total of 302 single-unit samples were recorded from MI
over all four data sets. We use the term ‘samples’ because the recordings were made
from chronically implanted arrays in each monkey. Therefore, data collected over
recording sessions in monkey Mk are not necessarily from completely different
ensembles of units. Ensembles consisted of ‘randomly’ selected units from MI
except for a possible bias for neurons with large cell bodies that would generate
higher signal-to-noise ratios. All of the surgical and behavioural procedures were
approved by the University of Chicago’s Institutional Animal Care and Use
Committee and conform to the principles outlined in the Guide for the Care and
Use of Laboratory Animals (NIH publication no. 86-23, revised 1985).

Beta wave characterization. We used the wave characterization method as
defined in Rubino et al.13. Briefly, we first applied a band-pass filter bidiretionally
whose center frequency for each data set was defined to be the most prominent
peak frequency over the beta oscillation range (10–40Hz) and the width was
±3Hz, then applied the Hilbert transform to a filtered voltage signal recorded by
an electrode located at (x,y) on the array V(x,y,t) to obtain the instantaneous
amplitude A(x,y,t) and phase as j(x,y,t) follows:

V x; y; tð Þþ iHb V x; y; tð Þ½ � ¼ A x; y; tð Þeijðx;y;tÞ; ð1Þ

where Hb is the Hilbert transform operator and A(x,y,t) is the instantaneous
amplitude of the voltage signal, and i2¼ � 1. The wave velocity v(t)¼ [dx/dt,dy/dt]
was computed by taking the derivative of a constant contour of

j x; y; tð Þ ¼ const:; ð2Þ

with respect to time:

dj
dt

¼ rw � vþ @j
@t

¼ 0: ð3Þ

Since the direction of the velocity, �rj, is perpendicular to the constant phase
contour, the speed is

dj
dt

����
���� ¼ @j

@t

� � /

krwk
: ð4Þ

Note that velocity is well defined only when the phase gradient is non-zero and
when the signal exhibits a well-defined propagation direction. In order to measure
how well the phase gradients align across the array, we used the quantity called the
PGD(t):

PGDðtÞ ¼ rwk k
rwk k

: ð5Þ

The bar here denotes the spatial average. If the phase gradients at all spatial
locations align at a given time, t, then PGD(t)¼ 1. If the phase gradients are
randomly distributed, then PGD will be close to 0. Thus, we used a threshold value
of 0.2, which is based on the tail of the PGD distribution when channel
assignments are randomly shuffled43. As long as PGD(t) was above the threshold,
then we used the estimated values of mean wave direction and speed across the

array, which were computed as:

wave directionðtÞ ¼ �rw;

speedðtÞ ¼ @j
@t

����
����

/

krwk
: ð6Þ

Unit spiking data selection. We created trial-based data sets using a time interval
� 100 to 350ms relative to visual target onset. We had 2,547, 2,746, 1,999 and
1,526 trials from each of the four data sets. We first selected only neurons whose
average firing rates during the interval of interest, � 100 to 350ms relative to visual
target onset, were higher than 1 spike s� 1. Then, we fitted a mixture of Gaussians
to the distribution of waveform widths where the width was defined as the duration
from trough-to-peak of the mean waveform of each sorted unit. We used mixture
Gaussian models from 1 to 4 Gaussians for each data set and the pooled data. Then,
we computed the BIC for each data set and the pooled data set for each model to
find a most parsimonious Gaussian mixture model. Every data set and the pooled
data set had a minimum BIC at 2 (Fig. 2b). Thus, we decided to fit each data set
with a mixture of two Gaussians. For each data set, we computed the average of the
two means from the two Gaussians. The smallest average of all data sets fell
between 0.2667 and 0.3000ms, and neurons with waveform widths of 0.2667ms or
less were classified as narrow-spiking units. Similarly, the largest average of the two
means fell between 0.3667 and 0.4000ms so that neurons with waveform widths of
0.4000ms or more were classified as wide-spiking units. Thus, we had two
thresholds. We decided to take this conservative threshold scheme to clearly
separate the two populations of neurons. The numbers of neurons that satisfied the
narrow condition were 38 neurons (4.89±4.10 spikes s� 1, mean±s.d.) among a
total of 115 neurons for the first data set (monkey Rs), 14/21 neurons
(11.94±11.48 and 9.71±8.59 spikes s� 1, respectively) among a total 59/65 neu-
rons for the second and third data sets (monkey Mk), and 33 neurons (11.68±9.00
spikes s� 1) among a total of 63 neurons for the fourth data set (monkey Rj). The
numbers of wide-spiking neurons were 29 neurons (2.96±1.94 spikes s� 1) among
a total of 115 neurons for the first data set (monkey Rs), 13/10 neurons (4.22±4.48
and 4.88± ±5.69 spikes s� 1, respectively) among a total of 59/65 neurons for the
second and third data sets (monkey Mk), and 6 neurons (5.59±4.45 spikes s� 1)
among a total of 63 neurons for the fourth data set (monkey Rj). Neurons that did
not fall into either the narrow or wide class were not further analysed. Peri-
stimulus time histograms binned for two example neurons used in the analyses are
presented based on the spike-width class for each data set in Fig. 2c, and
Supplementary Figs 1 and 2. We also broke up each data set into three subsets of
data consisting of an equal number of trials for the first two monkeys, and into two
subsets of data for the third monkey to check for temporal consistency. We ana-
lysed each trial using 150ms time window.

