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Hall effect of triplons in a dimerized quantum
magnet
Judit Romhányi1, Karlo Penc2 & R. Ganesh1

SrCu2(BO3)2 is the archetypal quantum magnet with a gapped dimer-singlet ground state and

triplon excitations. It serves as an excellent realization of the Shastry–Sutherland model, up to

small anisotropies arising from Dzyaloshinskii–Moriya interactions. Here we demonstrate that

these anisotropies, in fact, give rise to topological character in the triplon band structure. The

triplons form a new kind of Dirac cone with three bands touching at a single point, a spin-1

generalization of graphene. An applied magnetic field opens band gaps resulting in

topological bands with Chern numbers ±2. SrCu2(BO3)2 thus provides a magnetic analogue

of the integer quantum Hall effect and supports topologically protected edge modes. At a

threshold value of the magnetic field set by the Dzyaloshinskii–Moriya interactions, the three

triplon bands touch once again in a spin-1 Dirac cone, and lose their topological character.

We predict a strong thermal Hall signature in the topological regime.
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T
opological phases of bosons have steadily gained interest,
driven by the goal of realizing protected edge states that do
not suffer from dissipation. As bosonic carriers (phonons,

magnons and so on) are electrically neutral, they are weakly
interacting and show good coherent transport. As a first step in
this direction, analogues of the integer quantum Hall effect have
been proposed using photons1–4, magnons5–9, phonons10–12 and
skyrmionic textures13, with the thermal Hall effect14 as the
experimental probe of choice. It would be very interesting to
observe this phenomenon in quantum magnets, where the
quantization of spin produces a new class of bosonic excitations
called triplons.

The archetypal quantum magnet is SrCu2(BO3)2, a layered
material consisting of Cu S¼ 1/2 moments arranged in
orthogonal dimers15,16. To a very good approximation, this
arrangement conforms to the Shastry–Sutherland model17,18.
Low-energy excitations correspond to breaking a singlet to form a
triplet. Such excitations are called triplons and can be thought of
as spin-1 bosonic particles19. Indeed, triplons undergo Bose
condensation in many systems20–22. If SrCu2(BO3)2 were an exact
realization of the Shastry–Sutherland model, the triplons would
be local excitations forming a threefold-degenerate flat band23.
However, electron spin resonance (ESR)24, infrared absorption25,
neutron scattering26 and Raman scattering27 measurements
show a weak dispersion that has been attributed to small
Dzyaloshinskii–Moriya (DM) anisotropies28–30. Nuclear
magnetic resonance measurements also support the presence of
DM couplings31.

Here, we show that DM couplings give rise to topological
character in the triplon energy spectrum of SrCu2(BO3)2. A small
magnetic field suffices to induce phases with Chern bands and
topologically protected edge states. As triplons carry energy but
no electrical charge, we predict a thermal Hall effect of triplons.

Results
Microscopic model. Figure 1a illustrates the lattice geometry
and the interactions between the spins in SrCu2(BO3)2. The
Hamiltonian is given by

H ¼J
X
n:n:

Si � Sj þ J 0
X
n:n:n:

Si � Sj � gzh
z
X
i

Szi

þ
X
n:n:

Dij � Si�Sj
� �

þ
X
n:n:n:

D0
ij � Si�Sj

� �
:

ð1Þ

J is the strength of the exchange coupling on intra-dimer bonds.
The intra-dimer DM coupling D is allowed by symmetry below
a structural phase transition at TB395K (refs 32,33;
see Supplementary Figs 1 and 2, Supplementary Table 1 and
Supplementary Note 1). We have included a small magnetic field
hz perpendicular to the SrCu2(BO3)2 plane, with the g-factor
denoted as gz. On the inter-dimer bonds, J0 and D0 are the
exchange and DM couplings, respectively, with the dominant DM
component being out-of-plane. As seen in Fig. 1a, the out-of-plane
D0

? couplings encode a sense of clockwise rotation; this ultimately
drives a Hall effect of triplon excitations as we report below.

