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Characterization of genome-wide ordered
sequence-tagged Mycobacterium mutant libraries
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Reverse genetics research approaches require the availability of methods to rapidly generate

specific mutants. Alternatively, where these methods are lacking, the construction of

pre-characterized libraries of mutants can be extremely valuable. However, this can be

complex, expensive and time consuming. Here, we describe a robust, easy to implement

parallel sequencing-based method (Cartesian Pooling-Coordinate Sequencing or CP-CSeq)

that reports both on the identity as well as on the location of sequence-tagged biological

entities in well-plate archived clone collections. We demonstrate this approach using a

transposon insertion mutant library of the Mycobacterium bovis BCG vaccine strain, providing

the largest resource of mutants in any strain of the M. tuberculosis complex. The method is

applicable to any entity for which sequence-tagged identification is possible.
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G
eneticists often make use of large bulk libraries of
sequence-tagged biological entities such as mutants or
cloned DNA. These are highly valuable tools, for example,

for phenotypic screens1 or regulatory network studies2. Many
techniques are available to generate such libraries with many
thousands of clones (for example, through mutagenesis), which
are thus obtained as a very complex mixture. With such mixed-
clone libraries, scientists are mainly limited to experiments where
these clones can be screened in bulk3. In contrast, the majority of
hypothesis-driven research requires the availability of individual,
characterized clones (that is, single cDNA’s, single mutants, single
shRNA’s and so on). Such archived single-clone libraries are
much more difficult and costly to generate and to characterize the
identity of each clone. An example can be found in tuberculosis
research, where mutants in genes of interest are among others
required for the study of potential drug targets and for live
attenuated vaccine engineering4,5. Owing to the slow growth of
Mycobacteria and limited effectiveness of classical techniques of
gene inactivation, pre-characterized genome-wide mutant
resources would be highly valuable6.

Mycobacteriophage-delivered transposon (Tn) mutagenesis is
well established as an efficient tagged mutagenesis approach in
Mycobacteria7. However, it yields a complex mixture of tens of
thousands of strains, each with a Mariner Tn insertion in a TA
dinucleotide sequence. Such mutant mixtures are useful for
analysis of competitive mutant behaviour in bulk8, but not for
investigations in which a single mutant or a set of such mutants
in defined genes is needed. Ordered Tn insertion libraries can be
picked from such Tn mutant mixtures and PCR-screened for
insertions in a locus of interest9, but this procedure needs to be
repeated for every gene and is prone to failure due to the high GC
content of these genomes. Alternatively, library characterization
through clone-by-clone sequencing of DNA regions flanking the
Tn has been reported, but is obviously very laborious10. To our
knowledge, the largest characterized Tn insertion resources in
Mycobacterium tuberculosis (M. tb) contain no more than 1,329
(ref. 11) and 1,403 (ref. 12) clones. These and other mutants were
integrated by the Tuberculosis TARGET programme, now
offering over 4,300 defined Tn insertion mutants in M. tb13.

We have aimed at developing an easy-to-implement, cost- and
time-effective, massively parallel sequencing-based approach
(called Cartesian Pooling-Coordinate Sequencing or CP-CSeq)
to deal with the characterization of such large collections of
sequence-tagged clones. We illustrate it here for a large 9,216
clone ordered Tn insertion mutant library of the vaccine strainM.
bovis Bacillus Calmette–Guérin (BCG). Our method first entails
the pooling of the entire library along its Cartesian coordinates
(X, Y and Z) to downscale the number of samples that need to be
processed (n¼ 40). Then, a custom Illumina library preparation
protocol on these Cartesian pools enriches for the Tn-flanking
genomic regions and adds pool-specific barcodes for multiplexed
deep sequencing. Following sequencing of this mix of barcoded
samples and mutant deconvolution, we obtained a resource of M.
bovis BCG mutants in which 64% of the non-essential M. tb
orthologues are disrupted. We demonstrate how this approach
strongly contributes towards the endeavour of generating a
mutant for every gene in the genome of such slow-growing
Mycobacteria, which constitute some of the most important
pathogens of mankind.

