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Type I interferons regulate eomesodermin
expression and the development of unconventional
memory CD8þ T cells
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CD8þ T-cell memory phenotype and function are acquired after antigen-driven activation.

Memory-like cells may also arise in absence of antigenic exposure in the thymus or in the

periphery. Eomesodermin (Eomes) is a key transcription factor for the development of these

unconventional memory cells. Herein, we show that type I interferon signalling in CD8þ

T cells directly activates Eomes gene expression. Consistent with this observation, the

phenotype, function and age-dependent expansion of ‘virtual memory’ CD8þ T cells are

strongly affected in absence of type I interferon signalling. In addition, type I interferons

induce a sustained expansion of ‘virtual memory’ CD8þ T cells in an Eomes-dependent

fashion. We further show that the development of ‘innate thymic’ CD8þ Tcells is dependent

on the same pathway. In conclusion, we demonstrate that type I interferon signalling in

CD8þ Tcells drives Eomes expression and thereby regulates the function and homeostasis of

memory-like CD8þ T cells.
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C
D8þ T cells are important effectors of the immune
response against tumours, viruses and other intracellular
pathogens. During infection or vaccination, CD8þ T cells

undergo antigen-specific activation and expansion to give rise to
cellular progeny, acquiring effector functions for pathogen
clearance. The pool of activated CD8þ T cells then undergoes
a contraction phase, leaving behind a small fraction of memory
cells that contributes to antigen-specific life-long protection1,2. In
absence of antigen exposure, CD8þ T cells may also acquire a
memory phenotype in the thymus (‘innate-like’ CD8þ T cells)3,4

or in the periphery (‘virtual memory’ (VM) cells)5,6. Recent
evidences indicate that conventional and unconventional memory
CD8þ T-cell subsets promptly secrete large amounts of cytokines
in response to inflammatory cues in the context of infection7,8.
This non-cognate activation of memory CD8þ T cells that leads
to rapid interferon (IFN)g production and acquisition of cytolytic
functions contributes to the first line of defence and favours a
Th1-prone environment6,7,9–11.

The transcriptional networks implicated in the alternative
differentiation of memory-phenotype CD8þ T cells are poorly
understood. In these subpopulations, Eomesodermin (Eomes),
a transcription factor closely related to T-bet, appears to play a
central role in the acquisition of memory phenotype and
function12–14. In conventional memory cells, Eomes favours the
development of central memory cells (TCM) characterized by
longer survival and an important potential for homeostatic
proliferation15,16. However, in the context of chronic viral
infection, Eomes is also important for the terminal
differentiation of virus-specific CD8þ T cells in response to
persisting antigen17. In different mice models that give rise to
innate-like CD8þ T cells, interleukin (IL)-4-dependent Eomes
induction within CD8 single-positive (SP) thymocytes is required
for their differentiation12,14,18,19. The development of VM CD8þ

T cells in the periphery also relies on high Eomes expression that
mediates CD122 expression and responsiveness to IL-15 trans-
presentation by CD8a dendritic cells13. Despite the important
role of Eomes in these contexts, the signalling pathways
responsible for its sustained expression in memory CD8þ T
cells are still ill-defined.

Type I IFNs display important direct and indirect immuno-
modulatory effects on CD8þ T cells20,21. They promote the
expression of specific cytokines by antigen-presenting cells
(APCs) such as IL-15 or IL-27, which play a critical role in
CD8þ T-cell activation or differentiation22–25. Similar to IL-12,
they act as a ‘third signal’ that promotes full activation,
proliferation and survival of CD8þ T cells activated by T cell
receptor and costimulatory molecules21,26. In contrast, several
studies showed that type I IFNs generally inhibit CD8þ T-cell
proliferation by increasing their sensitivity to apoptosis27–29.
These mediators also induce the rapid acquisition of effector
functions in absence of antigenic stimulation both in naive and
memory cells30,31. Type I IFNs activate multiple signal transducer
and activator of transcription (STAT) molecules, including
STAT1, STAT3 homo/heterodimers and the IFN-stimulated
gene factor 3 (ISGF3) complex composed of STAT1, STAT2
and IFN regulatory factor (IRF) 9 (ref. 21).

In the present work, we demonstrate that type I IFNs induce
direct Eomes gene expression through activation of the ISGF3
complex within CD8þ T cells. We further show that this pathway
contributes to the homeostasis and innate functions of memory-
like CD8þ T cells both in the periphery and in the thymus.

