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Glycogen synthase kinase 3b ubiquitination by
TRAF6 regulates TLR3-mediated pro-inflammatory
cytokine production
Ryeojin Ko1, Jin Hee Park1, Hyunil Ha2, Yongwon Choi2 & Soo Young Lee1

TRAF6 is critical for the production of inflammatory cytokines in various TLR-mediated

signalling pathways. However, it is poorly understood how TRAF6 regulates TLR3 responses.

Here we demonstrate that GSK3b interacts with TRAF6 and positively regulates the

TLR3-mediated signalling. Suppression of GSK3b expression or its kinase activity drastically

reduces the production of inflammatory cytokines and the induction of c-Fos by decreasing

ERK and p38 phosphorylation. GSK3b physically associates with TRAF6 in a TLR3 ligand

poly I:C-dependent manner. TRAF6 is determined to be a direct E3 ligase for GSK3b,

and TRAF6-mediated GSK3b ubiquitination is essential for poly I:C-dependent cytokine

production by promoting the TLR3 adaptor protein TRIF-assembled signalling complex.
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T
oll-like receptors (TLRs) comprise a class of conserved type
I transmembrane pattern recognition receptors1 that
recognize pathogen-associated molecular patterns and

play a critical role in the host cell defence against microbial
pathogens2. The recognition of pathogen-associated molecular
patterns by TLRs activates multiple pathways that mediate
immune responses to produce immune mediators, including
pro-inflammatory cytokines, chemokines and type I interferons

(IFNs)2–4. In particular, TLR3 signalling through the recognition
of double-stranded RNA is crucial for antiviral responses5–7.
Upon ligand binding to TLR3, the sole cytoplasmic adaptor
molecule toll-interleukin 1 receptor homology-domain-
containing adapter-inducing interferon-b (TRIF) is recruited to
the TLR signalling complex8,9. The TLR3–TRIF signalling
complex further triggers the recruitment of downstream
signalling molecules, including tumour necrosis factor (TNF)
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Figure 1 | GSK3b but not GSK3a is involved in TLR3-mediated pro-inflammatory cytokine production. (a) RAW264.7 cells stably expressing control

shRNA (Con) or GSK3b-specific shRNA (sh-GSK3b) were stimulated with 10mgml� 1 poly I:C for 1 h. Levels of IL-6, TNF-a, IP-10, IL-12 and IL-10 mRNA

were determined by real-time PCR analysis, and the values were normalized to b-actin mRNA expression. GSK3b knockdown was confirmed by reverse

transcription-PCR and western blotting. (b) BMDMs were treated with 10mgml� 1 poly I:C for the indicated time points. Whole-cell lysates were

immunoblotted with antibodies to the molecules along the right margin. (c) HEK293-TLR3 cells were transiently transfected with V5-GSK3a or HA-GSK3b
plasmids. Levels of IL-6 and TNF-a mRNA were determined as described in a. Expression of the transduced proteins was detected by western blotting with

anti-V5 (for GSK3a) and anti-HA (for GSK3b). (d) BMDMs were preincubated for 1 h with or without 10mM SB216763 and stimulated with or

without 10mgml� 1 poly I:C for 20 h. Levels of IL-6, TNF-a and IL-10 in culture supernatants were determined by enzyme-linked immunosorbent assay.

(e) Gsk3b� /� MEFs were transiently transfected with V5-GSK3a, HA-GSK3b (WT) or GSK3b (K85A) plasmids, and cells were stimulated with

10mgml� 1 poly I:C for 1 h. Levels of IL-6, TNF-a and IL-10 mRNA were determined as described in a. Expression of the transduced proteins was detected by

western blotting as described in c. Data are presented as the mean±s.d. from at least three independent experiments. Statistical analyses were calculated

using the Student’s t-test (*Po0.05; **Po0.01; NS, not significant).
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receptor-associated factor 3 (TRAF3)10, TRAF6 (ref. 11) and
receptor-interacting protein 1 (RIP1)12, which lead to the
activation of IFN regulatory factor 3 (IRF3)13, activator protein
1 (AP1)14 and nuclear factor-kappa B (NF-kB)15. While the
TLR3-mediated signalling pathways in type I IFN production
have been well explored, little is known about their regulatory
mechanisms in pro-inflammatory cytokine production.

Glycogen synthase kinase 3 (GSK3) is a highly conserved
serine/threonine kinase that was originally identified as a
regulator of glycogen metabolism16. Two highly related
isoforms of GSK3 exist, GSK3a and GSK3b, and they are
ubiquitously expressed in mammalian tissues17. Although both
isoforms share similar structural features, they are not
functionally identical18. GSK3b plays crucial roles in various
signal pathways that regulate multiple cellular functions,
including metabolism, cell proliferation, differentiation and
development19–21. GSK3b is also involved in diverse TLR
signalling22,23. For example, GSK3b has been identified as a key
mediator of pro-inflammatory cytokine production, including
interleukin (IL)-6, TNF-a, IL-12p40, IL-1b and IFN-g, and
anti-inflammatory cytokine IL-10 production by regulating
CREB activity in Myd88-dependent TLR pathways24,25. In
addition, GSK3b differentially regulates the production of
lipopolysaccharide (LPS)-induced IL-Ib and the endogenous
IL-1 receptor antagonist through ERK activity26. Another study
demonstrated that GSK3b regulated IFN-g-induced signal
transducer and activator of transcription 3 (STAT3) activity
and was required for the synergistic action of LPS and IFN-g on
IL-6 cytokine production27. Although these studies clearly
document the importance of GSK3b in TLR-mediated cytokine
production, little is known about the role of GSK3b in TLR3
signalling.

In this report, we show that GSK3b is essential for
TLR3-mediated ERK and p38 activation, c-Fos induction and
pro-inflammatory cytokine production. We also find that GSK3b
undergoes a lysine (K)-63 chain ubiquitination, which is
important for assembling the TRIF signalling complex for TLR3
signalling. Our findings provide insights into the molecular
mechanisms underlying the regulatory function of GSK3b in
TLR3-mediated pro-inflammatory cytokine production.

