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Beating beats mixing in heterodyne detection
schemes
G.J. Verbiest1 & M.J. Rost2

Heterodyne detection schemes are widely used to detect and analyse high-frequency signals,

which are unmeasurable with conventional techniques. It is the general conception that the

heterodyne signal is generated only by mixing and that beating can be fully neglected, as it is

a linear effect that, therefore, cannot produce a heterodyne signal. Deriving a general

analytical theory, we show, in contrast, that both beating and mixing are crucial to explain

the heterodyne signal generation. Beating even dominates the heterodyne signal, if the

nonlinearity of the mixing element (mixer) is of higher order than quadratic. The specific

characteristic of the mixer determines its sensitivity for beating. We confirm our results with

both a full numerical simulation and an experiment using heterodyne force microscopy, which

represents a model system with a highly non-quadratic mixer. As quadratic mixers are the

exception, many results of previously reported heterodyne measurements may need to be

reconsidered.
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T
here are many periodic processes with such a high
frequency that they are difficult to measure experimentally.
A solution is the application of a heterodyne detection

scheme, as it down-converts the high-frequency signal to a lower,
easily measurable frequency by mixing it with a reference signal.
This enables the quantification of the amplitude, the phase and
the frequency modulation of the original, high-frequency signal.
A well-known example of a heterodyne detector is the radio.
Heterodyne detection is also widely used in optics, in quantum
devices, in the detection of nuclear magnetic resonance, in
microwave detection, in scanning tunnelling spectroscopy and
even in the search for gravitational waves1–7.

Despite the successful application of heterodyne detection
schemes, the exact generation of the heterodyne signal is often
not well understood such that quantitative interpretations are
only possible with extensive numerical calculations. Moreover,
until now it has not been realized that the standard textbook
equation for mixing usually fails, as in reality almost all mixers
contain a beating stage at their input. To address this problem, we
derived a general analytical theory that uses beating plus mixing
for the generation of the heterodyne signal such that it becomes
valid for all heterodyne detection schemes.

Although not recognized, almost all heterodyne mixers have a
single input channel, through which a superposition is realized of
the high-frequency signal and the reference signal before the real
nonlinear mixing takes place: in optics, for example, the measured
intensity is the square of the superposed electric fields.
Consequently, we have to differentiate between beating, which
is a linear effect occurring for superpositions and mixing
occurring for nonlinear couplings.

In the following, we show that both beating and mixing are
necessary to correctly describe the generation of the heterodyne
signal. By deriving a general analytic theory that we confirm with
simulations and experiments, we demonstrate that beating plays a
crucial role in any type of heterodyne measurement system. In
particular, we show that beating dominates mixing, if the mixer is
of higher order than quadratic.

Results
Differentiating between Beating and Mixing. The upper panel
of Fig. 1 depicts beating: it is the sum of two harmonic excitations
at frequencies os and ot. The result (black line) oscillates with a
frequency oh (osoohoot) and beats in amplitude at the dif-
ference frequency odiff¼ |os�ot| (red lines). However, as the
Fourier transform of the time trace only shows the two original
frequencies os and ot, no signal is generated at the difference
frequency odiff. Mixing, see lower panel of Fig. 1, is the product of
two or more harmonic excitations and occurs if the transfer
function of the mixer is of quadratic or higher order. This result
really oscillates at the difference frequency (red line) and the sum
frequency (black line). In contrast to beating, the Fourier trans-
form shows the difference and the sum frequency, but not the two
frequencies of the original harmonic excitations. Although beat-
ing and mixing are two intrinsically different effects that are
classified by the type of mixer and their Fourier analyses, we will
fully counterintuitively demonstrate that beating even dominates
mixing, if the mixer is of higher order than quadratic!

To illustrate the importance of beating in heterodyne
measurements, we use the example of heterodyne force micro-
scopy (HFM)8–10, as it represents a model system with a highly
nonlinear mixing element (much higher order than quadratic).
HFM enables the non-destructive imaging below a surface with
nanometre resolution using an atomic force microscope11–19. The
typical excitation scheme is sketched in Fig. 2a. The subsurface
information is contained in an ultrasonic sound wave that
travelled through the sample with a frequency os of several MHz

(well above the first resonance of the cantilever). To detect this
signal, one applies a heterodyne detection scheme and excites,
therefore, also the cantilever/tip with a high frequency ot that
deviates slightly from os. The nonlinear tip–sample interaction
generates a heterodyne signal at a sufficiently low difference
frequency odiff such that the cantilever really starts to move at
odiff. In this way, the tip–sample distance is the superposition of
the sample vibration with amplitude As and phase fs, and the
cantilever vibration with amplitude At and phase jt, on the basis
of which the nonlinear tip–sample interaction generates the
difference frequency. Usually, one tunes odiff below the first
resonance of the cantilever, however, this choice is not necessary,
as long as the difference frequency can still excite a real motion in
the cantilever. This information is provided by the transfer
function of the cantilever, as it describes the reaction of the
cantilever for a given applied force as a function of the frequency.