Results
Reduced pool of VM CD8þ T cells in IFNAR� /� mice. Type I
IFNs are known to regulate immune cell homeostasis through
their ability to affect cellular proliferation and survival20. In an

initial set of experiments, we analysed the relative frequency of
CD8þ T-cell subpopulations in naive mice lacking type I IFN
receptor (IFNAR� /� mice). We observed that the pool of
memory CD44þCD62LþCD8þ T cells was reduced in these
mice as compared with age-matched wild-type (WT) animals
(Fig. 1a). Recent data indicate that a significant proportion of
memory CD8þ T cells in the periphery of naive animals are not
antigen-experienced ‘true memory’ (TM) cells but so-called ‘VM’
cells that express low levels of CD49d, an integrin alpha
subunit5,13,32. We observed that the reduced proportion of
memory cells in IFNAR� /� mice was due to lower frequency
and absolute counts of VM cells (Fig. 1a,b). The pool of TM cells
was not consistently altered in IFNAR� /� mice (Fig. 1b). As
Eomes plays a critical role in the development of this particular
memory subset13,33, we evaluated its expression in VM cells from
both strains. We observed a significant decrease in Eomes
expression in absence of type I IFN signalling (Fig. 1c).

Type I IFNs directly activate Eomes expression in CD8þ T cells.
On the basis of these initial results, we postulated that type I IFN
signalling could play a role in the regulation of VM CD8þ T-cell
homeostasis possibly by regulating Eomes expression. To test this
hypothesis, we incubated isolated CD8þ T cells with recombi-
nant IFNb. As a positive control, we used rIL-4 that activates
Eomes expression in a STAT6-dependent fashion18,34,35. In these
experimental conditions, rIFNb alone or in combination with
rIL-4 was a potent inducer of Eomes expression both at the
messenger RNA (mRNA) and the protein levels (Fig. 2a). This
effect was observed both in naive and CD44þCD62LþCD49dlow

(‘VM’) or CD49dhigh (‘central memory’) subsets. As previously
shown15, Eomes expression in CD44þCD62L� effector cells was
lower than in the other memory subsets and was not upregulated
in response to rIFNb (Fig. 2a).

Type I IFNs signal through the formation of the ISGF3
complex (STAT1/2/IRF9). We assessed the specific role of this
pathway by using CD8þ T cells from IRF9� /� and STAT1� /�

mice. Induction of Eomes by rIFNb was found to be IRF9- and
STAT1-dependent (Fig. 2b). T-bet expression was not signifi-
cantly modulated in these conditions, indicating that type I IFN
signalling differentially regulates these two related transcription
factors. We further confirmed the role of IRF9 in type I
IFN-induced Eomes mRNA upregulation both in naive and
CD44þCD62Lþ memory subsets (Fig. 2c).

Previous studies indicated that type I IFNs prime CD8þ T-cell
effector function by indirectly targeting APCs31. To assess a
possible CD8þ T-cell extrinsic role of IRF9 signalling on Eomes
expression, we performed co-culture in vitro experiments. For
this purpose, Thy1.2þ CD8þ T cells purified from WT or
IRF9� /� mice were cultured with congenic WT Thy1.1þ

splenocytes for 16 h with or without rIFNb. Eomes expression
was analysed by flow cytometry (Fig. 2d). We observed that
IRF9� /� CD8þ T cells exhibited impaired expression of Eomes
in response to rIFNb even in presence of WT splenocytes. Next,
we analysed Eomes expression upon in vivo induction of type I
IFNs by injection of polyI:C. To study the CD8þ T-cell intrinsic
role of IRF9, we performed adoptive transfers of WT or IRF9� /�

Thy1.2þ CD8þ T cells into congenic Thy1.1þ WT mice before
polyI:C injection. Sixteen hours after injection, Eomes expression
was analysed by flow cytometry in spleen cells. We observed a
clear upregulation of Eomes upon polyI:C injection in WT but
not in IRF9-deficient CD8þ T cells (Fig. 2e). These experiments
indicate that type I IFN signalling within CD8þ T cells leads to
the activation of Eomes both in vitro and in vivo.

Next, we looked at classical histone modifications in the
proximal promoter region of Eomes (Fig. 2f). We found an
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IRF9-dependent increase in H3K4me3 and H3K9Ac in response
to rIFNb, highly suggestive of transcriptional activation. We
identified a putative IFN-stimulated response element site located
150 base pairs upstream of the transcriptional start site. We
observed direct recruitment of STAT1 to this region in chromatin
immunoprecipitation experiments (Fig. 2g). In contrast, STAT1
recruitment to a control region located downstream of the gene
body did not increase above the background levels. Taken
together, these experiments indicate that type I IFNs directly
activate Eomes gene expression in CD8þ T cells in a STAT1/
IRF9-dependent fashion.

IRF9 regulates the homeostasis of memory CD8þ T cells. Our
results indicate that IRF9 is critical for type I IFN-induced Eomes
expression. We therefore analysed CD8þ T-cell memory subsets
in IRF9� /� mice. As observed in IFNAR� /� mice (Fig. 1), we
found that the frequency and absolute counts of VM cells was
significantly lower in naive IRF9� /� mice as compared with WT
animals (Fig. 3a).

