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Complete information acquisition in
dynamic force microscopy
Alexei Belianinov1, Sergei V. Kalinin1 & Stephen Jesse1

Scanning probe microscopy has emerged as a primary tool for exploring and controlling the

nanoworld. A critical part of scanning probe measurements is the information transfer from

the tip–surface junction to the measurement system. This process reduces responses at

multiple degrees of freedom of the probe to relatively few parameters recorded as images.

Similarly, details of dynamic cantilever response at sub-microsecond time scales, higher-order

eigenmodes and harmonics are lost by transitioning to the millisecond time scale of pixel

acquisition. Hence, information accessible to the operator is severely limited, and its selection

is biased by data processing methods. Here we report a fundamentally new approach for

dynamic Atomic Force Microscopy imaging based on information–theory analysis of the data

stream from the detector. This approach allows full exploration of complex tip–surface

interactions, spatial mapping of multidimensional variability of material’s properties and their

mutual interactions, and imaging at the information channel capacity limit.
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T
he rapid emergence of Scanning Probe Microscopy (SPM)
techniques in the last three decades opened a new chapter
in nanoscale exploration and manipulation by thousands

of research groups worldwide1,2. The basic premise of
SPM—a combination of localized, often atomic sized, probe
and a detection system linking it to the macroscopic world
allowed information on electronic3, mechanical4, magnetic5,
electrostatic6,7 and electromechanical8–10 properties to be
visualized at nanometre scales and in some cases with atomic
resolution. In a broader sense, SPM imaging can be represented as
an information channel11 between the dynamic processes at the
tip–surface junction and an observer via a data acquisition and
processing system that convey the information on local properties
and structure as probed through the tip–surface interactions.
Correspondingly, progress in SPM techniques requires a synergy
of improvements on multiple fronts, including microscope
platforms, probes and the data acquisition process.

In the last three decades, much attention has been focused on
the development of low noise microscope platforms and high-
quality probes, minimizing noise in the data acquisition process.
Similarly, magnetic or chemical probe functionalization has been
developed to allow for increased selectivity towards chosen
interactions. However, relatively little effort has been devoted to
improvements in information transfer. Indeed, the fundamental
component of all force-based dynamic Atomic Force Microscopy
(AFM) methods is the nexus between data processing electronics
operating at millisecond time scales of pixel acquisition, and the
sub-microsecond scale of cantilever oscillations. In such a
process, multidimensional dynamic information of a vibrating
cantilever is severely compressed to only several measured
parameters. While for linear systems such representation is
justified, real-world complications include distributed response of
cantilever, as well as mode couplings, non-linearities and
response transients. All of these contain detailed information
on local sample properties that cannot be ignored or effectively
compressed. The amount and quality of information obtained
hence depends not only on the resolution of the microscope, but
also internal distortions and channel noise during the informa-
tion flow. Furthermore, the choice of information conversion
scheme imposes the external observer bias on recorded data, for
example, heterodyne detection in classical lock-in (LI) and phase-
locked loop processing inevitably restricts physics of tip–surface
interactions to purely sinusoidal processes.

Notably, this limitation is recognized by the AFM community,
and numerous techniques based on the detection of higher
harmonics12,13 and full force–distance curve measurements are
being introduced to fully capture behaviour of a tip–surface
interactions. The advantage of multiple modulation techniques
have further extended the spectrum of these methods14. However,
in all cases the detected signal contains multiple harmonics of
response, at different time scales, from which materials-specific
interactions can be reconstructed only with complex inversion
procedures15,16. Furthermore, the serendipitous information
in transient responses and single events, generally remains
unrecognized and ignored.

Here we introduce a novel principle for information acquisi-
tion and processing in dynamic AFM techniques, further referred
to as general mode (G-mode) SPM, based on information–theory
analysis of the cantilever output stream. This approach is based
on full acquisition of the cantilever position data during an
experiment and subsequent multivariate statistical analyses of the
full trajectory data set, yielding statistically relevant components
of response and their spatial variability. This approach allows one
to examine and store only statistically relevant components of
cantilever response and hence materials functionality, further
enabling the interplay between spatial resolution and noise levels.

Having access to the full response data allows statistical
explorations of the internal structure of the response in the
frequency and information spaces using multivariate methods
based on Principal Component Analysis (PCA). When dominant
behaviour types are established, tools including two-dimensional
(2D) correlation functions can: quickly identify underlying
sources of observed behaviour; establish relationships between
different responses; and enable further physics based data
exploration in an objective and unbiased manner.