Results
Cartesian pooling concept. Upon mycobacteriophage-based
Himar 1 Tn mutagenesis14, 9,216 (96� 96-well plates) clones
were picked to create an ordered library9. The location of each
mutant in the archived library is characterized by three Cartesian

coordinates (X, Y and Z). The X and Y coordinates pinpoint a
mutant to a well position in the ordered 96-well plate stack,
whereas the Z coordinate determines in which particular plate in
the stack a clone is situated (Fig. 1a). We devised a novel pooling
strategy along the library’s Cartesian coordinates to downscale the
number of samples to be processed. To create a first pooled
masterplate, a small culture volume of one specific well position
(for example, A1) in all of the 96-well plates was transferred to
and thus pooled in the same specific well (for example, A1) of the
masterplate, thus keeping the respective positions within each
primary plate (X and Y coordinates). Subsequently, a second
masterplate was prepared by pooling all of the 96 wells of a
primary plate in one single well of the masterplate (Z coordinate;
Fig. 1a). Next, each row and each column of both masterplates
were pooled in column (n¼ 12) and row (n¼ 8) pools, giving a
total of 40 samples that represent the 96� 96 clone library
(Fig. 1a, for detailed practical implementations using different
types of multichannel pipetting devices, see Supplementary
Methods). This pooling strategy thus captures the positional
information of the 9,216 mutants in just 40 samples. In the
perfect case, each mutant is present in 4 out of 40 pools (one
column and one row pool of both masterplates), and from the
identity of these 4 master pools, the original position of this clone
in the library can be exactly determined. At this point, the
problem is reduced to introducing barcode sequences identifying
the specific master pools, adjoining the Tn-flanking DNA
sequences that are generated from them.

Library preparation and mutant deconvolution. The sequen-
cing library preparation method is outlined in Fig. 1b. Briefly,
genomic DNA of each of the 40 pools was fragmented and ligated
to customized adaptors, containing different unique barcodes for
multiplex sequencing. Next, the Tn junctions were enriched by
PCR amplification with primers hybridizing to the Tn ends and
to the adaptor. The PCR products were then combined and size
selected before sequencing on an Illumina chip. This approach
was rigorously optimized during proof-of-concept experiments
using a subsection of the library, as discussed in more detail in
Supplementary Note 1.

Following sequencing of the mix of barcoded Tn-flanking
sequence samples derived from all 40 pools on a single lane of an
Illumina HiSeq2500 chip, the reads were demultiplexed and
quality filtered (Fig. 1c). After removal of the adaptor sequences,
reads that were lacking the Tn-specific tag were excluded from
the data set. The remaining reads were trimmed to equal size
(25 bp) and mapped to the M. bovis BCG Pasteur reference
genome. This sequencing read size trimming was important to
avoid coverage calculation errors at Tn insertion sites that are
very close together in the genome. To determine the exact
position of each mutant within the 96� 96-well library, we
calculated the read coverage at all possible TA insertion sites
within each of the 40 pools. Only reads that map with their 50 end
at these potential TA insertion sites were considered for this
coverage calculation.

Mycobacterium bovis BCG mutant resource. This integrated
analytical approach of CP-CSeq provided evidence for Tn
insertions at 8,259 sites, with a further 542 at sites in the genome
where reads cannot be uniquely mapped (i.e. duplicated regions
and highly repetitive genes; Fig. 2a and Supplementary Data 1).
Over 77% (6,383) of the 8,259 uniquely mapped insertion events
had sufficient sequencing coverage in the expected number of
pools (4) for customized software-based automated identification
of the mutant’s position in the archived clone library. About 84%
of these insertions map within the ORF of known genes, targeting
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57% (2,289/4,033) of the total number of genes in the BCG
genome (Fig. 2b) and 64% (2,146/3,359) of the genes of which the
M. tb orthologues are not essential for in vitro growth15,16. The
remaining genes that we did not hit largely contain few TAs
(Fig. 2c), or are genes for which the essentiality is unsure in M. tb
(Fig. 2d).