In agreement with recent reports32,36, we observed an
important expansion of circulating memory CD44þCD49dlo

CD8þ T cells in old (410 months) WT mice as compared
with younger (6–8 weeks) mice (Fig. 3b). Interestingly, the
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Figure 1 | The pool of virtual memory CD8þ T cells is decreased in IFNAR� /� mice. (a) Total circulating CD8þ T cells were analysed ex vivo for the

frequency of memory CD44þCD62LþCD8þ T cells, virtual memory CD44þCD49dlo CD8þ T cells (VM) and true memory CD44þCD49dhi CD8þ

Tcells (TM) in WTand IFNAR� /� mice. (b) Absolute numbers of naive, VM and TM CD8þ Tcells in the spleens of WTand IFNAR� /� mice. (c) Mean

fluorescence intensity (MFI) of Eomes in VM CD8þ T cells. Representative histograms of Eomes expression in WT (blue line) and IFNAR� /� (red line)

VM CD8þ T cells are shown. As a control, we included staining in CD8þ T cells from Eomesfl/flCD4cre mice (plain histogram). *Po0.05, **Po0.01 and

***Po0.001, NS: not significant (non-parametric Mann–Whitney). In graphs, each dot represents an individual mouse and bars represent mean±s.e.m.
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age-associated expansion of the VM compartment was totally
abrogated in absence of IRF9 (Fig. 3b). In contrast, the frequency
and age-dependent expansion of CD44þCD49dhigh TM CD8þ

T cells was not affected by the lack of IRF9 (Fig. 3b).

Eomes is strongly implicated in the development of VM
cells13,14. As compared with antigen-experienced (CD49dhigh)
memory cells, Eomes was found to be highly expressed
in circulating VM cells from WT old animals (Fig. 3c).
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Its expression was significantly decreased in age-matched
IRF9� /� animals (Fig. 3c) both in VM and TM CD8þ

T cells. VM cells are characterized by high levels of CXCR3
and CD122, which are direct or indirect targets of Eomes37–40.
We found that expression of these two surface molecules was
significantly decreased in IRF9� /� VM cells (Fig. 3c). We
observed that CD127 was highly expressed in VM as compared
with TM CD8þ T cells. CD127 expression was also significantly
decreased in VM cells from IRF9� /� old animals (Fig. 3c).

To gain further insight into the mechanisms responsible for
decreased frequency of VM cells in IRF9� /� mice, we analysed
Ki67 and Bcl2 expression within these subsets. Interestingly, we
found that the expression of these molecules also strongly differs
between VM and TM CD8þ T cells. While Bcl2 was highly
expressed in VM CD8þ T cells, Ki67 levels were higher in TM
cells. We observed that expression of both molecules was reduced
in IRF9� /� cells, indicating lower proliferation rate and an
increase in their sensitivity to apoptosis (Fig. 3c). Taken together,
these results indicate that VM cells display a unique phenotype
that favours their responsiveness towards homeostatic cytokines
such as IL-7 and IL-15. Our results further suggest that IRF9-
dependent signals are critical for their general fitness.

Type I IFNs regulate innate IFNc production by CD8þ T cells.
To determine the innate functions of these memory CD8þ

T cells in steady-state conditions, we stimulated splenocytes from
naive 6–8-week-old WT and IRF9� /� animals with rIL12þ
rIL18, a combination known to trigger rapid IFNg production by
memory CD8þ T cells in a non-cognate fashion9,22. IFNg
production in these conditions was restricted to Eomeshigh

memory CD8þ T cells (Fig. 4a) and was found to be decreased
in IRF9� /� CD8þ T cells (Fig. 4b). This was not only the
consequence of the reduced memory pool, as IRF9� /� CD44þ

CD8þ T cells displayed lower IFNg production as compared
with their WT counterparts (Fig. 4b).

To further assess the functional implications of our observa-
tions in the acquisition of innate effector functions in the context
of acute Listeria monocytogenes (LM) infection, we analysed IFNg
expression in WT and IRF9� /� mice 16 h post infection.
Listeria-elicited IFNg production by CD8þ T cells was strongly
decreased in IRF9� /� mice (Fig. 4c). In contrast, IFNg
production by natural killer (NK) cells was not affected in
Listeria-infected IRF9� /� mice, indicating that the inflamma-
tory cues that induce IFNg production were globally maintained
in these mice (Fig. 4c).

To define whether IRF9 acts in a T-cell intrinsic fashion,
we performed mixed bone marrow chimera by transferring
WT Thy1.1þ and IRF9� /� Thy1.2þ myeloid progenitors
into an irradiated RAG2� /� host. Ten weeks after reconstitu-
tion, we observed that the proportion of memory CD8þ T cells
was reduced among the IRF9� /� CD8þ T cells as compared
with WT CD8þ T cells. This was reflected by a decrease in
the VM subset and reduced Eomes expression within memory
cells, demonstrating the T-cell intrinsic role of IRF9 in our
observations (Fig. 4d). Upon ex vivo rIL-12þ rIL-18 stimulation,
we observed that IRF9� /� cells produced lower IFNg levels.
As IRF9 could play a T-cell intrinsic role independently of
type I IFN signalling, we performed similar mixed bone
marrow chimera with WT and IFNAR� /� cells (Fig. 4e). We
confirmed our findings in this experimental setting, showing
that type I IFN signalling within CD8þ T cells contributes
to the homeostasis of ‘VM’ CD8þ T cells and their innate
functions.