Figure 2b depicts the heterodyne signal generation for the
example of HFM. The sum of the ultrasound signals at
frequencies ot and os results in beating at the mixer’s input.
This mixer generates a heterodyne drive force at odiff, which
results in a real motion of the cantilever via the cantilever’s
transfer function H(odiff). HFM is special, as the output of this
transfer function (real motion at odiff) is coupled back into the
tip–sample distance, which leads to an additional beating term at
the input of the mixer. The transfer function also acts as a filter,
which eliminates almost any contribution from the sum
frequency |otþos|, as well as higher-order mixing terms:
A|osþot|/A|osþot|¼ 0.004. We derive the transfer function in
Supplementary Note 5.

We also address the general case without back coupling to the
mixer below, as well as in Supplementary Note 4, and show that
beating still gives significant corrections to the heterodyne signal.
Although the back coupling can, in principle, also alter the
ultrasonic amplitudes At and As (and corresponding phases), it
was surprisingly shown experimentally that At and As remain
constant for all tip–sample distances z in HFM20,21. Therefore,

Beating: As cos (�st ) + At cos (�tt )

Nonlinear mixing: As cos (�st ) × At cos (�tt )
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Figure 1 | Beating versus mixing. Beating is the sum of two harmonic

functions (upper panel): the Fourier transform (FT) contains only the two

original frequencies os and ot. Mixing is the product of two harmonic

functions (lower panel): the FT contains only the two nonlinear frequencies

|os�ot| and |osþot|. The graphs have been calculated for os¼ 1.1MHz,

ot¼ 1MHz, As¼0.1 nm and At¼ 1 nm.
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HFM behaves exactly as a conventional heterodyne detection
scheme with an additional back coupling of only the difference
frequency signal odiff¼ |os�ot| to the input of the mixer.

Analytical theory for the heterodyne signal generation. To
derive an expression for the heterodyne signal, we need a
description of the mixer’s input, which is given by the tip–sample
distance z. This distance contains a static offset zb given by the
position of the cantilever’s base, a deflection d and a back
coupling term that accounts for the real motion at the difference
frequency, in addition to the ultrasonic motion of both the
cantilever and the sample.

z ¼ zb þ dþAdiff cos odiff tþjdiffð Þ
þAs cos ostþjsð ÞþAt cos ottþjtð Þ

ð1Þ

To enable a proper comparison between our theory and both a
numeric simulation and experiments, we subtract an offset in zb
such that zb¼ 0, if the deflection d¼ 0 during the approach cycle
of the cantilever to the surface. Equation (1) is used for the input
signal of the mixer, which generates via the nonlinear tip–sample
interaction Fts(z) an effective drive force on the cantilever at the
difference frequency. The derivation can be performed in two
ways: either one makes, as usual, a second-order Taylor expan-
sion of the tip–sample interaction around the equilibrium posi-
tion (which is ze¼ zbþ d) or one first uses beating to rewrite the
high-frequency components of the mixer’s input as a motion at a
high frequency oh with amplitude Ah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2

s þA2
t Þ

p
and an

additional amplitude modulated term at the same frequency,
before making a linear expansion of the tip–sample interaction
around a time varying equilibrium position. This linear expansion
is justified, as a third-order expansion alters the heterodyne signal
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Figure 2 | Heterodyne force microscopy excitation scheme. (a) The Si sample vibrates with amplitude As and phase js at a frequency os, while the tip

vibrates with At and jt at ot. Using an optical beam method and a lock-in, we detected the amplitude Adiff and phase jdiff of the difference frequency

odiff¼ |os�ot|. The tip–sample distance z was varied by moving the cantilever towards the surface (approach) and out again (retract). (b) The tip–sample

distance is the sum of the ultrasonic motion of the cantilever At cos(ott) and the sample As cos(ost), which results in beating. The nonlinear tip–sample

interaction generates drive forces (among others at the difference frequency), which lead, via the transfer function H(odiff) of the cantilever that also acts

as a low-pass filter, to a real motion that is coupled back into the tip–sample distance (red arrow). (c) The tip–sample interaction as a function of the

distance z (left panel): obtained from the experiment (red), as used in the analytical calculation (dashed black), and a second-order approximation around

ze¼0.53 (blue). The derivative of the tip–sample interaction as a function of the distance z (right panel): as used in the analytical calculation (dashed

black) and the second-order approximation around ze¼0.53 (blue). The blue line is only a good approximation of Fts near z¼ ze¼0.53.