Results
Full information analysis in dynamic AFM. As a basic paradigm
of G-mode AFM we employ the concept of the multivariate
analysis of the full cantilever response. The cantilever is driven by
a suitably chosen excitation signal corresponding to conventional
single frequency, dual frequency, band excitation or more com-
plex excitation modes. However, unlike the heterodyne or parallel
heterodyne processing in the classical AFM, in G-AFM the full
response of the cantilever is captured and stored for each pixel
and subsequently analysed and compressed for long-term storage.
By ‘full response’ we imply that practically any available degrees
of freedom, or information streams, can be recorded simulta-
neously on multiple channels. These can include vertical
response, lateral response, and current. Stored data is then dec-
orrelated, simplified and processed using appropriate multivariate
methods and resulting data sets are visualized and analysed.

Here we demonstrate G-mode AFM analogous to a standard
intermittent (or tapping mode) AFM realized for simple
sinusoidal driving. As a model material system we have chosen
a spin-coated thin polymer film on mica consisting of 1:1 ratio of
polystyrene and polycaprolactone. Additional experimental
details can be found in the Methods section below. The
corresponding surface topography and tapping mode amplitude
and phase responses of the sample are shown in Fig. 1a–c. For
G-mode, a separate data capturing software package was
developed using Matlab and LabView, with all data post-
processing performed in Matlab. Typically G-mode data were
collected over 256 or 512 lines in the slow scan direction and
continuous data collection within a line in either the trace or
retrace direction. Typical raw data file sizes in G-mode for the
conditions given above range from 4 to 8GB, with an acquisition
time per image ofB18min. Here the microscope was operated in
NAP (also known as interleave or lift mode, more details given in
the Methods section) mode; the data was only captured during
one of the four passes. Following the multivariate analysis and
information-preserving compression, the data sets can be saved in
the form of statistically relevant components typically ranging to
the first thousand principal components, although depending on
the system and imaging mode, further compression may be
possible. Below, we discuss information processing of the full data
set and discuss long-term storage later.

When acquired and stored, the full response data can be
initially processed in a manner similar to conventional AFM. For
example, the magnitude of the ratio of the Fast Fourier Transform
(FFT) of response to the FFT of the input signal at a given
frequency (for example, driving frequency) produces cantilever
response amplitude and phase similar to amplitude and phase
images in conventional, LI amplifier-based AFM17. In addition,
the full data set can be analysed and compressed using
multivariate statistical methods, the underlying paradigm of
G-mode AFM. Figure 1d illustrates the two archetypes, the top
row of the schematic shows typical LI-based imaging, where both
input and output signals to the cantilever produce only a single
data point per pixel that has been averaged over the time constant
of the amplifier. The bottom row depicts the G-mode approach,
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where the output waveform is stored in its entirety at each pixel
allowing access to multiple cantilever modes and harmonics in
their pure state, without mixing and scrambling or averaging and
information loss. Note that the results of classical and G-mode
analyses can be compared directly, as will be explored later.

Analysis flow. To systematically explore the full information
contained in the tip–surface interaction, we apply multivariate
statistical analysis to the cantilever response, to extract statistically
significant contributions to the signal, organize them in the order
of statistical significance, analyse intrinsic correlations and com-
press for long-term storage. The complete oscillation waveform is
sliced into sequential time segments. In the simplest case, each
segment is selected to match the spatial pixel time; however, the
length can be varied allowing for multiresolution imaging (we
refer to this as effective pixel). Thus obtained three-dimensional
(3D) data set is decomposed in ordered statistically significant
components through PCA9,18–21. In PCA, defined by equation
(1), a spectroscopic data set of N�M pixels populated by spectra
containing P points is represented as a superposition of the
eigenvectors wj,