By PCR analysis, we verified the presence of all of the 71
particular mutants that were assigned by our algorithm to a
particular 96-well plate (plate 92; Fig. 3). We further confirmed
the position of another 33 mutants that were assigned by
CP-CSeq to positions across the library (Fig. 4). 100% of all these
CP-CSeq assignments were correct. Picking five to ten clones
seeded from the glycerol stocks of the mutants was sufficient to
recover the mutant in a clonally pure form. Such passing over a
single-clone isolation step is a common good microbiology

practice, and also necessary here, as some frequency of picking
multiple clones to the same well is unavoidable during ordered
library preparation because of the strong clumping behaviour of
Mycobacteria of the M. tb complex. Moreover, some level of well-
to-well cross-contamination is also to be expected during
cultivation and library handling, especially as these organisms
are highly adapted to airborne transmission. Clearly, our
methodology is sufficiently robust to such unavoidable experi-
mental complexities, strongly enhancing its real-life utility.

To benchmark these results to the theoretically expected
number of targeted genes, we modelled the relation between the
library size (number of uniquely mapped Tn insertions) and the
percentage of non-essential genomic regions that are likely to get
targeted by Himar1 Tn mutagenesis. This statistical problem is
similar to the ‘coupon collector’s’ problem17. First, we calculated
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Figure 1 | Cartesian Pooling-Coordinate Sequencing (CP-CSeq) concept for simultaneously determining both tag sequence and library coordinates of

the biological entity containing the tag sequence. Here, the optimized concept is presented in the case of M. bovis BCG transposon-tagged mutants.

(a) Layout and Cartesian Pooling of a 96�96-well library of sequence-tagged biological entities (for example,M. bovis BCG transposon insertion mutants).

Each entity’s position in the library is characterized by three Cartesian coordinates (X, Y and Z). To create the X–Y Pool Plate, a small culture volume of one

specific well position (for example, A1) in all of the 96-well plates was transferred to and thus pooled in the same specific well (for example, A1) of the

masterplate, thus keeping the respective positions within each primary plate (X and Ycoordinates). Subsequently, the Z pool plate was prepared by pooling

all of the 96 wells of a primary plate in one single well of the masterplate (Z-coordinate). Next, each row and each column of both masterplates were

pooled in column (n¼ 12) and row (n¼8) pools, giving a total of 40 samples that represent the 96� 96 clone library. (b) Coordinate-Seq sequencing

library preparation links a pool-specific barcode to the sequence tag that identifies each biological entity in each pool. Here, the protocol is optimized

for Himar1 transposon-flanking sequence tags. (c) Coordinate-Seq sequence data processing for transposon insertion mutants.
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from the M. bovis BCG Pasteur genome that the median number
of TA sites per non-essential-coding sequence is 12. Using this
number, we obtained the model illustrated in Fig. 2e, which
predicts that a library such as ours of 6,072 traceable Tn insertion
mutants (311 insertions in essential M. tb orthologues excluded)
should target 71% of the non-essential genes, which is close to the
observed number (±64%). The difference is at least partially due
to the presence in the genome of duplicated and repetitive regions
in which mutants cannot be mapped using CP-CSeq. The model
furthermore forecasts that performing the experiment twice to
double the number of traceable Tn insertions is expected to hit up
to 90% of the targetable genes, coming close to a full mutant
resource for these organisms.

Discussion
Our data demonstrate that this straightforward CP-CSeq method
is highly competitive with much more complicated methods that
were previously developed for similar purposes. Goodman et al.

provided a complex protocol for characterizing clonally arrayed
Tn insertion libraries using a liquid-handling robot to distribute
archived mutant B. thetaiotaomicron strains across a subset of
pools, according to a specific binary pattern18. However, tracing
identical mutants to their specific locations in the library
remained difficult. To diminish this issue, Erlich et al. proposed
DNA Sudoku19. Although this allowed for an overall high
accuracy in the analysed plasmid libraries, the pooling approach
remains extremely complicated, yielding hundreds of pooled
samples to be processed. Moreover, these methods are heavily
dependent on complex programming of robotic equipment, a
skill and resource not readily accessible for many scientists. This
is in contrast to CP-CSeq, as sample transfer steps along
Cartesian coordinates are highly intuitive and are the most
common operational mode of liquid/clone-handling robots. It
may be of note that we pooled the M. bovis BCG library
completely through manual pipetting, requiring the efforts of two
team members for just a few days. The method is thus accessible
to any laboratory, including those without robots.
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Figure 2 | Results of Cartesian Pooling-Coordinate Sequencing on a 96�96-well transposon insertion library of M. bovis BCG. (a) Visualization of the