Power spectra and spectrograms for spiking of population of neurons. We
binned each neuron’s spike train into 1ms bins and summed the binned spike
trains over all neurons within the narrow or wide spike waveform population.
Then, we used a multitaper spectrum estimation method44 (time-bandwidth
product and number of tapers were 3 and 5, and moving window of 250ms in 2ms
increments) to compute average power spectra over [� 100, 300] ms relative to the
visual cue onset and average spectrograms over the time windows specified above
using Chronux toolbox.

Granger causality measure for point process models. We utilized a model-
based methodology for analysing the causal interactions of multiple neural spike
trains34. The discrete, all-or-nothing nature of a sequence of action potentials
together with their stochastic structure suggests that neural spike trains may be
regarded as point processes45,46. Let Ni(t) denote the sample path that counts the
number of spikes of neuron i in the time interval (0,t] for t A (0,T] for i¼ 1,y,M
recorded neurons. A point process model of a spike train for neuron i can be
completely characterized by its CIF, li(t|H(t)), defined as:

li t HðtÞjð Þ ¼ lim
D!0

Pr Ni tþDð Þ�NiðtÞ ¼ 1 HðtÞj½ �
D

; ð7Þ

where H(t) denotes the history of the spiking activity of all neurons up to time t.
The CIF represents the instantaneous firing probability and serves as a
fundamental component for constructing the likelihoods and probability
distributions for point process data. It is a history-dependent function, and reduces
to a Poisson process if it is independent of the history. To simplify the notation, we
denote li(t|H(t)) as li(t). We used a point process GLM for building models whose
history terms contain past spiking activity of other neurons34. To test whether
neuron j causes neuron i in the ‘Granger’ sense47, we developed two classes of point
process GLMs for neuron i : one given by P(Ni(0:T)) that has the past of all neurons
as the covariates for the CIF, and the other given by Q(Ni(0:T)) that has the past of
all except for neuron j. The point process likelihood is given by45

P Ni 0 : Tð Þð Þ ¼ exp
Z T

0
log liðtÞdNiðtÞ�

Z T

0
liðtÞdt

� �
; ð8Þ
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where

log liðtÞ ¼ bi þ
XM
m¼1

f i;m � hm: ð9Þ

In equation (9), we used a point process GLM to model the relationship between
the spiking activity and its covariates (the spiking history)45. Here, bi relates to a
background level of the activity of neuron i, fi,m is a 5-dimensional (5D) vector of
parameters that relate the past spiking of neuron m to the current spiking of
neuron i, and hm is a 5D vector each of whose elements counts the spikes in every
3ms time window of 15ms spiking history of neuron m, these parameters were
chosen to obtain a relatively small number of parameters while maintaining the
necessary temporal resolution. The ‘ � ’ represents the dot product between vectors.
Note that for P(Ni(0:T)), li(t) includes the past spiking of all neurons. The other
point process likelihood, Q(Ni(0:T)), is given by the same equation (8), but with
li(t) replaced with ~li tð Þ:

log ~liðtÞ ¼ ~bi þ
XM
m¼1

~fi;m � hm; ð10Þ

which excludes the effect of the past spiking of neuron j. Model parameters

yi¼ {bi,f1,1,y,f1,M} for P(Ni(0:T);yi) and �yi ¼ bi; f i;m
n oM

m¼1;m 6¼ j

� �
for

Q Ni 0 : Tð Þ; �yi
� �

were fitted by maximizing the likelihoods 48, and they were
calculated by

y�i ¼ argmax
yi

P Nið0 : TÞ; yið Þ;

~y�i ¼ argmax
yi

P Nið0 : TÞ; ~yi
	 


:
ð11Þ

Because of the structure of the equation (8), the maximum likelihood solution can
be efficiently calculated. Finally, we define our causality measure from j to i as

Gij ¼ log
P Nið0 : TÞ; y�i
� �

Q Nið0 : TÞ; ~y�i
	 
 : ð12Þ

If the spiking history of neuron j helps predict the spiking activity of neuron i, the
log-likelihood ratio should be significantly greater than zero, and then we say that
neuron j, ‘Granger-causes’ i49. The equality of the likelihood ratio holds when
neuron j has no causal influence on i. Excitatory and inhibitory influences from
neuron j to i are distinguished by the sign of

P
t fi;jðtÞ in equation (9), which

represents the summed influence of the past spiking of j on i.