Table 1 | Analytical expressions for the heterodyne signal.
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The general solutions (see Supplementary Notes 2 and 3) for the generated heterodyne signal (equation (2)), which is characterized by I1 and I2, and the static deflection (equation (3)), which is
characterized by I0. The parameters for ‘Standard Mixing’ are given in the first column, and for ‘Beating & Mixing’ in the second column. If one assumes a purely quadratic tip–sample interaction Fts, the
parameters of both solutions become equal. ‘Beating & Mixing’ explicitly takes into account the high-frequency motion and, therefore, the values of Fts and @Fts/@z at all tip–sample distances between ze
and ze±Ah.
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at most by 4.5%. The first method, referred to as ‘Standard
Mixing’ can be found in most textbooks, but (commonly not
mentioned) this solution is valid only for second-order (quad-
ratic) interactions. In contrast, our alternative approach, which
we call ‘Beating & Mixing’, is valid for any type of interaction.
The derivations and validities of both methods are described in
detail in Supplementary Notes 2–4. ‘Beating & Mixing’ is a gen-
eralization of the standard theory and produces the ‘Standard
Mixing’ results, if one artificially sets the beating term to zero. We
find proof for our ‘Beating & Mixing’ description from excellent
agreements of our results from numerical simulations and HFM
experiments, as discussed below.

Let us now compare the ‘Standard Mixing’ textbook solution
with our ‘Beating & Mixing’ generalization, in which the
amplitude Adiff and the phase jdiff of the heterodyne signal
(Table 1; equation (2)) and the static deflection d of the cantilever
(Table 1; equation (3)) are determined by three parameters: I0
denotes the average tip–sample interaction, I1 denotes an effective
tip–sample spring and I2 represents the nonlinear characteristics
(curvature) of the mixer. In the ‘Standard Mixing’ solution, I1 and
I2 are determined by the values of the first and the second
derivative of the tip–sample interaction at the equilibrium
position ze. In contrast, the ‘Beating & Mixing’ solution takes
explicitly into account the high-frequency motion and, therefore,
the derivative of the tip–sample interaction at all tip–sample
distances between ze and ze±Ah. This description holds as long as
As �At is smaller than Ah

2. The three parameters I0, I1 and I2
become weighted integrals of Fts and @Fts/@z. Only if the mixer is
purely quadratic, the integrals reduce to the exact values for I0, I1
and I2 of the textbook solution of ‘Standard Mixing’ (see
Supplementary Note 3). Consequently, the ‘Beating & Mixing’
solution is required for all mixers that cannot be approximated
with a quadratic function.

The tip–sample interaction in HFM deviates significantly from
a quadratic behaviour. This becomes evident from the left panel
of Fig. 2c, in which we show Fts obtained from the experiment
(red), Fts as used in the analytical calculation (dashed black) and
the quadratic interaction or second-order approximation of Fts
around z¼ ze¼ 0.53 nm (blue). Although the quadratic interac-
tion is a good approximation of the tip–sample interaction close
to ze¼ 0.53 nm, this approximation clearly fails 1 nm further at a
tip–sample distance of, for example, z¼ ze¼ 1.53 nm. This is even
worse for the first derivative of the tip–sample interaction, which
is shown in the right panel of Fig. 2c. Therefore, ‘Standard
Mixing’ cannot describe the heterodyne signal generation in
HFM: the tip–sample interaction cannot be approximated
quadratically over a z range that is equal to the typical ultrasonic
vibration amplitude Ah of 1 nm.