PolyI:C injection increases the pool of VM CD8þ T cells. Our
results clearly demonstrate a role of IRF9 in the homeostasis of
VM cells in steady state and upon aging. Injection of polyI:C
induced an important upregulation of Eomes expression in
CD8þ T cells 16 h after injection (Fig. 2e). PolyI:C was previously
shown to induce the expansion of CD8þ memory T cells in a
type I IFN- and IL-15-dependent manner25,41. Three days after
injection, both VM and TM CD8þ T-cell subsets expanded
significantly (Fig. 5a). This was reflected by a strong increase in
their proliferation rate (Fig. 5a). In contrast to in vitro mRNA
data (Fig. 2c), showing transient induction of Eomes by IFNb, we
observed that in vivo, increased Eomes protein expression in
naive or memory subsets was maintained 3 days after polyI:C
injection (Fig. 5a). To study the long-term effects of this
stimulation, we analysed VM and TM cell subsets 1 month
after polyI:C injection. The expansion of memory CD8þ T cells
was still observed at this later time point in the VM compartment
but not in the TM compartment (Fig. 5b). These short- and
long-term effects on VM cells were abrogated in IFNAR� /�

mice confirming the role of type I IFNs in this process (Fig. 5c).
To address the role of Eomes in the effects of type I IFNs on the
homeostasis of memory cells, we next used Eomesfl/flCD4Cre

mice. PolyI:C-induced expansion of VM CD8þ T cells did not
occur in these mice (Fig. 5c). Taken together, these experiments
support the involvement of a type I IFN/Eomes axis in the
homeostasis of VM cells.

Figure 2 | Type I IFNs directly activate Eomes gene expression in CD8þ Tcells. (a) Purified CD8þ Tcells were incubated in medium alone or stimulated

with rIFNb (100Uml� 1) and/or rIL-4 (20 ngml� 1). After 6 h of stimulation, Eomes mRNA levels were quantified and normalized against b-actin mRNA

levels. Histograms represent mean±s.e.m. of triplicates (representative of three independent experiments). Eomes expression (mean fluorescence

intensity (MFI)) in total or the indicated subpopulation of CD8þ Tcells was assessed by flow cytometry after 16 h of stimulation. (b) Splenocytes fromWT,

IRF9� /� or STAT1� /� mice were cultured for 16 h with or without rIFNb (100Uml� 1) in presence of rIL-2 (100Uml� 1). Eomes expression in total

CD8þ Tcells was assessed by flow cytometry. (c) Naive CD44�CD8þ Tcells and CD44þCD62Lþ memory CD8þ Tcells were sorted and cultured for

the indicated time with or without rIFNb (100Uml� 1). Eomes mRNA levels were normalized against b-actin mRNA levels (experiment performed in

triplicates). (d) WT or IRF9� /� Thy1.2þ CD8þ T cells were cultured with WT Thy1.1þ splenocytes for 16 h with or without rIFNb (100Uml� 1).

Eomes expression in WT or IRF9� /� Thy1.2þ CD8þ T cells is shown. Mean±s.e.m. of two independent experiments is shown. (e) WT or IRF9� /�

Thy1.2þ CD8þ Tcells were adoptively transferred i.v. into WT Thy1.1þ mice 24 h before PBS or polyI:C (200mg per mouse) injection (intraperitoneally).

Mice were killed 16 h post injection. Eomes expression within the Thy1.2þ CD8þ T-cell population was analysed by flow cytometry. Histograms represent

mean±s.e.m. (five mice per group). (f) Total CD8þ T cells from WTand IRF9� /� mice were stimulated for 4 h with IFNb or medium alone. H3K4me3

and H3K9Ac modifications in the proximal promoter region of the Eomes or Gapdh loci were quantified by quantitative (q)PCR after chromatin

immunoprecipitation (ChIP) experiments (normalization against input controls). Values are expressed as mean±s.e.m. of duplicates and are representative

of two independent experiments. (g) Total CD8þ T cells from WTmice were incubated with rIFNb or medium alone for the indicated time. STAT1

recruitment to the proximal region or to a control region located þ 14.6 kb downstream of the transcriptional start site of the Eomes gene was quantified

by qPCR after ChIP experiments (normalization against input controls). Values represent mean±s.e.m. of three independent experiments. *Po0.05

(non-parametric Mann–Whitney).
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Effects of type I IFN signalling on Ag-specific CD8þ T cells.
Data obtained in steady state or polyI:C-treated mice suggest that
type I IFN signalling contributes to the homeostasis of VM but
not TM cells. To specifically address the role of IRF9 in antigen-
specific CD8þ T cells, we first assessed the effect of type I IFN
stimulation in the context of an in vitro polyclonal activation
assay. Consistent with previous reports42, we observed that type I
IFNs potentiated polyclonal-induced Eomes expression (Fig. 6a).