Ai tj
� �

¼ aikwk tj
� �

; ð1Þ

where aik�ak(x, y) are expansion coefficients at each pixel,
Ai(tj)�A(x, y, tj) is the time dependence of cantilever response at
selected spatial pixel, and tj are the discrete temporal points at
which response is measured. The eigenvectors wk(t) and the
corresponding eigenvalues lk are calculated with a covariance
matrix, C¼AAT, where A is the matrix of all experimental data

points Aij, that is, the rows of A correspond to individual grid
points (i¼ 1,...,N�M), and columns correspond to cantilever
deflection over the time of that particular pixel, (j¼ 1,...,P). Here
note that the eigenvectors can be either plotted in time domains, or
for convenience transferred into the Fourier domain. Since both
PCA and FFT are linear operations, the FFT and PCA (before
truncating of expansions) are commutative and hence eigenvectors
can be explored in either time or frequency domains. The
eigenvectors wk(t) are orthogonal and are chosen so eigenvalues
are placed in descending order, l14l24..... Hence, the first
eigenvector w1(t) contains the most information (where
information is defined as variance) within the spectral-image
data set; the second contains the most ‘informative’ (varying)
response after the subtraction of the first one and so on. In this
manner, the first p maps, apk(x, y), contain the majority of
information within the 3D data set, while the remaining P–p sets
are dominated by noise.

Shown in Fig. 2 is the result of PCA performed on a G-mode
data set of the same area presented in Fig. 1. In Fig. 2, top
row illustrates loading maps for the first four components.
Additional components and their loadings can be found in the
Supplementary Figs 1, 2 with a more in depth background
discussion in the Supplementary Note 1 and first 50 eigenvectors
with loadings in the Supplementary Movie 1. The corresponding
eigenvectors in the Fourier domain are shown in the bottom row,
with inserts being the real space eigenvectors and selected real
space zoomed in regions. It is clear that the first two PCA
components are dominated by the information that is similar to
the real and imaginary at the driving frequency shown in Fig. 1.
This conclusion is corroborated by the first two eigenvectors that
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Figure 1 | G-mode compared to lock-in-based imaging. (a–c) Images collected over a single tapping mode scan with the feedback maintaining a set-point

amplitude. (a) Single-frequency topography. (b) Single-frequency amplitude. (c) Single-frequency phase. (d) Lock-in and G-mode signal processing

paradigms, lock-in integrates the mixed input/output signal over the time constant producing a single value (D.C. bias); G-mode captures the entire raw

signal from the photodetector at each pixel, allowing different parameter map reconstruction.
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show an approximately five order of magnitude stronger response
at 73 kHz, that is, driving frequency. Here we note that for the
simple harmonic oscillator model the first and second PCA
components will be the sinusoidal signals shifted by 90� (since
eigenvectors are orthogonal), hence corresponding to X and Y
lock-in signals. Correspondingly, all other PCA components
convey information beyond a single linear SHO response. For
example, third and fourth eigenvectors in real space show
characteristics of transient modulation behaviour attributed to
the transients of cantilever oscillations induced by topography,
that is, error in the feedback loop (note characteristic responses
on the edges of topographic features).

Note the richness of the output signal elucidated by the
Eigenvectors and corresponding loading maps, typically com-
pletely ignored in standard LI and PLLs. The driving frequency at
73 kHz, second cantilever mode at 435 kHz and third mode at
1.2MHz are clearly present in all eigenvectors. These are visible
as a result of thermal excitation and broad-band excitation
resulting from tip–surface impact during tapping. In addition,
harmonics of the driving frequency are present as well, along with
mixed harmonic components. Digital LI calculations at those
frequencies are trivial and are available from a single data set,
providing readily available LI-like information at any frequency,
examples are provided in Supplementary Figs 2, 3 as well as a
Supplementary Movie 2.

An immediate advantage of collecting and storing an entire
spectrum at each pixel location is the ability to inspect the sample
response at each frequency response separately. As has been
shown in Fig. 2, the PCA eigenvectors indicate that even though
the cantilever is driven at a single frequency, the response is rich
with harmonics and higher modes. Fig. 3c,f illustrate what the
response is at the second and third cantilever modes located at
435 kHz and 1.2MHz, marked by red vertical lines. Fig. 3a,b,d,e
are the corresponding simulated LI measurements at those
response frequencies with the input frequency being the driving,
at 73 kHz. While at 1.2MHz there’s very little to no contrast, at
435 kHz, the signal is very strong and easily mapped. This

information is invaluable for systems with behaviours occurring
at different time scales.