Results
GSK3b regulates TLR3-triggered innate immune response.
Previous reports demonstrated the crucial roles of GSK3b in
TLR-mediated pro-inflammatory cytokine production through
the myeloid differentiation factor 88 (MyD88)-dependent
pathway24,25,28,29. However, how GSK3b regulates TLR3
signalling through a TRIF-dependent pathway8,9,30 remains
unclear. To examine the involvement of GSK3b in TLR3
signalling, we generated the RAW264.7 macrophage cell line
stably expressing a GSK3b-specific short hairpin RNA (shRNA)
(Fig. 1a). In real-time PCR analysis, the messenger RNA (mRNA)
levels of pro-inflammatory cytokines, including IL-6, TNF-a,
interferon-g-inducible protein 10 (IP-10) and IL-12, greatly
decreased in the GSK3b knockdown RAW264.7 cells compared
with the levels in control cells after a TLR3 ligand, poly I:C,
stimulation (Fig. 1a). In parallel with suppression of mRNAs,
knockdown of GSK3b led to a decrease TLR3-mediated IL-6 and
TNF-a protein production (Supplementary Fig. 1a). The
differential effects of GSK3b inhibition on production of pro-
and anti-inflammatory cytokines after TLR2, TLR4, TLR5 and
TLR9 stimulation have been reported24. Unlike those TLRs, TLR3
stimulation in GSK3b knockdown RAW264.7 cells showed a
decrease in anti-inflammatory cytokine IL-10 production in
mRNA and protein levels (Fig. 1a; Supplementary Fig. 1b).

Although both GSK3a and GSK3b were phosphorylated in
response to poly I:C (Fig. 1b), overexpression of GSK3b but not
its homologue GSK3a significantly elevated IL-6 and TNF-a
mRNA expression in a dose-dependent manner (Fig. 1c). We
next used a GSK3 inhibitor SB216763 to determine whether the
kinase activity of GSK3 was responsible for inflammatory
cytokine production. GSK3 inhibition with SB216763 resulted
in a substantial reduction in IL-6, TNF-a and IL-10 levels
compared with the levels in untreated cells after poly I:C
stimulation (Fig. 1d). Importantly, poly I:C-induced mRNA and
protein expression levels of IL-6, TNF-a and IL-10 were impaired
in Gsk3b� /� mouse embryonic fibroblasts (MEFs) (Fig. 1e;
Supplementary Fig. 2). Reconstitution with GSK3b but not
GSK3a or the kinase inactive GSK3b (K85A) mutant into
Gsk3b� /� MEFs by transient overexpression restored the poly
I:C-induced mRNA expression of IL-6, TNF-a and IL-10
(Fig. 1e). Consistently, silencing of GSK3b but not GSK3a
in bone marrow-derived macrophages (BMDMs) inhibited
induction of inflammatory cytokines, including IL-6, TNF-a
and IL-10 (Supplementary Fig. 3a–c). Thus, these results suggest
that GSK3b positively regulates TLR3-mediated inflammatory
cytokine production and that the kinase activity of GSK3b is
required for its role in poly I:C-induced cytokine production.

GSK3b is involved in retinoic acid-inducible gene 1-like
receptor (RLR)-mediated antiviral response31. Since TLR- and
RLR-mediated signalling pathways share a number of
components, we examined whether GSK3b is also involved in
poly I:C-stimulated IRF3 activation and IFN-b induction.
We found that poly I:C stimulation induced increased
phosphorylation of TBK1, a kinase responsible for
phosphorylating IRF3 after poly I:C stimulation, in wild-type
MEFs but not Gsk3b� /� MEFs (Supplementary Fig. 4a).
Consistently, deficiency of GSK3b markedly inhibited poly
I:C-induced IRF3 phosphorylation and nuclear translocation
(Supplementary Fig. 4a,b) as well as dimerization of IRF3
(Supplementary Fig. 4c). Consistently, neither Gsk3b� /� MEFs
nor GSK3b knockdown RAW264.7 cells showed significant
induction of IFN-b upon poly I:C stimulation (Supplementary
Fig. 4d). We further confirmed that silencing of GSK3b but not
GSK3a in BMDMs inhibited IFN-b induction significantly
(Supplementary Fig. 4e). It is interesting to note that GSK3
inhibition with SB216763 did not alter poly I:C-induced IFN-b
mRNA expression (Supplementary Fig. 4f), suggesting that the
effect of GSK3b on TLR3-mediated IFN-b induction is
independent of its kinase activity. Together, these data indicate
that GSK3b is required for TLR3-mediated IRF3 activation and
the type I IFN-b induction.

GSK3b regulates TLR3-mediated ERK and p38 activation. The
mitogen-activated protein kinases (MAPKs) and the NF-kB
signalling pathways are important for inflammatory cytokine
production in TLR signalling32–34. To examine whether GSK3b
regulates MAPKs and NF-kB activation in TLR3 signalling, we
analysed the phosphorylation levels of ERK, p38, JNK and NF-kB
p65 in GSK3b knockdown RAW264.7 cells. As shown in Fig. 2a,
GSK3b knockdown markedly decreased poly I:C-induced ERK
and p38 phosphorylation levels, whereas there were no significant
differences in the phosphorylation levels of JNK and NF-kB p65.
Similar results were observed in BMDMs silenced by short
interfering RNA (siRNAs) specific for GSK3b. Although
knockdown of both forms of GSK3 appears to delay poly I:C-
induced IkB-a degradation, silencing of GSK3b but not GSK3a
significantly reduced poly I:C-induced ERK and p38 activation
(Supplementary Fig. 5). These results were further confirmed in
Gsk3b� /� MEFs. Phosphorylation levels of ERK and p38 but not

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7765 ARTICLE

NATURE COMMUNICATIONS | 6:6765 | DOI: 10.1038/ncomms7765 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


JNK, IKKa/b, IkB-a and NF-kB p65 were significantly decreased
in Gsk3b� /� MEFs compared with the levels in Gsk3bþ /þ