Triplon description. A thorough bond operator treatment of the
Hamiltonian in equation 1 has been presented in ref. 30. We
present a simplified treatment suitable for SrCu2(BO3)2 in a weak
magnetic field. Previous studies have largely focused on plateau
phases at high fields(ref. 34 and references therein). In contrast,
we show that the low-field regime has exotic topological
properties.

In a given dimer, the Hilbert space is spanned by a singlet
sj i ¼ "#j i� #"j ið Þ=

ffiffiffi
2

p
and three triplets: txj i ¼ i ""j i� ##j ið Þ=ffiffiffi

2
p

; ty
�� �

¼ ""j iþ ##j ið Þ=
ffiffiffi
2

p
and tzj i ¼ � i "#j iþ #"j ið Þ=

ffiffiffi
2

p
.

In the pure Shastry–Sutherland model, the ground state is a
direct product of singlets |si over the dimers as long as J0u0.675 J
(refs 18,35,36). In SrCu2(BO3)2, as the DM anisotropies are small
compared with J, we assume that the ground state remains a
product wavefunction. Minimizing the overall energy, we find
that the ground state has the wavefunction ~sj ih � sj ih � a ty

�� �
h

and ~sj iv � sj iv þ a txj iv on horizontal and vertical dimers,
respectively; the direction of D on each dimer determines
whether |tyi or |txi is admixed. The triplet admixture is
proportional to the intra-dimer DM coupling |D| with
a � jDj=2J � 1. Here, as in the rest of this article, we only
retain terms up to linear order in D,D0, and hz, which are small
compared with the J0s.

On each dimer, we choose a new Hilbert space by rotating
wi ¼ sj i; txj i; ty

�� �
; tzj i

� �
i
to ~wi ¼ Wh=v � wi using

Wh ¼

1 0 � a 0

0 1 0 0

a 0 1 0

0 0 0 1

0
BBB@

1
CCCA and
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1 a 0 0

ia � i 0 0

0 0 � i 0

0 0 0 i

0
BBB@

1
CCCA

ð2Þ

on horizontal and vertical dimers, respectively. In the ground
state, each dimer is in the j ~si state given by the first row in the
corresponding W matrix. We have three local excitations given by
the mutually orthogonal triplon states j ~txi, j ~tyi and j ~tzi.

At low-magnetic fields, the low-energy excitations are spanned
by single-triplon states with their dynamics captured by hopping
processes of the form ih~ta j H j ~tbij. Introducing a bosonic
representation for triplons, we obtain a Hamiltonian with purely
hopping-like terms. By defining Wv as above with complex
entries, the Hamiltonian takes on a convenient form, viz., the two
dimers in the unit cell become equivalent (see Supplementary
Note 2 for details). We may henceforth drop v/h indices and work
with the reduced unit cell in Fig. 1b. In momentum space, the
Brillouin zone (BZ) is enlarged as shown in Fig. 2b.

For a more complete treatment, we may include pairing-like

terms (~tyi;a~t
y
j;b) within a bond operator formalism as in ref. 30.

We ignore such terms as they do not change the triplon energies

J ′

D ′||,s
J

y

x
D

D

D ′⊥

Figure 1 | The SrCu2(BO3)2 lattice. (a) Heisenberg and DM couplings in

SrCu2(BO3)2. The red and blue arrows on dimers represent the intra-dimer

DM vectors D (black arrows indicate the order of spins in the DM term).

The inter-dimer coupling D0 has in-plane and out-of-plane components.

Following the circular arrows as indicated, the out-of-plane DM component

points out of the plane (purple circles). The ‘staggered’ in-plane component

is shown by magenta arrows. The green rectangle indicates the structural

unit cell. (b) The new reduced unit cell upon taking the two dimers to be

equivalent is shown in the yellow square. The dimers form a square lattice

as shown.
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to linear order in D, D0 and hz; we have checked that their
inclusion does not alter the results presented here.