We further proceed to analyse the spatial information present in
the G-mode and frequency-dependent LI images. To quantify the
contrast as the measure of spatially dependent signal, we calculate
the radially averaged correlation function C(r) of images. By
definition, C(0)¼ 1. Here in the presence of discernible features the
correlation function will have a long-range tail, whereas images
populated by noise have rapidly decaying C(r), in the limit of
random noise C(r40)¼ 0. Fig. 4c illustrates the radial auto
correlation function results for PCA produced images as a function
of eigenvector, C(r, n). Note that the first three components contain
discernible spatial features, whereas subsequent components
contain either very short-range features (for example, topographic
edges and so on) or are noise dominated. We pose that short-range
features can be detected by exploring the correlations between the
outliers of the image, but defer detailed analysis for future studies.
Surprisingly, some of the senior components contain long-range
correlations as well, as can be confirmed by visual inspection of the
loadings maps. However, the full information is now contained in a
relatively small number of modes.

Similar analysis for multifrequency LI is illustrated in Fig. 4a.
In this case, the images with large scale features are clearly
centred on the driving frequency and cantilever eigenmodes.
However, the number of images containing this information is
extremely large, and the information is spread over a large
number of images and frequencies.

We further proceed to explore the correlation between
information contained between the G-mode and LI images, as
depicted in Fig. 4b. To establish the similarity between mages, we
use a cross-correlation coefficient defined in equation (2) as

r ¼
Pn

i¼0

Pm
i¼0 Amn � �Að Þ Bmn � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0

Pm
i¼0 Amn � �Að Þ2

� � Pn
i¼0

Pm
i¼0 Bmn � �Bð Þ2

� �r ;

ð2Þ
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Figure 2 | Principal Component Analysis (PCA) loadings and eigenvectors as power density spectra and in real space. (a) Loading for the first
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where A and B are input images and �A and �B are the 2D mean
values of those images. The returned value r is the correlation
coefficient between the two compared images and has a value of 1
to � 1; where 1 means images correlate perfectly and � 1 implies
they are anticorrelated. Correlation coefficient of 0 suggests that
images are independent.

Results for the PCA loadings self-correlation are shown in
Fig. 4d. These are the self-correlated loadings for each of the first

50 eigenvectors. Note that most of the off-diagonal elements are
close to zero, suggesting that information in G-mode images is
largely complementary and hence it allows for optimal repre-
sentation of relevant features. For LI images, the correlation
matrix is much more densely populated, Fig. 4e, suggesting that
similar information is distributed over multiple images, inher-
ently decreasing S/N ratio of individual images and hindering
interpretation. Finally, the cross-correlation between G-mode and
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LI images are shown in Fig. 4b. Here the broad swaths of weak
correlation peak in localized intensive peaks of excellent
correlation and anticorrelation. In addition to identifying areas
of interest and signal interplay in signal origins, these types of
maps may hint at relative contributions of each of the frequencies
to the response seen in PCA.

Finally, G-mode AFM allows the analysis of the relevant
information distribution in the combined frequency and
information space. Figure 5a is a 2D representation of the FFT
of the first one thousand eigenvectors (on the ordinate) plotted
versus frequency (on the abscissa). The white background is set to
the baseline noise average, so any pixels appearing are above the
noise floor. The thickest vertical lines are three cantilever modes
captured, with additional thinner lines being the harmonics of
those modes. For the first 200 or so eigenvectors all the responses
are highly pronounced and clear, those are the eigenvectors that
contain variance related to the tip–surface interaction. Past 500,
there are only faint traces of the response and after 700;
information related to the cantilever vibrational modes is no
longer available. Insets in the Fig. 5a highlight intricate doubling
in the response of the vibrational modes, which we attribute to
the statistics of single events and associated transients during
imaging. A different metric of information relevance in PCA
components is a Scree plot, (log–log plot of variance versus
eigenvector number shown in Fig. 5b), which shows the amount
of variance in each eigenvector and is obtained during the PCA
analysis. In Fig. 5b three lines represent different driving
amplitudes for the G-mode method. The blue line labelled SF
(single frequency) is the case of tapping amplitude of G-mode
matching that of the microscope in standard AM–AFM operation
(condition at which all presented data were collected). The red
and green lines represent amplitude under drive and over drive,
respectively. The figure illustrates that for these driving modes the
information level past the hundredth eigenvector the slope of the
line becomes constant before decreasing even further, signifying a
significant drop in the information content.