M. bovis BCG Pasteur reference genome. GC% (black) and Tn insertions that were identified and coordinate-determined in our 96�96-well mutant library

(green bars). Duplicated regions of the genome are marked in red (DU1 and DU2). (b) Distribution between disrupted ORFs for which the location in the

library of at least one disruption mutant is known (purple), disrupted ORFs for which the locations of their disruption mutants are unknown (‘untraceable’;

grey) and untargeted ORFs (brown). (c) Relation between the fraction and the number of TA’s in the ORF. Genes for which the orthologues are known to be

essential in M. tb are omitted from the analysis. (d) Gene distribution according to gene-essentiality of M. tb orthologues of both the mutated and

unmutated/untraceable gene fraction in ourM. bovis BCG Tn insertion library. Genes for which no reliable data are available with regard to their essentiality

for in vitro growth are shown in grey. (e) Theoretical model (based on the ‘coupon collector’s’ problem) to estimate the library size needed to target a

certain percentage of the non-essential genome with at least one disruption every 12 TA’s (¼median number of TA’s per gene in the M. bovis BCG Pasteur

genome). The model predicts that with 6,072 mutants, 71% of the non-essential genes should be hit at least once, which is slightly above what we

observed in our data set (64%). Doubling the amount of mutants will allow disrupting almost all targetable genes in this genome.
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Our CP-CSeq method already provided the largest resource of
mutants in any strain of the M. tuberculosis complex reported so
far, and allows to create an almost comprehensive set of genome-
wide mutant strains in less than the time required to generate even
a single mutant with classical techniques6. Next to Tn mutagenesis
as used here, recent advances in recombineering and phage

transduction in Mycobacteria will likely increase the versatility
and precision of sequence-tagged mutagenesis in these
organisms20. Rather than applying these new methods in a
laborious and costly gene-by-gene approach as currently
attempted20, there is now scope for single-step genome-wide
bulk recombineering in all target genes, followed by deconvolution
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using CP-CSeq. These innovations will dramatically speed up
hypothesis testing in Mycobacterium biology.

Similar issues with difficult genetics and/or slow growth are
prevalent throughout biology, as is the need to cost- and time-
effectively characterize ordered libraries of biological entities (such
as plasmid inserts of DNA libraries). The CP-CSeq concept and
methodology should be broadly portable to such other settings.

Methods
Strains and media. The streptomycin-resistant M. bovis BCG strain 1721 (RpsL,
K43R; a gift of Dr P. Sander, Institute for Medical Microbiology, Zurich) and its
mutants were grown in Middlebrook 7H9 broth (Difco) supplemented with 0.05%
Tween-80, Middlebrook OADC (Becton Dickinson) and appropriate antibiotic
selection (100 mg per ml streptomycin for wild type and additionally 50 mg per ml
kanamycin for the mutants) when grown in liquid culture. Difco Middlebrook
7H10 agar (similarly supplemented) was used for growth on solid culture. We
selected the mutants on 7H10 plates supplemented with 20 mg per ml kanamycin.
For the propagation of the phage, a streptomycin-resistant M. smegmatis strain
(also obtained from Dr P. Sander) was used and grown in the Middlebrook 7H9
broth (Difco) supplemented with Middlebrook ADC (Becton Dickinson) without
Tween-80 or antibiotics. Library cultures were cultivated in 96-well U-bottom
tissue culture plates with low evaporation lid (Falcon; 200 ml cultures). Individual
clones were grown in static or shaking culture flasks.

Construction and Cartesian pooling of the mutant library. The Tn donor
phagemid, FmycomarT7 (received as a gift from Prof Dr Eric Rubin, Harvard
School of Public Health, Boston), was propagated in M. smegmatis to generate
phage stocks. In short, M. smegmatis cultures (grown in 7H9 supplemented with
ADC and Tween-80 until an OD600¼ 1.0) were washed three times with MP buffer
(50mM of Tris, pH 7.5, 150mM of NaCl, 10mM of MgSO4 and 2mM of CaCl2)
and resuspended in an equal volume of MP buffer. Serial dilutions of the
FmycomarT7 phage were made in MP buffer, added to 200 ml M. smegmatis
aliquots and 3ml of top agar (4.7 g l� 1 Middlebrook 7H9broth base (Difco),
7 g l� 1 Bacto-agar (Difco), 0.1% glucose, 0.1mM of CaCl2; autoclaved and cooled
to 42 �C) and spread out on 7H10 plates (supplemented with ADC). After
incubation for 2 days at 30 �C, plates containing confluent plaques were incubated
for 4 h with MP buffer at 4 �C. The phage-containing mixtures were then collected,
filtered (0.2 mm filter) and stored at 4 �C until further use21.