MEFs (Fig. 2b; Supplementary Fig. 6a). In reporter assays,
knockdown or overexpression of GSK3b did not affect poly I:C-
induced NF-kB activation, further suggesting that GSK3b is not
involved in TLR3-mediated NF-kB signalling (Supplementary
Fig. 6b,c). Because a TRIF-dependent pathway is also involved in
TLR4 signalling35,36, we examined the effects of GSK3b on LPS-
induced MAPKs and NF-kB p65 phosphorylation levels.
Interestingly, the GSK3b knockdown decreased LPS-induced
phosphorylation levels of p38 and JNK but not ERK and NF-kB
p65 (Fig. 2c). In contrast, there were no significant differences
between GSK3b knockdown RAW264.7 and control cells after a
TLR2 ligand, Pam3CSK4, stimulation (Fig. 2d). It should be
noted that Pam3CSK4-induced MAPKs and NF-kB p65
phosphorylation is mediated by a Myd88-dependent, but not a
TRIF-dependent, pathway. Thus, these data indicate that GSK3b
regulates ERK and p38 MAPK activation in TRIF-dependent
TLR3 signalling.

GSK3b regulates expression of c-Fos through ERK and p38.
AP1, comprising Jun, c-Fos and ATF2, is activated in response to
TLR stimulation and regulates the production of pro-inflamma-
tory cytokines14,37,38. To identify transcription factors regulated
by the TLR3–GSK3b axis, we separated the cytosolic and nuclear
fractions of GSK3b knockdown RAW264.7 cells after poly I:C
stimulation. Interestingly, the c-Fos protein levels in the nuclear

fraction appeared drastically reduced in GSK3b knockdown
RAW264.7 cells compared with the levels in control cells, whereas
nuclear ATF2, c-Jun and NF-kB p65 protein levels were
comparable in both cell types (Fig. 3a; Supplementary Fig. 7),
suggesting that GSK3b regulates TLR3-mediated c-Fos expression
but not ATF2, c-Jun and NF-kB p65. Consistently, treatment
with the GSK3 inhibitor SB216763 or silencing of GSK3b but not
GSK3a significantly reduced c-Fos mRNA or protein after TLR3
stimulation (Fig. 3b,c), whereas overexpression of GSK3b but not
GSK3a produced a substantial increase in c-Fos mRNAs
(Supplementary Fig. 8). Reconstitution of GSK3b but not
GSK3a or the kinase inactive GSK3b (K85A) mutant into
Gsk3b� /� MEFs by transient transfection restored poly
I:C-induced c-Fos mRNA expression (Fig. 3d). Moreover, the
knockdown of c-Fos markedly reduced poly I:C-induced IL-6
and TNF-a expression (Supplementary Fig. 9), confirming the
importance of GSK3b-mediated c-Fos expression in TLR3
signalling.

Considering the defects in ERK and p38 MAPK signalling in
GSK3b knockdown RAW264.7 cells and Gsk3b� /� MEFs
(Fig. 2a,b), it is likely that poly I:C-mediated ERK and p38
MAPK activation regulates c-Fos expression. To test this
hypothesis, we assessed c-Fos expression in the presence of the
ERK inhibitor PD98059, the p38 inhibitor SB203580, the JNK
inhibitor SP600125 or the NF-kB inhibitor BAY 11-7085.
Expectedly, ERK or p38 inhibition markedly reduced poly
I:C-induced c-Fos protein levels compared with the levels of the
dimethylsulphoxide control (Fig. 3e,f). In contrast, nuclear c-Fos
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expression was not affected by the inhibition of JNK or NF-kB
(Fig. 3g,h). Together, these data indicate that GSK3b regulates
poly I:C-induced c-Fos expression via ERK and p38 activation.

GSK3b is required for TLR3 signalling complex formation.
Upon poly I:C stimulation, activated TLR3 initiates the interac-
tion of TRIF with TRAF6, transforming growth factor b-activated
kinase 1 (TAK1) and RIP1 to activate MAPKs and NF-kB sig-
nalling cascades11,12,39. Specifically, the TRIF–TRAF6–TAK1 axis

is important for the activation of MAPKs, which in turn leads to
AP1 activation34,39,40. To examine how GSK3b regulates MAPKs
in TLR3 signalling, we first determined the roles of GSK3b
in forming the TLR3 signalling complex following poly I:C
stimulation in Gsk3b� /� MEFs. In control cells, poly I:C
stimulation induced recruitment of TRIF, RIP1, TRAF6, TAK1,
TAK1-binding protein 1 (TAB1), TAB2 and GSK3b to TLR3,
which persisted for at least 30min (Fig. 4). Interestingly, GSK3b
deficiency prevented the recruitment of TRAF6, TAK1, TAB1
and TAB2 to TLR3, but had no effect on the recruitment of TRIF
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and RIP1. Consistently, silencing of GSK3b in RAW264.7
macrophages impaired the poly I:C-triggered formation of the
TLR3 signalling complex containing TRAF6, TAK1, TAB1 and
TAB2 (Supplementary Fig. 10a). Notably, pretreatment with
the GSK3 inhibitor SB216763 in BMDMs also blocked the
formation of the poly I:C-induced TLR3 signalling complex
(Supplementary Fig. 10b). Thus, these results suggest that GSK3b
is important for recruiting the TRAF6–TAK1–TAB1–TAB2
complex to TLR3.