We next evaluated the role of this signalling pathway upon
antigenic challenge in vivo. For this purpose, we infected WT or
IRF9� /� animals with LM deleted for ActA that expresses the
ovalbumin (OVA) antigen (DactA rLmOVA)43, and we analysed
SIINFEKL-specific CD8þ T cells in the course of infection
(Fig. 6b). In absence of IRF9, the frequency of OVA-specific
CD8þ T cells in the effector phase was slightly increased
(Fig. 6b). This could be related to the deleterious effects of type I
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IFN signalling in the course of Listeria infection27. The frequency
of memory cells, their capacity to expand upon secondary
challenge or the proportion of central memory CD8þ T cells
were not affected in absence of IRF9 (Fig. 6c). We could
demonstrate that Eomes expression was decreased in antigen-
specific CD8þ T cells from IRF9� /� mice during the effector
phase (day 7 post infection) and the memory phase (days 35–70)
(Fig. 6d). These results confirm the data obtained in total
CD44þCD49dhi cells (TM) under steady-state conditions
(Fig. 3b). In contrast, T-bet expression in IRF9� /� mice was
slightly increased (effector phase) or unaffected (memory phase)
(Fig. 6d). WT/IRF9 mixed bone marrow chimera experiments
confirmed the T-cell intrinsic role of IRF9 in the induction of

Eomes expression in OVA-specific CD8þ T cells upon DactA
rLmOVA infection (Fig. 6e).

These results indicate that IRF9 contributes to Eomes
expression in the course of antigenic activation and differentia-
tion into antigen-specific memory CD8þ T cells. However, in
sharp contrast to VM cells, the maintenance and function of
conventional memory CD8þ T cells were not compromised in
absence of IRF9 signalling, a finding that could be related to
the partial contribution of Eomes to their maintenance or
phenotype15.

IRF9 regulates the homeostasis of innate CD8þ thymocytes.
Our results highlight the role of type I IFN/IRF9/Eomes pathway
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in the homeostasis of unconventional rather than conventional
memory CD8þ T cells. Another memory-like CD8þ T-cell
population, characterized by high expression of CD44, CXCR3,
CD122 and Eomes, has been described in the thymus4,12. IL-4 is
known to facilitate Eomes expression in CD8 SP thymocytes and
the acquisition of this particular phenotype19,35,44. Indeed, we
confirmed that incubation with rIL-4 induced Eomes expression

in CD8 SP thymocytes (Fig. 7a). Consistent with our results in
peripheral CD8þ T cells (Fig. 2a), rIFNb alone or in combination
with rIL-4 also induced Eomes expression in these experimental
conditions (Fig. 7a). These results suggest that type I IFN
signalling could participate in the development of innate thymic
CD8þ T cells. Despite the low abundance of these cells in the
thymi of C57BL/6 mice, we observed a significant reduction in
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the frequency of this population in IRF9� /� mice under steady-
state conditions as compared with WT animals (Fig. 7b). Type I
IFNs are known to affect the survival of thymocytes45. However, 3
days after polyI:C injection, despite a strong decrease in the
cellularity of the thymus, we observed a global rise in the
proportion of CD8 SP cells in the thymus, suggesting that these
cells might be relatively spared. Moreover, as observed in the
periphery, we found an increase in the proportion of thymic
innate cells among CD8 SP thymocytes in polyI:C-injected
animals (Fig. 7c). PolyI:C induced a decrease in the proportion of
Ki67þ classical CD44�CD8þ SP cells, which could reflect
reduced proliferation rate or overall loss in CD4þCD8þ double-
positive precursors. In sharp contrast, the proportion of Ki67þ

cells among innate memory CD8 SP increased, indicating that
along with Eomes expression, type I IFNs promote their
expansion (Fig. 7c).

While innate CD8þ T cells are rare in the thymi of C57BL/6
mice, they were found to be abundant in BALB/c mice under
steady-state conditions, as this population is dependent on
IL-4-expressing NK T cells that are highly represented in
this strain4,19. We therefore evaluated the proportion of innate
thymic CD8 SP thymocytes in WT or IRF9� /� BALB/c mice.
This population was significantly reduced in IRF9� /� mice as
compared with their WT counterparts (Fig. 7d). Taken together,
these results indicate that together with IL-4, type I IFNs
contribute to the development of innate thymic CD8þ T cells.