M. bovis BCG, grown to OD600¼ 1.0, was transduced as follows. In short, the
cells (corresponding to 50ml of culture volume grown to OD600¼ 1.0) were
washed three times with MP buffer and resuspended in 5ml of MP buffer. The cells
were then infected with 1010 p.f.u. (plaque-forming units) of FmycomarT7 phage
for 3 h at 37 �C (ref. 15).The library was plated on 7H10 agar plates containing
50mg per ml kanamycin and 100 mg per ml streptomycin, as the Tn contains the
kanamycin-resistant gene. The plating was performed at the appropriate dilution to
obtain well-separated single colonies. Once the colonies were well grown on the
7H10 agar plates, they were manually picked using sterile toothpicks into 96-well
plates, each plate containing 96 individual mutants (a total of 9,216 clones). Care
was taken to avoid clustered colonies, which are very prevalent due to the clumping
behaviour of M. bovis BCG. Individual mutants were grown in 96-well plates in
200ml of Middlebrook 7H9 broth supplemented with 10% OADC and 50 mg per ml
kanamycin and 100 mg per ml streptomycin for 21 days and aliquots were frozen in
20% glycerol at � 80 �C. A detailed procedure of how we constructed the library
can be found in Supplementary Methods, section 1.

For the Cartesian pooling concept, 200 ml library cultures (96� 96-well plates)
were grown for 21 days and processed in four sets of 24 plates as follows. The
position of each mutant, one per well, is characterized by three coordinates (X, Y
and Z). First, cultures of each well (70 ml aliquots) were transferred into their
respective wells in an X–Y Pool Plate (96-deep-well plate), thus keeping the
respective positions within each primary plate (X and Y coordinates). Then, a
second batch of each culture (70 ml aliquots) was transferred into a second deep
well plate (2 Pool Plate), where each well collects the samples of an entire primary
plate (Z coordinate). This was done for all four sets of 24 plates. Next, for each
submasterplate, all rows and columns were pooled into their respective column
(900 ml aliquots) and row (600 ml aliquots) subpools. Finally, the corresponding
pools of the four subsets were combined, leading to a total of 40 pooled samples. A
detailed practical implementation using different types of multichannel pipetting
devices can be found in Supplementary Methods, section 2.

Illumina Coordinate-Seq library preparation. The optimization work for the
library preparation method is described in Supplementary Note 1. All primer and
adaptor sequences are listed in Supplementary Data 2. Genomic DNA of the
Mycobacterial pools was prepared as described in Supplementary Methods22.

Genomic DNA (±1 mg) derived from the 40 mutant pools of the complete
library was sonicated (Bioruptor standard, Diagenode), blunt-end repaired and A
tailed (NEBNext end-repair and dA-tailing module, NEB). At several steps in the
protocol, DNA fragments were each purified with Agencourt AMPure XP beads
(Beckman Coulter). These fragments were ligated (FastLigase, Enzymatics) to

custom-made adaptors (IDT DNA), containing a T overhang, the standard
Illumina index sequencing site and P7 sequence, and a different 8 bp barcode for
each individual pool. Subsequently, a nested PCR was performed using primers P7
(complementary to the Illumina P7 sequence) and a mix of primers P5-IR2a-d
(hybridizes with the Tn inverted repeat and contains the standard Illumina P5 and
forward sequencing primer sequence). The resulting PCR products were combined,
size selected (±500 bp), purified and sequenced with the standard sequencing
primers on 1 lane of an Illumina HiSeq2,500 chip, generating 71,464,831 single-end
sequencing reads of 100 bp. A detailed procedure of the library preparation
protocol can be found in Supplementary Methods, section 3.