In addition to providing insight into non-trivial information
physics of data acquisition in dynamic AFM, this approach
provides information on the limits of (loss less) information
compression in G-mode. By definition, in PCA the number of
eigenvectors has to be the same as the number of input spectra, as
the method preserves the data and is reversible, which in the case
of a 256 by 256 image should be the 2562; but since only the first
700 or so contain relevant information, only those 700 should be
extracted and stored—allowing for low loss, and noise filtered,
information compression by (in this case) almost two orders of
magnitude. In other words, a 4GB temporary file can be stored

permanently at 40MB containing essentially the same information
(with some noise removed). At the same time, this analysis
illustrates that statistically complete unbiased information requires
these 700 components, not single-digit number of images.

Information content in response components. We note that
complete loss-less information storage enabled by G-mode allows
for detailed exploration of data in frequency and spatial domains.
As an example of such analysis, we here introduce multi-
resolution imaging. Since each spatial pixel is now associated with
a frequency response vector, the signal-to-noise (and/or fre-
quency resolution) of the vector can be sacrificed to obtain higher
spatial resolution. For example, if the original image is recorded at
256� 256 pixels with 16,384 data points sampling the temporal
response; this 3D data object can be converted to 256� 2,048
pixels with 2,048 point sampling of the temporal response.

In AFM this operation can be done in a single direction—the
fast scanning direction, because there is no additional sampling in
the direction of the slow scan axis. An example of multiresolution
imaging is shown in Fig. 6, panel (a) is a 256� 256 resolution
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scan with a zoomed inset illustrating the edge resolution of a
particular feature. Subsequent panels show the same feature, but
at 256� 1,024, 256� 2,048 and 256� 4,096 pixel resolutions.
Perhaps the easiest place to see the compelling evidence to use
this method is around the right boundary of the spherule feature.
Initially, the boundary is defined by a single pixel with subsequent
images showing a clearer shadow, some additional internal
contrast and finally an internal halo preceding the border. Besides
image clarity and higher quality pictures, this type of custom
resolution allows examining features of interest in an image much
more closely gaining additional insight that can be at far higher
resolution. It is therefore possible to push the spatial information
of an image to its noise limit, long after the measurement was
taken. Additional information regarding force–distance curve
information available in G-mode content is provided in the
Supplementary Note 2 and Supplementary Figs 5, 6.

Discussion
Here we have introduced a novel concept for dynamic AFM data
acquisition based on acquisition and multivariate analysis and
compression of the entire response of the cantilever in time. The
use of multivariate statistical methods such as PCA, allows one to
guide a data sampling strategy and attain insight into how the data
is structured in space, frequency and information domains. This
method is much more advantageous compared with current LI-
based techniques, since it provides a way to explore data without
information loss or imposed bias, along with the statistical feedback
to gain a complete understanding of a system, as well as effectively
compress information to sought-after parameters of importance.
Having access to the entire data set increases operator’s confidence
in the observed phenomena since the resulting signal can be
analysed from different perspectives providing an answer to a
myriad of question relating to data veracity and experimental
conditions. Armed with this new, in depth knowledge, dynamic
AFM can begin to transition to models that are dictated by physics
of tip surface interaction as imprinted in the recorded full cantilever
response. From a purely experimental perspective, a visualization of
material properties with the ability to and tune the interplay
between the microscope resolution, acquisition time and resam-
pling of the data, allows for an entirely new way to visualize and
differentiate processes occurring at the tip–surface junction.

Methods
Microcopy data acquisition. These data and all G-mode data have been obtained
on a Cypher AFM system (Asylum Research). Pt-Cr coated Multi-75EG AFM
cantilevers (NanoAndMore) have been used for all imaging modes. In conjunction
with the standard instrument hardware we have used a Digitizer and an Analog
Waveform Generator cards, supported by PXI architecture, supplied by National
Instruments. Imaging was done in the double pass mode (NAP, lift and equivalent),
where the initial trace and retrace are performed using the microscope’s internal
excitation scheme and a LI. Second set of trace and retrace is performed with the
feedback disengaged, with the custom sine waveform supplied to the tip and the
cantilever response collected at 4MHz. All single frequency images were collected in
amplitude modulated mode with an 800mV set point at the first vibrational mode
of the cantilever (B70 kHz) and collected using the IgorPro control software
bundled with the instrument; additional image and postprocessed was done in
WsXM22 and Matlab. Amplitudes of the imaging and G-mode modes were
matched.

Samples. The sample is a spin-coated polymer film on mica consisting of 1:1 ratio
of polystyrene and polycaprolactone.
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