GSK3b interacts with TRAF6 and TAK1. To further explore the
regulatory mechanisms of GSK3b in TLR3 signalling, we inves-
tigated the interaction of GSK3b with TRAF6 and TAK1. TAK1,
a MAP3K family member41, is a critical transducer molecule
downstream of TRAF6, and the TRAF6–TAK1 axis activates
MAPKs in TLR signalling2,42,43. We first examined by co-
immunoprecipitation experiments whether GSK3b associates
with TRAF6 or TAK1 upon poly I:C stimulation in BMDMS.
The results indicated that GSK3b indeed associates with TRAF6
and/or TAK1 under physiological conditions (Fig. 5a). We next
examined whether TRAF6, GSK3b and TAK1 bind to one
another, forming a ternary complex. To examine this binding,
HEK293T cells were transfected with a Flag-TRAF6 construct
with or without a Myc-TAK1 or HA-GSK3b construct. We
observed that Flag-TRAF6 co-immunoprecipitated with Myc-
TAK1 and HA-GSK3b, indicating that TRAF6 forms a ternary
complex with GSK3b and TAK1 (Fig. 5b). Similarly, we further
confirmed the association of GSK3b with TRAF6 and TAK1 as
well as TAK1 with TRAF6 and GSK3b by cotransfection studies
in mammalian cells (Supplementary Fig. 11a,b). Notably, deletion
of GSK3b prevented association of TRAF6 with TAK1 upon poly
I:C stimulation (Fig. 5c). We also investigated the interaction of
GSK3b with RIP1, an essential mediator of TLR3-induced NF-kB
activation12. Unlike TRAF6 and TAK1, however, RIP1 did not
interact with GSK3b (Supplementary Fig. 12a,b), further
confirming that GSK3b is not involved in NF-kB signalling
mediated by the TLR3–TRIF–RIP1 axis.

TAK1 forms a complex with its adaptor proteins TAB1 and
TAB2. TAB2 bridges TRAF6 to TAK1, allowing TAK1 activa-
tion44–46. We therefore investigated whether GSK3b could
associate with TAB1 or TAB2 and affect the formation of the

signalling complex containing TRAF6, TAK1, TAB1 and TAB2.
In contrast to the GSK3b–TAK1 interaction, there was little
association between GSK3b and TAB1 or TAB2 (Fig. 5d, lanes
3 and 4). However, GSK3b could associate with TAB1 or TAB2 in
the presence of TAK1, indicating that the association of GSK3b
with TAB1 or TAB2 requires TAK1. Notably, forced expression
of GSK3b promotes the association of TRAF6 with the
TAK1–TAB1–TAB2 complex (Fig. 5e, lane 3). Furthermore,
overexpressed GSK3b binds to TRIF, TRAF6 and TAK1 as a
complex (Fig. 5f). Altogether, these results demonstrate that
GSK3b could form a TRIF-assembled signalling complex
containing TRAF6–TAB1–TAB2–TAK1.

TRAF6 is required for ubiquitination of GSK3b. Because
TRAF6 possesses E3 ubiquitin ligase activity47–49, we next
questioned whether GSK3b is ubiquitinated by TRAF6 in TLR3
signalling. We first identified the binding regions between TRAF6
and GSK3b. GSK3b interacted with the TRAF6 (289–530)
derivative containing just the coiled-coil TRAF-N domain and
the conserved TRAF-C domain, whereas the N-terminal ring and
zinc-finger domains of TRAF6 spanning amino acids (aa) 1–289
failed to interact with GSK3b (Supplementary Fig. 13a). On the
other hand, serial deletion constructs of GSK3b revealed that the
N-terminal region spanning aa 1–120 is necessary for TRAF6
interaction (Supplementary Fig. 13b). We next tested whether
GSK3b is ubiquitinated upon poly I:C stimulation in BMDMs
and found that poly I:C triggered polyubiquitination of GSK3b
(Fig. 6a). Furthermore, overexpression of TRAF6 induced GSK3b
ubiquitination (Fig. 6b). In contrast, the catalytically inactive
TRAF6 (C70A) mutant, which has lost its E3 ligase activity, lost
the ability to promote GSK3b ubiquitination (Fig. 6c).
Ubiquitination of GSK3b occurred mainly through K63 linkage
(Supplementary Fig. 14). Unlike TRAF6, NEDD4-1 and TRAF3,
two E3 ubiquitin ligases that catalyse K63 ubiquitination and
function in CD40 and TLR2 signalling, respectively50,51, did not
promoted GSK3b ubiquitination (Supplementary Fig. 15). TRAF6
deficiency markedly decreased ubiquitination of endogenous
GSK3b compared with the ubiquitination of wild-type cells upon
poly I:C stimulation (Fig. 6d). Moreover, TRAF6 induced GSK3b
ubiquitination in vitro (Fig. 6e). These results suggest that TRAF6
is an E3 ubiquitin ligase for GSK3b.

To search for the sites of GSK3b that are responsible for
ubiquitination, we generated a series of full-length GSK3b
variants containing a lysine residue mutation based on mass
spectrometry (MS) analysis (Supplementary Table 1). We
mutated K85, K86, K91 or K183 to arginine and then tested the
susceptibility of these mutants, when expressed ectopically, to be
ubiquitinated by TRAF6. TRAF6-mediated ubiquitination of
GSK3b was substantially reduced when with K183R, but not with
K85R, K86R or K91R (Fig. 6f). Importantly, overexpression of the
GSK3b K183R mutant significantly reduced mRNA expression of
IL-6 and TNF-a as well as c-Fos in a dose-dependent manner
compared with that of the overexpressed wild-type GSK3b
(Fig. 6g). In similar experiments, reconstitution of GSK3b but not
GSK3b (K183R) mutant into Gsk3b� /� MEFs restored the poly
I:C-induced IL-6, TNF-a, IL-10 and c-Fos mRNA expression
(Supplementary Fig. 16a,b) and GSK3b ubiquitination
(Supplementary Fig. 16c).