Discussion
Upon sensing microbial signals, APCs such as inflammatory
monocytes, subcapsular macrophages or conventional dendritic
cells produce cytokines that may directly or indirectly influence
the function of CD8þ T cells9,22. Among these mediators, type I
IFNs are known to regulate many aspects of T-cell
functions20,21,46. Herein, we clearly demonstrate a direct action
of type I IFNs and IRF9-dependent signals on Eomes gene
activation in CD8þ T cells. This effect was observed in peripheral
naive and memory CD8þ T cells and in CD8 SP thymocytes.

We show that type I IFNs favour the expansion of unconven-
tional ‘VM’ CD8þ T cells in an Eomes-dependent manner. This
was found to be the case upon induction of type I IFNs in the
context of polyI:C injection, and we observed that IRF9 was also
required for the accumulation of this subset with age. How Eomes
drives the acquisition of a memory-like phenotype is not clear. An
important direct target of Eomes is CD122, a subunit shared by
the IL-2 and IL-15 receptor38. Indeed, expression of T-bet and/or
Eomes is required and sufficient to confer cellular responsiveness
to IL-15 (ref. 38). This cytokine is critical for the maintenance of
memory cells in general and the development of VM cells in
particular13,23,47–52. Importantly, type I IFNs signalling within
dendritic cells and/or inflammatory monocytes is also required
for IL-15 production and efficient trans-presentation to CD8þ T
cells23,52. Hence, both reduced responsiveness to homeostatic
cytokines and inefficient IL-15 trans-presentation could be
responsible for a lower proliferation rate and Bcl2 expression
by IRF9� /� VM cells50. Bone marrow chimera experiments
clearly indicate that type I IFN signalling in CD8 T cells
influences VM cell homeostasis. Taken together with previous
works, we propose that type I IFNs directly upregulate Eomes
expression in naive T cells leading to the induction of CD122 that
confers responsiveness to IL-15 and subsequent conversion into
VM cells. Type I IFNs might also be required to maintain high
Eomes expression on VM cells, thereby favouring their survival
and IL-15-driven expansion. Further work will be necessary to
define the global transcriptional program imposed by Eomes in
these cells. There is no direct evidence that upregulation of Eomes

gene expression by type I IFNs are directly responsible for our
observations. It is important to note that the effects of type I IFNs
on VM CD8 T cells probably involve other pathways that have
not been investigated in this work. For example, type I IFNs were
shown to promote IL-15Ra expression in human T cells, resulting
in enhanced IL-15 signalling53.

The function of these memory-like cells is still a matter of
debate6,9,11,33,36. Like classical memory CD8þ T cells, VM cells
are able to rapidly produce IFNg during the first stage of an
infection, in absence of antigenic recognition9. They respond to
specific antigens with a better proliferation rate than true naive
CD8þ T cells6. These cells could therefore contribute both to
innate and adaptive immune responses. Furthermore, memory-
like cells are present in large amount in the neonatal period and
also accumulate with age, so they could play an important role in
these periods of high susceptibility to infections32,33,36,54,55. It is
tempting to speculate that high Eomes (and/or T-bet) expression
is responsible for these innate properties. Indeed, in response to
IL-12/IL-18 stimulation, IFNg production was restricted to
Eomes-positive CD8þ T cells. Furthermore, in absence of IRF9
within CD8þ T cells, the proportion of VM cells, their Eomes
expression and their capacity to produce IFNg were decreased.

IRF9 was also required for optimal Eomes expression in the
context of antigen-driven differentiation into effector and
memory cells in vivo. Despite these findings, the persistence or
the phenotype of these ‘TM’ cells under steady-state conditions,
upon polyI:C injection or in the context of Listeria infection, was
not consistently affected in absence of type I IFN signalling. We
cannot exclude that IRF9-dependent induction of Eomes in
antigen-experienced cells could contribute to their long-term
maintenance in other contexts. However, this hypothesis is
difficult to test in viral models such as lymphocytic choriome-
ningitis virus infection. Indeed, in contrast to Listeria infection,
type I IFNs are critical for the induction of effector CD8þ T cells
in these models, which precludes the analysis of their role in the
memory phase26,46,56.

Another unconventional memory CD8þ T-cell population
arises in the thymus. They differ from VM cells as this innate-like
population is strongly dependent on IL-4 produced by PLZF-
expressing NK T cells that are highly represented in BALB/c
mice4,19. Of note, the thymus was shown to be an important
source of type I IFN under physiological conditions57,58.
Furthermore, we observed that rIFNb strongly potentiated IL-4
driven Eomes expression, suggesting that type I IFNs could also
influence the homeostasis of thymocytes. Indeed, we show that
the proportion of Eomesþ innate CD8 SP thymocytes was
significantly decreased in IRF9� /� BALB/c mice. This result
indicates that, in addition to IL-4, type I IFN signalling
contributes to the differentiation of these memory-like cells.