Experimental verification of the ‘Beating & Mixing’ theory.
In Fig. 3, we compare the ‘Beating & Mixing’ result with a full
numerical simulation, an experiment, and the ‘Standard Mixing’
theory. For simplicity, we only show the approach curves. Both
the ‘Beating & Mixing’ theory and the ‘Standard Mixing’ theory,
as well as the numerical simulation, need an analytical description
of the tip–sample interaction, which we obtained by fitting the
Derjaguin–Muller–Toporov model22 and I0 to the experimental
deflection d (see Supplementary Note 6). This experiment was
performed with a 2Nm� 1 cantilever, which had its first
resonance frequency around 73 kHz. The sample was a freshly
cleaned silicon wafer. The cantilever was excited at 2.87MHz with
an amplitude of 0.96 nm, while the sample was excited such that
odiff¼ 1 kHz. The vibration amplitude of the sample was 0.32 nm.
The full experimental details are described in Supplementary
Note 7.
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Mixing’ (a: red), from a full numerical simulation (b: black), from the experiment (c: black) and from ‘Standard Mixing’ (d: black). For comparison,
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Notice that both the numerical simulation and the experimental results support the validity of ‘Beating & Mixing’: their curves qualitatively fit the

‘Beating & Mixing’ ones. In contrast, ‘Standard Mixing’ deviates significantly.
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To confirm that ‘Beating & Mixing’ is important in HFM, we
calculated both the amplitude of the heterodyne signal Adiff and
the deflection d as a function of the tip–sample distance (defined
by the cantilever’s base position zb; see Fig. 3a). The numerical
simulations quantitatively fit our ‘Beating & Mixing’ curves (see
black line in Fig. 3b) perfectly. Additional proof comes also from
experiments (see Fig. 3c)21, as the general curvature correctly
reproduces the ‘Beating & Mixing’ results at all tip–sample
distances zb. If we compare the textbook solution of ‘Standard
Mixing’ shown in Fig. 3d, one clearly notices a significant
deviation: ‘Standard Mixing’ fails to describe the mixing signal.
This is in contradiction with the general conception that standard
frequency mixing generates the observed signal in HFM.
The discontinuities, in both the amplitude and the deflection,
are due to the specific choice of tip–sample interaction (see
Supplementary Note 6). In conclusion, this confirms that ‘Beating
& Mixing’ indeed correctly describes the generation the difference
signal in HFM and that ‘Standard Mixing’ fails.

Discussion
Let us now discuss the significant effect of the ultrasound on the
deflection in HFM, which can be evaluated by the static output
(I0) of the mixer with respect to the case without ultrasound.
Alternatively, one can compare the deflection curves of the
‘Standard Mixing’ theory with the ‘Beating & Mixing’ theory,
which is shown in Fig. 3d. In conclusion, both the adhesion and
the elasticity appear smaller in HFM experiments, if one does not
account for the existence of the ultrasound.

Finally, we address the more general case of heterodyne
measurements without a back coupling to the input of the mixer
as existent in HFM. Even without back coupling, beating is still
essential to correctly describe the heterodyne signal generation.
As the back coupling term in HFM is generated by I1 (see
Supplementary Note 4), we can set I1 to zero in equation (2). Also
without back coupling, ‘Beating & Mixing’ still determines the
heterodyne signal and the static deflection through the para-
meters I0 and I2. Therefore, we generally conclude that beating is
of crucial importance for heterodyne detection schemes.

In conclusion, we have shown that beating, although it is a
linear effect and has never considered to be of importance in
heterodyne detection schemes, dominates the generation of the
signal at the difference frequency in heterodyne measurements.
We derived a general, analytical theory for any type of interaction
that takes into account Beating & Mixing, and shown that our
‘Beating & Mixing’ theory correctly produces the standard
beating solution for a pure linear interaction, as well as the
Standard Mixing solution for an interaction that is purely
quadratic. Correction terms are necessary for any interaction that
is of higher order than quadratic. We verified our theory with a
finite time step simulation and with an experiment applying
HFM, which is a typical example of a heterodyne measurement
with a highly non-quadratic mixer.

References
1. Pfeifer, T. et al. Heterodyne mixing of laser fields for temporal gating of high-

order harmonic generation. Phys. Rev. Lett. 97, 163901 (2006).
2. Berciaud, S., Cognet, L., Blab, G. A. & Lounis, B. Photothermal heterodyne

imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev.
Lett. 93, 257402 (2004).

3. Turchette, Q. A., Hood, C. J., Lange, W., Mabucchi, H. & Kimble, H. J.
Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75,
254710 (1995).

4. Mlynek, J., Wong, N. C., DeVoe, R. G., Kintzer, E. S. & Brewer, R. G. Raman
heterodyne detection of nuclear magnetic resonance. Phys. Rev. Lett. 50,
130993 (1983).