Because GSK3b (1–120) lacking the K183 residue could bind to
TRAF6 (Supplementary Fig. 13b), we tested whether GSK3b
(1–120) can be ubiquitinated by TRAF6. As expected, GSK3b
(1–120) failed to be ubiquitinated by TRAF6 (Supplementary
Fig. 17). Interestingly, GSK3b (1–120) could act as a dominant-
negative mutant to inhibit poly I:C-induced mRNA expression of
IL-6, TNF-a and c-Fos (Supplementary Fig. 18).
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GSK3b ubiquitination is required for interaction with TRAF6.
In our earlier experiments, we showed that GSK3b, TRAF6 and
TAK1 bind to one another to form a ternary complex (Fig. 5b;
Supplementary Fig. 11a,b) and that GSK3b associates with TRIF,
TRAF6 and TAK1 as a complex (Fig. 5f). Therefore, we tested
whether GSK3b ubiquitination influenced its interaction with
TRIF, TRAF6 and TAK1. Overexpression of the GSK3b K183R
mutant, which is defective in GSK3b ubiquitination by TRAF6,
showed impaired association with TRAF6 compared with the
association of wild-type GSK3b (Fig. 7a). However, the K183R
mutation of GSK3b did not abrogate interactions with TRIF or
TAK1 (Fig. 7b,c), suggesting that GSK3b ubiquitination by
TRAF6 is essential for its interaction with TRAF6. Because either
deficiency or a pharmacological inhibition of GSK3b impaired the
poly I:C-triggered formation of the TLR3 signalling complex
(Fig. 4), we tested whether the GSK3b K183R mutant produced
similar effects. Forced expression of the GSK3b K183R mutant
markedly decreased the association of GSK3b with TRIF, TRAF6
and TAK1 (Fig. 7d; Supplementary Fig. 19), as well as the for-
mation of the TRIF-assembled signalling complex containing
TRAF6, GSK3b and TAK1 (Fig. 7e). Together, our results show
that TRAF6-mediated GSK3b ubiquitination is essential for
TRAF6 interaction, thereby contributing to the formation of the
TRIF–GSK3b–TRAF6–TAK1 complex.

Discussion
In general, TLRs that recognize bacteria induce pro-inflammatory
cytokines, whereas those TLRs that detect viruses trigger the IFN
response2–4. These two responses depend on the engagement of
the major two adaptor molecules, MyD88 (refs 28,29) and
TRIF8,9. All TLRs, with the exception of TLR3, signal through the
MyD88-dependent pathway1,2, whereas TRIF-mediated signalling
includes TLR3 (refs 6,7) and TLR4 (refs 35,36).GSK3b is a crucial
regulator in the balance between pro- and anti-inflammatory
cytokines in MyD88-dependent TLR signalling24, as well as viral-
triggered RLR-mediated activation31. However, how GSK3b
controls TLR3-mediated pro-inflammatory signalling mediated
by TRIF, but not by MyD88, is still unknown. We therefore
examined whether GSK3b is involved in pro-inflammatory
cytokine production in TLR3 signalling and explored the
molecuar basis of GSK3b’s role. We found that GSK3b
selectively regulated the TLR3-mediated activation of ERK and
p38 but not JNK or NF-kB. Notably, the ERK and p38 pathways
were required for the induction of c-Fos, which forms the AP1
complex2,14,38. We also found that GSK3b was incorporated into
a TLR3-assembled multiprotein complex, and its signalling
funtion was regulated by TRAF6-mediated ubiquitination. In
the TLR3-assembled signalling complex, GSK3b undergoes
polyubiquitination, which is dependent on the E3 ligase activity
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of TRAF6, and thereby promotes the formation of the TRIF–
GSK3b–TRAF6–TAK1 complex. Notably, a ubiquitination-
defective GSK3b mutant acts as a dominant-negative form of
GSK3b regarding the induction of pro-inflammtory cytokines, as
well as c-Fos. The present study establishes an important role for
GSK3b in poly I:C-triggered inflammatory cytokine production
and provides a mechanistic explanation for how the TRAF6–
GSK3b axis selectively regulates TLR3 signalling.

In addition, we found that GSK3b in TLR3 signalling had a
positive role in regulating the production of TBK1-mediated type
I IFN-b. Similar to our results, it was previously shown that
GSK3b functions in RLR-mediated IFN-b production by
promoting TBK1 and IRF3 activation31, suggesting that the
IFN-b production triggered by TLR3 and RLRs share a common
pathway that converge upon TBK1, which is regulated by GSK3b
through its kinase activity-independent mechanism. Among
TRAF family members, TRAF3 positively regulates IRF3 and
IFN-b response through TRIF interaction10,52. Therefore, it is
likely that the TRAF6–GSK3b axis controls MAPK signalling and
c-Fos expression by TLR3, while the TRAF3–GSK3b–TBK1 axis
regulates IRF3 activation and IFN-b induction. Indeed, we found
that GSK3b interacts with TRAF3 (Supplementary Fig. 20a).
Furthermore, GSK3b can form a complex containing TRIF,
TRAF3 and TBK1 (Supplementary Fig. 20b).

Interestingly, GSK3b differentially regulates TLR-induced
signalling. Our results have demonstrated that GSK3b regulates
TLR3- and TLR4-mediated MAPK activation but is not required
for TLR2 signalling53–55. Because TLR-mediated responses are
controlled mainly by the MyD88-dependent pathway2,28,29,
which is used by all TLRs except TLR3, and the TRIF-
dependent pathway8,9,30, which is used by TLR3 and TLR4

(refs 35,36), we propose that GSK3b selectively regulates TRIF-
dependent MAPK activation. Our results also showed that GSK3b
differentially regulates TLR3- and TLR4-mediated MAPKs
signalling. GSK3b was required for ERK and p38 pathway
activation downstream of TLR3, and for the JNK and p38
pathway activation downstream of TLR4. It is probable that
endosomal TRIF signalling complexes downstream of TLR3 and
TLR4 are not identical, and differences in their signalling
potentials correlate with their ability to selelctively engage
GSK3b and thereby dictate downstream MAPK activation. In
TRIF-dependent TLR3 signalling, TRIF directly recruits TRAF6
and RIP1, which work cooperatively to activate TAK1, eventually
leading to activation of NF-kB and AP1 (refs 11,39,40). In the
case of TLR4 stimulation, the initial step of TRIF signalling is
mediated through an adaptor TRAM56,57. Internalized TLR4
recruits TRAF6 to the endosome via TRAM–TRIF58,59.
Consequently, TRAF6 and RIP1 mediate the TRIF-induced
activation of MAPKs and NF-kB, respectively39,40. In this
regard, the TRIF-assembled signalling complex of TLR3 or
TLR4 formed in different ways, and this may have accounted for
the differential regulation of GSK3b in MAPK activation.
Although the exact mechanisms of the GSK3b-mediated
differential activation of MAPKs in the TLR3 and TLR4
signalling pathways require further investigations, our study
suggests that GSK3b selectively regulates TRIF-dependent MAPK
activation pathways.