Sequencing data analysis. The raw Illumina sequencing data were processed with
CLC Genomics Workbench (http://www.clcbio.com/products/clc-genomics-work-
bench/) and the open source Galaxy platform (http://galaxyproject.org/). After
Illumina adaptor and read quality-based trimming, the sequence reads were parsed
for 100% identity to the 8-bp specific Tn inverted repeat tag. Matching reads were
stripped from this tag, trimmed to equal size (25 and 60 bp) and mapped to the
M. bovis BCG Pasteur reference genome (strain 1173P2, Genbank accession number
AM408590.1). Sequence reads that aligned to more than one position on the
genome (duplicated or repetitive regions) were not further considered. True Tn
insertion events were identified by only considering dinucleotides where both
forward and reverse reads mapped, overlapping at their 50 end on that particular
dinucleotide8. The coverage of such reads was calculated in each of the 40 pools and
used to determine each mutant’s location, if possible. First, to avoid mutants with
one or more missing coordinates, Tn insertion locations with an overall read count
below 300 were not considered. Then, for each remaining Tn inserted dinucleotide,
mutant pools with very low sequencing coverage (o15 reads) were ignored. For
cases where a Tn insertion appeared to be present several times in the library, a
heuristic was applied to find the location with most experimental evidence. To this
end, the mutant pools were sorted according to the number of reads mapping to the
dinucleotide of interest. The pool with the highest read count was used to map the
Tn to a unique location if that read count was substantially higher than the second
highest read count (1.5 times higher for read counts 41,000 and three times higher
for reads counts o1,000). A detailed procedure to perform the sequencing data
analysis can be found in Supplementary Methods, section 4.

Verification of the Tn insertion sites by PCR. Plate 92 of the library was grown
in 7H9 medium, supplemented with OADC, in 96-well U-bottom tissue culture
plates. After 3 weeks, these cultures (100 ml aliquots) were heated to 98 �C for
30min to release genomic DNA in the medium. After centrifugation, the super-
natants were used in a PCR reaction with a primer hybridizing to the Tn inverted
repeat (TL006) and gene-specific primers hybridizing 200–400 bp upstream
(Supplementary Data 2).

Another subset of 33 Tn insertion mutants were streaked on 7H10 plates
supplemented with 50mg per ml kanamycine. After 2–4 weeks, single colonies were
inoculated in liquid 7H9 medium. Cultures were grown to early stationary phase
and then used for genomic DNA preparation. This genomic DNA was used as
template in a PCR reaction (Phusion polymerase, Finnzymes) with
primers±500 bp up- and downstream of the predicted Tn insertion site
(Supplementary Data 2). Amplification of the wild-type gene results in a band of
500–1,000 bp, the Tn-disrupted amplicon is 2 kb larger.

PCR conditions were as follows: 98 �C for 3min; 30 cycles of denaturation
(98 �C for 20 s), annealing and extension (72 �C for 2min); 72 �C for 5min. PCR
products were run on a 1.2% agarose gel, stained with ethidiumbromide and
visualized under ultraviolet light. Scans of the entire gels can be found in the
Supplementary Information file (Supplementary Figs 1 and 2).

Library size calculations. To model the library size needed to hit increasing
fractions of the genome with at least one Tn, we took a theoretical approach by
considering this problem similar to the ‘coupon collector’s problem’. The number
of non-essential possible insertion sites is 58,815. This was calculated by sub-
tracting the number of TA’s in ‘essential’ (M. tb)16 genes (14,355) from the total
number of TA dinucleotides present in the genome (72,870). The number of 58,815
TA’s in non-essential genomic regions was cut in sections of a specified number of
TA’s. As the median number of TA’s in ‘non-essential’ M. bovis BCG genes is 12,
we chose this number. In this way, we modelled that the genome consists of 58,815/
12¼ 4,876 non-essential genome regions (‘genes’), each containing 12 TA’s. To
calculate the expected library size E(T) needed to target all of these genes, we used
the ‘coupon collector’s’ expression E(T)¼ n. (n� 1þyþ½þ 1)17, where n is the
number of non-essential genes (as modelled by a genomic stretch containing 12
consecutive TA’s). Library sizes expected to target 10–90% of the genes (in steps of
10%) were calculated and plotted using Graphpad.
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