In conclusion, we demonstrate that type I IFN signalling within
CD8þ T cells directly regulates Eomes expression, a transcription
factor associated with the acquisition of a memory-like phenotype
and innate functions. Together with the role of type I IFNs on
IL-15/IL-15R expression, we show that this mechanism con-
tributes to the long-term homeostasis, fitness and function of VM
CD8þ T cells in the periphery and the differentiation of innate
memory cells in the thymus.

Methods
Mice. IRF9-deficient (IRF9� /� ) mice on C57BL/6 or BALB/c backgrounds were
obtained from the Riken BioResource Center (Ibaraki, Japan) with the approval of
T. Taniguchi (University of Tokyo, Tokyo, Japan). RAG2� /� , CD3e� /� , Thy1.1
and CD45.1 congenic mice on C57BL/6 background were obtained from the
Jackson Laboratory. STAT1� /� and IFNAR1� /� mice on C57BL/6 background
were kindly provided by D.E. Levy (New York University School of Medicine,
NYC, USA) and Claude Libert (Department for Molecular Biomedical Research,
VIB, Ghent, Belgium), respectively. These mice were housed and bred in our
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specific pathogen-free animal facility. Eomesflox/flox mice were previously
described59. These mice were further back-crossed onto C57BL/6 background for
eight generations. To inactivate Eomes in T lymphocytes, mice were crossed
with CD4-Cre animals. All experimental groups were matched for sex and age
(6–10 weeks or as indicated in the legend of the figures). All animal studies were
approved by the institutional Animal Care and local committee for animal welfare.

Cell preparation and cultures. Total CD8þ T cells were purified by magnetic-
activated cell sorting (CD8þ microbeads, mice; MACS Miltenyi Biotec or
Dynabeads Untouched Mouse CD8 Cells Kit from Life Technologies). All cultures
were performed in RPMI with 10% (vol/vol) FCS, 2mM l-glutamine, 1mM sodium
pyruvate, 0.1mM non-essential amino acids, 40 mM b-mercaptoethanol,
100Uml� 1 of penicillin and 100Uml� 1 of streptomycin (all from Lonza). Total
CD8þ T cells were cultured with or without rIFNb at 100Uml� 1 (PBL Interferon
Source) and rIL-4 at 20 ngml� 1 (R&D Systems). In addition, we performed
cocultures with rIFNb and plate-bound anti-CD3 (5 mgml� 1; 145-2C11, BD
biosciences) and soluble anti-CD28 (1 mgml� 1; 37.51, BD biosciences). In another
set of experiments, we performed Thy1.1þ /Thy1.2þ cocultures; Thy1.2þ

(CD90.2þ ) CD8þ T cells purified from WT or IRF9� /� mice were cultured with
WT Thy1.1þ (CD90.1þ ) splenocytes for 16 h in the presence or absence of rIFNb.
In another panel of experiments, splenocytes were cultured for 16 h with a cocktail
of rIL-12 (5 ngml� 1) and rIL-18 (10 ngml� 1, MBL) or medium alone.

In vivo experiments. For adoptive transfer experiments using polyI:C, 3.106 WT
or IRF9� /� CD8þ T cells (CD90.2þ ) were injected intravenously (i.v.) into
congenic C57BL/6 recipient mice (CD90.1þ ). After 24 h, recipient mice were
injected intraperitoneally with 200mg of polyI:C (GE Health Care). After 24 h,
recipient mice were killed and donor-derived T cells were identified by surface
staining with anti-CD90.2 Pe-Cy7 (Biolegend, clone 30-H12m, 1/100) and
anti-CD8 PerCP (BD biosciences, clone 53–6.7, 1/50).

For in vivo infections, WT and IRF9� /� mice were inoculated i.v. with a
recombinant attenuated strain of LM deleted for ActA that expresses the OVA
antigen43 (DactA rLmOVA) or a recombinant strain of LM expressing ovalbumin
(LM-OVA)43,60 (kindly provided by Dr Hao Shen, Department of Microbiology,
University of Pennsylvania School of Medicine, Philadelphia).

Antigen-specific T-cell responses were monitored in blood and spleen using
pentamer stainings (H-2Kb/SIINFEKL (OVA), Proimmune). To study innate
CD8þ T-cell response in blood and spleen, animals were killed 16 h post injection
of DactA rLmOVA i.v. (5� 105 colony-forming units per mouse). To evaluate the
recall of the CD8þ T-cell response, mice were killed at day 5 following an injection
of LM-OVA (1.106 colony-forming units per mouse).

We also performed mixed bone marrow chimera by injecting either WT
Thy1.1þ and IRF9� /� Thy1.2þ or WT CD45.1þ and IFNAR� /� CD45.2þ

myeloid progenitors into lethally irradiated RAG2� /� host recipient mice. When
indicated, 8 weeks post engraftment, animals were inoculated with DactA rLmOVA
and followed the same protocol as described previously.