Phosphorylation by GSK3b results in activation or inhibition
of many its substrates18,20,21. Our results have demonstrated that
the kinase activity of GSK3b is required for its ability to induce
inflammatory cytokine production. These findings suggest that
kinase activity of GSK3b in TLR3–TRIF signalling complex is
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involved in the cytokine production. Indeed, we found that
Ser/Thr phosphorylation of TRAF6 was enhanced in control cells
after poly I:C stimulation compared with that in the knockdown
of GSK3b (Supplementary Fig. 21), suggesting that TRAF6 might
be a candidate among GSK3b substrates. Alternatively, it has
been recently reported that Bruton’s tyrosine kinase is required
for the production of inflammatory cytokines in TLR3-stimulated
macrophages60, suggesting that Bruton’s tyrosine kinase acts in
TLR3/TRIF signalling. Further studies will be required for
characterizing GSK3b substrate(s) in the TLR3–TRIF complex.

TRAF6, as an E3 ubiquitin ligase, is known to be a common
signalling adaptor for cytokine production in response to various
TLR ligands61,62. TRAF6 can ubiquinate itself on lysine 63, and
TRAF6 autoubiquitination in turn recruits mediators for the
activation of downstream MAPKs and NF-kB signalling
pathways2,48,63. TRAF6 mediates both MyD88-dependent and
TRIF-dependent activation of NF-kB and AP1. In MyD88-
dependent and TRIF-dependent TLR signalling, ubiquitinated
TRAF6 serves as a signalling scaffold to recruit TAK1 via TAB2
and TAB3 (refs 11,45,46,64). The TAK1 signalling complex,
including TRAF6–TAB2–TAB3–TAB1–TAK1 is subsequently
released into the cytosol, where TAK1 activates MAPK
cascades43,46,64. Although TRAF6 appears to be a common
factor employed by MyD88- and TRIF-dependnent signalling, it
is probable that a specific signalling partner, substrate or other
signalling protein(s) in each signalling complex is needed for
signalling specificity or fine tuning of signalling. In this regard, we
have now demonstrated that GSK3b underwent K63 chain
ubiquitination. TRAF6 was found to be a direct E3 ligase for
GSK3b and was essential for GSK3b ubiquitination, TRIF-
assembled signalling complex formation and pro-inflammtory
cytokine production upon TLR3 stimulation. This mechanism
involves the TLR3-induced assembly of a multiprotein complex
containing TRIF, TRAF6, TAB1, TAB2, TAK1 and GSK3b.
Complex assembly resulted in TRAF6 autoubiquitination and
activation, which led to K63-linked ubiquitination of GSK3b.
Ubiquitinated GSK3b promoted a multiprotein-assembled
signalling complex, where TAK1 and its subordinate MAPKs
are activated. Notably, during IL-1 and receptor activator of
nuclear factor-kB ligand signalling, TRAF6 autoubiquitination
was dispensable for both interaction with and activation of the
TAK1 signalling complex65. It has been suggested that TRAF6-
mediated K63-linked ubiquitination instead targets relevant
protein substrates during activation63,64. Accordingly, we
propose that TRAF6 mediates the K63-linked ubiquitination of
GSK3b, which would form a signalling complex sufficient to meet
activation thresholds and/or to generate signalling specificity. It
should be noted that TRAF6-mediated GSK3b ubiquitination
proceeds through a two-stage mechanism. This mechanism
involves an initial interaction prior to ubiquitination between
TRAF6 and GSK3b. The interaction of TRAF6 (through a coiled-
coil TRAF-N domain and a conserved TRAF-C domain) with
GSK3b (through a N-terminal region spanning aa 1–120) may
lead to K63-linked ubiquitination of GSK3b by E3 ligase activity
of TRAF6. We thus propose that GSKb is a novel TRAF6
substrate downstream of TLR3. The establishment of a regulatory
role for GSK3b in TLR3-mediated signalling contributes to the
elucidation of the complicated molecular mechanisms of
inflammatory and antiviral responses.

Methods
Cell culture and transfection. MEFs from Gsk3bþ /þ and Gsk3b� /� mice were
kindly provided by Dr J. Woodgett (Ontario Cancer Institute, Toronto, ON,
Canada). 3T3 cell lines from Traf6þ /þ and Traf6� /� mice were established in
culture from E14.5 embryos using a standard 3T3 protocol66. HEK293-TLR3 stable
cell lines were obtained from Dr I.H. Choi (Yonsei University College of Medicine,

Seoul, Republic of Korea). Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Hyclone, Logan, UT, USA) supplemented with 10% (v/v) fetal
bovine serum (FBS, Hyclone), 100 units ml� 1 penicillin (Hyclone) and
100 mgml� 1 streptomycin (Hyclone). Murine BMDMs were obtained from the
femurs of 8–10-week-old C57BL/6 male mice. Bone marrow cells were flushed out
from the bone marrow cavity, suspended in DMEM supplemented with 20% (v/v)
FBS. After 1 day, non-adherent cells were cultured in the presence of 10 ngml� 1

recombinant human macrophage colony-stimulating factor (R&D Systems,
Minneapolis, MN, USA). After 7 days, a homogeneous population of adherent
macrophages was obtained. To generate the GSK3b knockdown RAW264.7 stable
cell lines, non-targeting control and GSK3b shRNA (50-CATGAAAGTTAGCA
GAGATAA-30) plasmid constructs were purchased from Sigma (St Louis, MO,
USA). RAW264.7 cells were transfected with either a non-targeting control or
GSK3b shRNA plasmids using a Microporator MP-100 (Invitrogen, Carlsbad, CA,
USA) and then selected in DMEM supplemented with 10% (v/v) FBS containing
4 mgml� 1 puromycin (Sigma) for 2 weeks. HEK293T cells and HEK293-TLR3
cells were transfected with the indicated plasmids for 36 h using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s protocol. Non-targeting control
siRNA (sc-37007) and c-Fos siRNA (sc-29222) were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). GSK3a siRNA (50-AAAGCGTCAGTCGG
GGCTATGTT-30) and GSK3b (50-ACACGAAAGTGATTGGAAATT-30) siRNA
were synthesized by Genolution (Seoul, Republic of Korea). For transient
transfection of siRNA, cells were transfected with either a non-targeting control
or target-specific siRNA duplexes for 36 h using a Lipofectamine RNAiMAX
(Invitrogen) according to the manufacturer’s protocol.