Significance test. The Granger causality measure, DD¼D0�D1¼ 2Gij given by
the log-likelihood ratio provides an indication of the relative strength of causal
interaction but gives little insight into whether or not it is statistically significant.
We use a statistic based on the log-likelihood ratio test to address this issue. We
denote the deviance obtained using the model parameter y�i as D0, and the deviance
obtained using �y�i as D1. The deviance difference between two models is equivalent
to two times log-likelihood ratio given by DD¼D0�D1¼ 2Gij (ref. 50). If both
models describe the data well, then the deviance difference may be asymptotically
described by DD � w2d where d is the difference in dimensionality of two models,
and d¼ 5 in our study. If the value of DD is in the critical region, that is, greater
than the upper tail 100(1� a)% of the w2d where a determines false-positive rates,
then the causal influence is determined as statistically significant. We used a
multiple-hypothesis testing error measure called false discovery rate to address the
multiple comparison problem51.

Assessment of GOF against the data for the point process models. The
validation of a designed statistical model for data is required before making an
inference based on the model. The time-rescaling theorem was used to transform
point process neural spike train data to a continuous measure appropriate for GOF
assessment33. Once a CIF is estimated, rescaled times can be computed using the
estimated CIF. These rescaled times will be uniformly distributed random variables
on the interval (0,1] if the estimated CIF is a good approximation to the true
conditional intensity of the point process. To evaluate whether the rescaled times
followed the uniform distribution, we ordered these rescaled times from the
smallest to the largest, and then plotted the quantiles of the cumulative distribution
function of the uniform distribution on (0,1] against the ordered rescaled times.
This form of graphical representation is termed a KS plot. If the model is consistent
with the data, then the points should lie on a 45-degree line. Approximate 95%
confidence bounds for the degree of agreement between the model and the data
may be constructed using the distribution of the KS statistic. We defined the GOFA
bounded by the 45-dergee line and the cumulative distribution in the KS plot. We
also defined the GOFR computed as the ratio of GOFA to an area out of theB95%
confidence bounds for the degree of agreement (see Supplementary Fig. 3a for
schematics of the method). These measures were computed for each neuron in
each 150ms time window.

Causal inference with shuffled trials. We estimated causality networks after
shuffling the trial order of each neuron for the same target direction using the data
after the onset of visual cue. Through this analysis, we tested how much the precise
spiking times among multiple neurons contributed to significant functional inter-
actions between them. If significant functional interactions were simply caused by an
increase in firing rate after the onset of visual cue, shuffling the trials would not affect
the network estimates. On the other hand, if they were caused rather by the increase
of relative spike timings among multiple neurons, shuffling the trials would break the
relative spike timings among neurons and thus lead to a sparser network estimate.

For this analysis, we used the data set in the window 5 (after the onset of cue) of
monkeys Mk and Rs. For each target direction, we permuted the order of all the
trials for each neuron and then estimated the causality network using the shuffled
data set. We repeated this procedure 100 times. The mean number of connections
was 2.05 with an s.d. of 1.79 compared with 56, 65 and 66 connections for monkey
Mk, and the mean number of connections was 12.40 with an s.d. of 1.50 compared
with 100, 105 and 128 connections for monkey Rs from the original unshuffled
network. This analysis suggests that the increase of significant interactions between
neurons after the onset of visual cues is caused by more organized spike sequencing
among neurons rather than an increase of spiking rate.

Mutual information analysis for single-unit spiking activities and spike
sequencing. We evaluated the information content of single-unit spiking activities
and spike sequencing using the mutual information between the target direction
and single-cell spiking, or spike sequencing between two neurons for each cortical
orientation, respectively. Mutual information between two variables represents the
reduction in uncertainty of one variable due to the knowledge of the other. It is
defined as

I X;Yð Þ ¼ H Xð Þ�H X Yjð Þ; ð13Þ

for random variables X and Y whereH(X) is the Shannon entropy of X (ref. 52). In this
paper, Y is a random variable representing the target directions, and takes on one of
eight directions (the eight octants in 2D plane) during the RTP task. For single-neuron
analysis, X represents the binary sequence of unit spiking activity. For spike sequence
analysis, X represents the spike sequencing from neuron i to j defined by

XðtÞ ¼
Xt2
t¼t1

ni t� tð ÞnjðtÞ; ð14Þ

which is calculated as the sum of products in spike counts between neuron i at
varying time lags t (from t1 to t2) and neuron j. For the spike sequencing, we used
t1¼ 1ms and t2¼ 15ms. We chose a 15-ms summation window to match with the
duration of history terms used for the GLM described above. Information content of
the spike sequencing was calculated using the empirical distributions of X(t) at fixed i
and j, and t over all trials for different target directions. Using the position
information of neurons on the multielectrode array, we calculated the cortical
orientation of the information content of spike sequencing. To account for biases in
estimating information from limited data, the target direction labels were randomly
shuffled over all trials so that a trial originally associated with target direction k could
be randomly assigned one of the eight target directions. Mutual information between
target direction and spike sequencing was then calculated. The average information
from 10 shuffles was subtracted from the estimated information values.

All the numerical analyses were performed using Matlab (Mathworks, MA).
Matlab codes for Granger analysis are available at the website (http://www.
neurostat.mit.edu/gcpp).
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