Spin-1 Dirac cone physics. The triplon Hamiltonian in
momentum space is given by

H ¼
X
k

X
m;n¼x;y;z

~tym;kMmn ðkÞ~tn;k ; ð3Þ

where the Hamiltonian matrix is given by

MðkÞ ¼
J ihzgz þ 2iD0

?g3 ~Dkg2
� ihzgz � 2iD0

?g3 J � ~Dkg1
~Dkg2 � ~Dkg1 J

0
B@

1
CA; ð4Þ

with g1(k)¼ sin kx, g2(k)¼ sin ky and g3ðkÞ ¼ 1
2 ðcoskx þ coskyÞ

(see Supplementary Note 2 for details). Only two components of
the inter-dimer DM coupling enter the Hamiltonian, viz., the
out-of-plane component D0

? and the ‘staggered’ component
shown in Fig. 1a. A third non-staggered component is allowed by
symmetry, but does not appear at this level (see Supplementary
Fig. 2 and Supplementary Note 1). Intra-dimer D and in-plane
inter-dimer D0

k;s act in consonance so that only the linear com-
bination ~Dk ¼ D0

k;s �
jDjJ 0
2J appears in the Hamiltonian similar to

the analysis in ref. 29. In the following, we use the values
J¼ 722GHz, ~Dk

�� �� ¼ 20GHz, D0
? ¼ � 21GHz and gz¼ 2.28 in

the M(k) matrix, which reproduce the ESR data in ref. 24. The
parameter J is not the microscopic exchange strength, but rather
the measured spin gap, which determines the effective coupling in
the presence of quantum fluctuations.

The M(k) matrix is of the form

MðkÞ ¼ J1þ dðkÞ � L ; ð5Þ
where 1 is the 3� 3 identity matrix and

L ¼
0 0 0
0 0 � 1
0 � 1 0

0
@

1
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0 0 0

0
@

1
A

2
4

3
5 ð6Þ

is a vector of 3� 3 matrices satisfying the [Lx, LZ]¼ iexZz Lz SU(2)
algebra. Thus, in momentum space, the triplons behave as
(pseudo)spin-1 objects coupled to a pseudomagnetic field

dðkÞ ¼ ~Dkg1ðkÞ; ~Dkg2ðkÞ; hzgz � 2D0
?g3ðkÞ

� �
: ð7Þ

We now draw an analogy with the usual two-band physics
wherein the 2� 2 Hamiltonian takes the same form as
equation (5) but with spin-1/2 Pauli matrices instead of spin-1
L matrices. There, we obtain two bands corresponding to
eigenvalues J±d(k)/2 (we denote d(k)¼ |d(k)|). If d(k) is non-
zero throughout the BZ, we obtain two well-separated bands
whose Chern numbers are ±Ns, where Ns is the number of
skyrmions in the d(k) field over the BZ37. The d(k) field contains
all information about the band structure; its skyrmion count
determines the topological character of bands. We emphasize
here that topological properties will not change with small
corrections to the Hamiltonian such as next-nearest neighbour
hopping (see Supplementary Figs 3 and 4, and Supplementary
Note 3).

Likewise, in our spin-1 realization, we read off the eigenvalues
as {Jþ d(k),J,J� d(k)}. Note that the band in the middle is always
flat with energy J, irrespective of the value of d(k). If the
pseudomagnetic field d(k) vanishes at some k, all three bands
touch in a ‘spin-1 Dirac cone’, resembling graphene but with an
additional flat band passing through the band touching point.
If d(k) is non-zero throughout the BZ, the spectrum consists
of three well-separated triplon bands with well-defined Chern
numbers {� 2Ns,0,þ 2Ns}, where Ns is again the skyrmion
number. More generally, for the arbitrary spin-S generalization
of equation (5), we have (2Sþ 1) bands with Chern numbers
{� 2SNs,� 2(S� 1)Ns,y, 2(S� 1), 2SNs} (see Supplementary
Table 2 and Supplementary Note 4).