Reagents and antibodies. TLR3 agonist poly I:C, SB216763, BAY 11-7085,
PD98059 and SB203580 were purchased from Sigma. Antibodies specific to
phospho-GSK3a/b (S21/S9, 9331, dilution 1:1,000), phospho-ERK (T202/Y204,
4370, dilution 1:1,000), phospho-JNK (T183/185, 9251, dilution 1:1,000), phospho-
p38 (T180/Y182, 9215, dilution 1:1,000), phospho-p65 (S536, 3031, dilution
1:1,000), GSK3b (9315, dilution 1:1,000) TAK1 (4505, dilution 1:1,000), ERK
(4695, dilution 1:1,000), JNK (9258, dilution 1:1,000), p38 (8690, dilution 1:1,000),
p65 (8242, dilution 1:1,000), ATF2 (9226, dilution 1:1,000) and c-Jun (9165,
dilution 1:1,000) were purchased from Cell Signaling Technology (Beverly, MA,
USA). Antibodies specific to TRAF6 (sc-7221, dilution 1:1,000), c-Fos (sc-7202,
dilution 1:1,000), haemagglutinin (HA) (sc-7392, dilution 1:1,000), Myc (sc-40,
dilution 1:1,000), glutathione S-transferase (GST) (sc-138, dilution 1:1,000), TBP
(sc-204, dilution 1:1,000), ubiquitin (sc-8017, dilution 1:1,000), b-actin (sc-87778,
dilution 1:1,000), a-tubulin (sc-58666, dilution 1:1,000) and GAPDH (sc-87724,
dilution 1:1,000) were from Santa Cruz Biotechnology. A GSK3a/b-specific anti-
body (44–610, dilution 1:5,000) was purchased from Invitrogen, and a RIP1-
specific antibody (610459, dilution 1:2,000) was purchased from BD Pharmingen
(San Diego, CA, USA). A Flag-specific antibody was purchased from Sigma (F3156,
dilution 1:5,000), and horseradish peroxidase (HRP)-conjugated secondary
antibodies were obtained from Thermo Fisher Scientific (Waltham, MA, USA).

Plasmid constructs. Wild-type GSK3b plasmid was obtained from Dr J.K. Chung
(Seoul National University, Seoul, Republic of Korea). To generate the various
GSK3b (K85R, K86R, K91R and K183R) mutants, site-directed mutagenesis was
performed by PCR. DNA fragments encoding the GSK3b and various deletion
mutants were prepared by PCR and cloned into the pEGFP-N3 and pEBG
expression vectors. The wild-type GSK3a plasmid was provided by Dr J. Woodgett.
Wild-type and mutant TRAF6, TAB1 and TAB2 plasmids were described pre-
viously65. The wild-type TAK1 plasmid was a gift from Dr T. Ishitani (Kyushu
University, Fukuoka, Japan). Wild-type ubiquitin plasmid was provided by Dr J.H.
Seol (Seoul National University), and the wild-type TRIF plasmid was obtained
from Dr W.S. Ryu (Yonsei University, Seoul, Republic of Korea).

Immunoprecipitation and western blot analysis. Cells were washed with cold
PBS (Hyclone) and lysed with lysis buffer (50mM Tris-HCl, pH 8.0, 150mM NaCl,
0.5% deoxycholate acid, 1% NP-40) containing phosphatase and protease inhibi-
tors. For immunoprecipitation, lysates were incubated with the indicated primary
antibodies at 4 �C for 16 h, and were further incubated with protein A-agarose
(Millipore, Billerica, MA, USA) at 4 �C for 1 h with gentle shaking. After washing
five times with lysis buffer, immunoprecipitated proteins were boiled with 2� SDS
loading buffer, and separated on SDS–polyacrylamide gel electrophoresis (PAGE)
and electrophoretically transferred to polyvinylidene difluoride membranes
(Millipore). Membranes were blocked with 5% BSA in Tris-buffered saline
containing 0.1% Tween-20 and were immunoreacted with the indicated primary
antibodies and secondary antibodies conjugated to HRP. Images have been
cropped for presentation. Full-size images of all western blots are provided in
Supplementary Fig. 22.

Enzyme-linked immunosorbent assay. To measure mouse IL-6, TNF-a and
IL-10 levels, BMDMs were preincubated with the indicated inhibitors and then
stimulated with or without 10 mgml� 1 poly I:C for 20 h. Cell culture supernatants
were assessed using ELISA kits from R&D Systems according to the manufacturer’s
instructions.
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Real-time PCR analysis. Total RNA was extracted from cells using the TRIzol
reagent (Invitrogen) and reverse transcribed to complementary DNA using the
Superscript cDNA synthesis kit (Invitrogen) following the manufacturer’s
instructions. Real-time PCR analysis was performed using the KAPA SYBR green
FAST qPCR kit (Kapa Biosystems, Boston, MA, USA) on an ABI 7300 real-time
PCR machine (Applied Biosystems, Foster City, CA). Samples were analysed in
triplicate and normalized to b-actin mRNA expression. Primer sequences are listed
in Supplementary Table 2.