5. Diddams, S. A. et al. Direct link between microwave and optical frequencies
with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 225102 (2000).

6. Matsuyama, E. et al. Principles and application of heterodyne scanning
tunnelling spectroscopy. Sci. Rep. 4, 6711 (2014).

7. Thorne, K. S. Gravitational-wave research: current status and future prospects.
Rev. Mod. Phys. 52, 020285 (1980).

8. Kolosov, O. & Yamanaka, K. Nonlinear detection of ultrasonic vibrations in an
atomic force microscope. Jpn J. Appl. Phys. 32, 8AL1095 (1993).

9. Yamanaka, K. & Nakano, S. Ultrasonic atomic force microscope with overtone
excitation of cantilever. Jpn J. Appl. Phys. 35, 6B3787 (1996).

10. Cuberes, M. T., Assender, H. E., Briggs, G. A. D. & Kolosov, O. V. Heterodyne
force microscopy of PMMA/rubber nanocomposites: nanomapping of
viscoelastic response at ultrasonic frequencies. J. Appl. Phys. D 33, 192347
(2000).

11. Shekhawat, G. S. & Dravid, V. P. Nanoscale imaging of buried structures via
scanning near-field ultrasound holography. Science 310, 574589 (2005).

12. Cantrell, S. A., Cantrell, J. H. & Lillehei, P. T. Nanoscale subsurface imaging via
resonant difference-frequency atomic force ultrasonic microscopy. J. Appl.
Phys. 101, 114324 (2007).

13. Cuberes, M. T. Intermittent-contact heterodyne force microscopy.
J. Nanomater. 2009, 762016 (2009).

14. Shekhawat, G. S., Srivastava, A., Avasthy, S. & Dravid, V. P. Ultrasound
holography for noninvasive imaging of buried defects and interfaces for
advanced interconnect architectures. Appl. Phys. Lett. 95, 263101 (2009).

15. Tetard, L. et al. Elastic phase response of silica nanoparticles buried in soft
matter. Appl. Phys. Lett. 93, 133113 (2008).

16. Tetard, L. et al. Spectroscopy and atomic force microscopy of biomass.
Ultramicroscopy 110, 701–707 (2010).

17. Tetard, L., Passian, A., Farahi, R. H. & Thundat, T. Atomic force microscopy of
silica nanoparticles and carbon nanohorns in macrophages and red blood cells.
Ultramicroscopy 110, 586–591 (2010).

18. Tetard, L., Passian, A. & Thundat, T. New modes for subsurface atomic force
microscopy through nanomechanical coupling. Nat. Nanotechnol. 5, 105–109
(2010).

19. Tetard, L. et al. Imaging nanoparticles in cells by nanomechanical holography.
Nat. Nanotechnol. 3, 501–505 (2008).

20. Verbiest, G. J., Oosterkamp, T. H. & Rost, M. J. Cantilever dynamics in
heterodyne force microscopy. Ultramicroscopy 135, 113–120 (2013).

21. Verbiest, G. J., Oosterkamp, T. H. & Rost, M. J. Subsurface-AFM: sensitivity to
the heterodyne signal. Nanotechnology 24, 365701 (2013).

22. Dejarguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations
on the adhesion of particles. J. Colloid Interf. Sci. 53, 314–326 (1975).

Acknowledgements
The research described in this paper has been performed under and financed by the
NIMIC (http://www.realnano.nl) consortium under project 4.4. We acknowledge J.M. de
Voogd, B. van Waarde and J.J.T. Wagenaar for proofreading of the manuscript.

Author contributions
M.J.R. realized the problem with beating. G.J.V. proposed the analytical model, worked
out the equations and performed the experiments, as well as the simulations. Both
authors discussed and interpreted the results, and also wrote the manuscript together.
The project was initiated and conceptualized by M.J.R.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interest.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Verbiest, G. J. and Rost, M. J. Beating beats mixing in
heterodyne detection schemes. Nat. Commun. 6:6444 doi: 10.1038/ncomms7444 (2015).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7444 ARTICLE

NATURE COMMUNICATIONS | 6:6444 |DOI: 10.1038/ncomms7444 |www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.realnano.nl
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	Beating beats mixing in heterodyne detection schemes
	Introduction
	Results
	Differentiating between Beating and Mixing
	Analytical theory for the heterodyne signal generation
	Experimental verification of the ‘Beating & Mixing’ theory

	Discussion
	Additional information
	Acknowledgements
	References