Magnetic field-tuned topological transitions. The magnetic
field hz provides a handle to tune topological transitions in
SrCu2(BO3)2, as shown in Fig. 2. With small magnetic fields, even
though the ground state remains a product of dimer singlets, the
band structure of excitations shows topological transitions. When
hz¼ 0, the three bands touch at the edge centres of the BZ
(corresponding to corners in the structural BZ). A small applied
field opens a non-trivial band gap, allowing for three well-
separated bands with Chern numbers {� 2,0,þ 2} or {þ 2,0,� 2},
depending on the sign of hz. When the field reaches a threshold
strength hc ¼ 2 j D0

? j =gz , the three bands touch at the G point.
Indeed, this band touching has already been seen in ESR24

and infrared absorption25 spectra at hzE1.4 T; however, its
significance as a spin-1 Dirac point was not appreciated. As hz is
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Figure 2 | Topological transitions in the triplon bands. (a) A spin-1 Dirac cone with three bands touching. (b) Triplon dispersion for hz¼0. The basal

plane shows the enlarged BZ corresponding to one dimer per unit cell, with k¼ (p,p) at the M and k¼ (p,0) and (p,0) at the X points. The smaller

structural BZ is shown in green. The band structure hosts spin-1 Dirac cones at the BZ edge centres X. (c–e) Evolution of triplon bands and Chern numbers

upon tuning magnetic field. Bands with non-zero Chern number appear for 0ohzohc and are shown in colour. At hz¼ hc (d), the bands touch at a

spin-1 Dirac cone at G. For hz4hc as in e, the Chern numbers remain zero.
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increased further, a trivial band gap opens with all three Chern
numbers being zero.

The topology of triplon bands can be understood in terms of
the d(k) field. To every point in the two-dimensional (2D) BZ (an
S1�S1 torus), we assign the 3D vector d(k): this gives us a
closed 2D surface embedded in three dimensions. If the bands are
to remain well-separated, the surface cannot touch the origin, that
is, d(k)a0 anywhere in the BZ. The origin is thus special and acts
as a monopole for Berry phase. The topology of the band
structure reduces to whether or not the 2D surface encloses the
origin; if it does, how many times does it wrap around the origin?
This defines a skyrmion number NsAZ, that is related to the
Chern number.

To see the role of hz, we note that it enters solely as an additive
contribution in the z-component of d(k). As shown in Fig. 3, the
BZ maps to a closed surface of width 2~Dk and height proportional
to 4D0

?, which is composed of an upper and a lower chamber. The
chambers are disconnected, but touch along line nodes. The
surface is orientable: the outer surface of the lower chamber
smoothly connects to the inner surface of the upper chamber and
vice versa. When |hz|4hc, neither chamber encloses the origin;
we have Ns¼ 0 with all Chern numbers zero (Fig. 3a,d). When
� hcohzo0, the origin lies inside the upper chamber (Fig. 3b),
the net Berry flux is positive and Chern numbers are {þ 2,0,� 2}.
When 0ohzohc, the origin lies inside the lower chamber
(Fig. 3c), the Berry flux is negative and Chern numbers are
{� 2,0,þ 2}.

The key ingredient that gives rise to topological properties is
the DM interaction that originates from relativistic spin-orbit
coupling. The threshold magnetic field hc is proportional to the
coupling D0

?. The intra-dimer DM coupling D also plays a role:
we do not find any Chern bands upon setting D¼ 0, as is
appropriate for T4395K, above a structural transition in
SrCu2(BO3)2.

Edge states. The topological character of bands is revealed when
edges are introduced. For 0ohzohc (and for � hcohzo0), edge
states connecting the Chern bands appear within the bulk band
gap, as shown in Fig. 4a for a strip geometry. Apart from reco-
vering the bulk bands, we clearly see four edge states consistent
with bulk boundary correspondence38 for Chern numbers ±2.
The edge states constitute two ‘right-movers’ and two ‘left-
movers’ (with group velocity pointing right/left), localized on the
opposite edges of the strip. The wave functions of the edge states
decay exponentially into the bulk, as shown in Fig. 4b.