Cytosolic and nuclear fractionation. Cells were lysed with cytosolic extraction
buffer (10mM HEPES, pH 7.4, 10mM KCl, 1.5mM MgCl2, 0.5M dithiothreitol,
0.05% NP-40) containing protease inhibitors. After centrifugation at 8,000 r.p.m.
for 5min at 4 �C, supernatants were collected for the cytosolic fraction. Pellets were
washed with cytosol extraction buffer and then lysed with nuclear extraction buffer
(5mM HEPES, pH 7.4, 300mM NaCl, 1.5mM MgCl2, 0.2mM EDTA, 25%
glycerol) containing protease inhibitors. After incubation on ice for 30min, the
nuclear fraction was obtained by centrifugation at 14,000 r.p.m. for 30min at 4 �C.

In vivo ubiquitination assay. The in vivo ubiquitination assay was performed
as previously described67. Briefly, cells were lysed with SDS lysis buffer (50mM
Tris-HCl, pH 6.8, 150mM NaCl, 10% glycerol, 1% SDS) containing protease
inhibitors. After boiling for 5min, lysates were diluted 10-fold with dilution
buffer (10mM Tris-HCl, pH 8.0, 150mM NaCl, 2mM EDTA, 1% Triton
X-100) containing protease inhibitors and incubated at 4 �C for 30min. After
centrifugation at 20,000 r.p.m. for 30min at 4 �C, supernatants were subjected
to immunoprecipitation with the indicated antibodies.

In vitro ubiquitination assay. The GSK3b protein was obtained from Invitrogen
(cat # PV3365) and the Flag-TRAF6 protein was purified as previously described68.
Briefly, HEK293T cells transfected with Flag-TRAF6 for 48 h were lysed in a lysis
buffer (10mM Tris-HCl, pH 7.5, 10mM NaCl, 1.5mM MgCl2) containing protease
inhibitors and immunoprecipitated with an anti-Flag affinity gel (Sigma) for 16 h at
4 �C. Immunoprecipitates were washed and eluted with 300mgml� 1 Flag peptide
according to the manufacturer’s instructions. The in vitro ubiquitination assay was
performed as previously described with minor modifications67. Briefly, 5 nM Flag-
TRAF6 and 1 mM GSK3b protein were mixed with 100 nM His-E1, 1 mM His-E2
(Ubc13/Mms2) and 2.5 mM Bt-Ub in 50 mM ubiquitination reaction buffer from the
ubiquitination kit (Enzo Life Sciences, Farmingdale, NY, USA) according to the
manufacturer’s instructions. Samples were subsequently immunoprecipitated with
an anti-GSK3b antibody and separated on SDS–PAGE followed by streptavidin
conjugated to HRP (Thermo Fisher Scientific).

GSTpull-down assay. Cells were washed with cold PBS and lysed with lysis buffer
(20mM HEPES, pH 7.4, 150mM NaCl, 150mM KCl, 10mM EDTA, 10% glycerol,
1% NP-40) containing phosphatase and protease inhibitors. Whole-cell lysates
were incubated with glutathione-sepharose 4B (GE Healthcare, Piscataway, NJ,
USA) at 4 �C for 3 h with gentle shaking. After washing three times with lysis
buffer, proteins were boiled with 2� SDS loading buffer.

Native PAGE assay. For detection of IRF3 dimerization, Gsk3bþ /þ and
Gsk3b� /� MEFs stimulated with 10mgml� 1 poly I:C for 1 h were lysed in a lysis
buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, 0.5% NP-40) containing protease
inhibitors. After centrifugation at 20,000 r.p.m. for 10min, supernatants were
mixed with 2� native sample buffer (100mM Tris-Cl, pH 6.8, 30% glycerol and
2% deoxycholate). Gels (7.5%) (without SDS) were pre-run with 25mM Tris and
192mM glycine, pH 8.3, with and without 1% deoxycholate in the cathode and
anode chamber, respectively, for 1 h at 10mA and 4 �C. Subsequently, samples
were applied to the gel and electrophoresed for B1 h at 20mA and 4 �C and
transferred to polyvinylidene difluoride membranes (Millipore) for 1 h at 270mA
and 4 �C.

Luciferase assay. RAW264.7 cells were transiently transfected with pGL3-Basic or
pGL3-NF-kB-luc along with pRL-TK-renilla luciferase plasmids. HEK293-null or
HEK293-TLR3 cells were transiently transfected with pGL3-NF-kB-luc and
pRL-TK-renilla luciferase along with pEGFP-N3 or pEGFP-N3-GSK3b plasmids.
After 24 h transfection, cells were stimulated with 10 mgml� 1 poly I:C for 4 h and
luciferase activity was measured with the Dual-Luciferase Reporter Assay System
(Promega, Madison, WI, USA) according to the manufacturer’s instructions.
Samples were analysed in triplicate and normalized to renilla luciferase activity.

Mapping of ubiquitination sites on GSK3b. For identification of ubiquitination
sites on GSK3b, HEK293T cells were transfected with HA-tagged GSK3b expres-
sion plasmids for 36 h. Cells were lysed with lysis buffer (20mM Tris-HCl, pH 7.4,
1% SDS), boiled for 5min, sonicated and then diluted 10-fold with NP-40 lysis
buffer (20mM Tris-HCl, pH 7.4, 150mM NaCl, 2mM EDTA, 1% NP-40). After
centrifugation at 15,000g for 15min, the lysates were incubated with 120ml of anti-
HA Agarose (Thermo scientific) at 4 �C overnight with rotation. The beads were

washed four times with NP-40 lysis buffer and eluted with 2� SDS–PAGE sample
buffer without a reducing agent. HA-GSK3b proteins eluted from the beads were
subjected to SDS–PAGE followed by Coomassie Blue staining or western blot
analysis. For MS analysis, gel bands from the Coomassie Blue stained-gel were
excised and subjected to trypsin digestion and liquid chromatography–MS/MS.
MS/MS data were analysed using SEQUEST (Thermo Finnigan, San Jose, CA)
software to identify ubiquitin modification with the GG or LRGG remnant tag on
lysine residues of GSK3b.

Statistical analysis. Data are presented as the mean±s.d. from at least three
independent experiments. Statistical significance was determined using Student’s
t-test.
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