Cell surface and intracellular staining. Purified CD8þ T cells, splenocytes and
thymocytes were first stained for surface antigens and then treated with Foxp3
staining buffer set according to the manufacturer’s directions (eBioscience).
Anti-Eomes AlexaFluor 647 or eFluor 660 (Dan11mag, 1/75), anti-T-bet PE
(eBio4B10, 1/100) and anti-CD49d FITC or PE (R1-2, 1/50) antibodies were
purchased from eBioscience. Anti-CD8 PercP (53–6.7, 1/50), anti-CXCR3 APC
(CXCR3-173, 1/50), anti-CD4 Pe-Cy7 (RM4-5, 1/100), anti-CD62L PE (1/100)
or V450 (1/50) (MEL-14), anti-Bcl2 PE (3F11, 1/25), anti-Ki67 FITC (B56, 1/25),
anti-CD44 FITC or V450 (IM7, 1/50), anti-CD127 Pe-Cy7 (SB/199, 1/50), anti-
CD122 FITC (TM-BETA1, 1/50), anti-NK1.1 FITC (PK136, 1/50), anti-CD90.2
Pe-Cy7 (53-2.1, 1/100) and anti-IFNg APC or PB or PE (XMG1.21/50) were
purchased from BD biosciences. Anti-CD3 Pe-Cy7 (2C11, 1/100) was purchased
from Biolegend.

In some experiments, brefeldin A (5 mgml� 1, Sigma) was added in samples for
3 h at 37 �C before intracytoplasmic staining. Blood samples were directly stained
for surface antigens and then treated with FACS lysing buffer (BD biosciences)
as described in the product data sheet. All samples were fixed with 1%
paraformaldehyde in PBS prior to their processing using a Cyan flow cytometer
(Dako Cytomation).

RNA purification and real-time RT–PCR. Total RNA from cells was extracted
using a MagnaPure LC RNA-High Performance Isolation Kit (Roche Diagnostics).
Reverse transcription (RT) and real-time PCR reactions were carried out using an
RNA amplification kit (one-step procedure) on a Lightcycler 480 Real-Time PCR
system (Roche Diagnostics). The sequences of primers and probes were: b-actin:
50-TCCTGAGCGCAAGTACTCTGT-30, 50-CTGATCCACATCTGCTGGAAG-30

and probe 50-ATCGGTGGCTCCATCCTGGC-30, Eomes: 50-CCTTCACCTTCT
CAGAGACACAGTT-30, 50-TCGATCTTTAGCTGGGTGATATCC-30 and probe
50-TCGCTGTGACGGCCTACCAAAACA-30, T-bet: 50-CAAGTTCAACCAGCA
CCAGA-30 , 50-CCACATCCACAAACATCCTG-30 and probe 50-TCATCACTA
AGCAAGGACGGCGA-30.

Chromatin immunoprecipitation. Purified CD8þ T cells were stimulated
with rIFNb (107 cells per condition). Cells were then fixed for 10min at room
temperature with 1% formaldehyde, and glycine was added to a final concentration
of 0.125M. Cells were washed twice with ice-cold PBS, resuspended in lysis buffer
and sonicated to obtain chromatin fragments that were 200–500 base pairs in
length using a bioruptor device (Diagenode). Chromatin was then incubated
overnight at 4 �C with monoclonal rabbit anti-H3K4me3 (Millipore), polyclonal
rabbit anti-H3K9ac (Millipore), polyclonal rabbit anti-STAT1 (M-22, sc-592,
Santa Cruz) or with rabbit polyclonal IgG (CS200581; Millipore) and protein G
magnetic-activated beads (Active Motif). Beads were washed five times. Eluted
samples were incubated with NaCl (final concentration: 200mM) for 4 h at 65 �C.
Samples were treated with RNAse and Proteinase K for 1 h at 45 �C and DNA was
then purified using the QIAquick kit according to the manufacturer’s instructions
(Qiagen). Quantitative PCR was performed with primers encompassing the
proximal promoter region of Eomes. The sequences of primers for Eomes were:
50-AAAGAAACACCAAACCAGCA-30 , 50-GGGACTTTGCTATTGGCTGT-30

and probe 50-CGCAGGCGACCCGATCCAATTA-30 . As a positive control for
histone modifications, we used primers located in the Gapdh proximal promoter
region: 50-CCACCATCCGGGTTCCTAT-30, 50-GCGATTTTCACCTGGCACT-30

and probe: 50-CTCCTCCCTGTTCCAGAGACGGC-30 . As a negative control, we
used a region located þ 14.6 kb downstream of Eomes transcriptional start site:
50-GCGCACACACACACACATAC-30 , 50-AAATGGCAGGTTTCTTTACCC-30

and probe: 50-CATCTCACTAGACCTTGAGTCAGTCCTCTCTCTC-30 .

Statistical analysis. Statistical analysis was performed using a non-parametric
Mann–Whitney or paired Wilcoxon test when appropriate.
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