Thermal Hall effect. Chern bands in electronic systems can be
easily probed by doping the system so that the Fermi level lies in
the band gap. This gives a transverse electrical conductivity
quantized to integer values. In bosonic systems where this is not
possible, the thermal Hall effect provides an alternative. Semi-
classical analysis shows that a wave packet in a Chern band
undergoes rotational motion39,40. To exploit this, a temperature
gradient is used to populate the band differently at the system’s

xy

z

Figure 3 | Chern numbers from Berry flux. Topological 2D surface obtained from mapping each point in the BZ to a 3D d(k) vector when hz takes the

values (a) � 3hc/2, (b) � hc/2, (c) hc/2 and (d) 3hc/2. The arrows in the figure emanate from the origin, which acts as a monopole of Berry flux.
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Figure 4 | Protected edge states. (a) Band structure of SrCu2(BO3)2 on a

cylindrical strip periodic in x, but with open edges along y. The width along y

is taken to be very large. We recover the bulk states corresponding to three

triplon bands. In addition, four edge states appear, connecting the Chern

bands. Edge modes shown in blue and cyan (red and brown) are left-

movers (right-movers). (b) Wavefunctions of the four edge states for an

arbitrary kx on a strip of width W¼ 8 dimers. The colour of the dimer bond

represents the triplon weight with black corresponding to zero. Right-

moving edge states are localized on the bottom edge, whereas left-movers

are localized on the top edge.
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edges. The rotational motion of the triplons is then unbalanced,
leading to a transverse triplon current. As triplons carry energy,
this leads to a measurable transverse thermal current.

An expression for thermal Hall conductivity was derived using
the Kubo formula in ref. 5. Subsequently, Matsumoto et al.7

showed that there is an extra contribution from the orbital
motion of excitations. Figure 5a shows the thermal Hall
conductivity as a function of external magnetic field calculated
using the expression in ref. 7. SrCu2(BO3)2 is quasi-2D and the
Hall response in each layer is in the same direction. Therefore, we
add the contribution from each layer to get kxy for a three-
dimensional sample (see Supplementary Note 5). As the magnetic
field is tuned away from hz¼ 0, a non-zero Hall signal develops
with the sign of kxy depending on the direction of magnetic field.
When the threshold magnetic field strength hc is reached, the
topological nature of triplon bands is lost and the Hall signal is
diminished. Figure 5b shows the peak thermal Hall conductivity
increasing monotonically with background temperature. Our
calculation assumes that the temperature is low enough that the
triplon bands are weakly populated, allowing us to neglect
triplon–triplon interactions. We expect this assumption to hold
atleast until B5K where the filling of bosons is B0.2%. Neutron
scattering data show that the intensity of the single triplet
excitations is essentially unchanged up to 5K showing no
damping26.

Discussion
We have demonstrated that SrCu2(BO3)2 hosts a Hall effect of
triplons. A small external magnetic field of the order of a few
Tesla suffices to tune topological transitions in the band structure.
The triplons form novel spin-1 Dirac cones with threefold band
touching. Such a feature has been seen in various contexts41–45.
Our study elucidates its implications for band structure topology;
the spin-1 structure naturally gives Chern numbers±2 instead of
the more common ±1. Similar topological phases could exist in
dimer compounds such as Rb2Cu3SnF12 (refs 46,47) with
non-zero DM couplings, and possibly in ZnCu3(OH)6Cl2
(Herbertsmithite)48.

We predict a thermal Hall signature in SrCu2(BO3)2 that can
be verified by transport measurements. We also suggest neutron
scattering experiments to study the evolution of band structure in
low-magnetic fields (t2T). Such measurements can see the
spin-1 Dirac cone features at hz¼ 0 and hz¼ hc. It may even be
possible to directly probe the edge states using precise low-angle
scattering measurements.
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