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Evidence for a nematic component to the
hidden-order parameter in URu2Si2 from differential
elastoresistance measurements
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P. Giraldo-Gallo1,3, Mark Wartenbe5 & I.R. Fisher1,2

For materials that harbour a continuous phase transition, the susceptibility of the material to

various fields can be used to understand the nature of the fluctuating order and hence the

nature of the ordered state. Here we use anisotropic biaxial strain to probe the nematic

susceptibility of URu2Si2, a heavy fermion material for which the nature of the low

temperature ‘hidden order’ state has defied comprehensive understanding for over 30 years.

Our measurements reveal that the fluctuating order has a nematic component, confirming

reports of twofold anisotropy in the broken symmetry state and strongly constraining

theoretical models of the hidden-order phase.
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T
he heavy fermion compound URu2Si2 undergoes a
continuous phase transition at THOB17K, the precise
nature of which has not been fully established, despite

considerable experimental1–4 and theoretical5–12 attention.
Determination of the symmetry (or symmetries) that are
broken in the ‘hidden order’ phase is not just of purely
academic interest, but also has a direct bearing on the
symmetry of the superconducting gap that develops below
Tc¼ 1.5 K. Of particular relevance to the present work, several
recent measurements have provided evidence that the hidden-
order phase breaks the fourfold rotational symmetry of the high-
temperature tetragonal crystal lattice13–16; however, the degree of
anisotropy that is observed depends heavily on the crystal size (as
determined via torque measurements13) and also on the crystal
quality (for X-ray diffraction measurements14), leading to some
contention as to whether or not these are intrinsic effects. In the
current work, we take a complementary approach and probe the
fluctuating order in the temperature regime above THO. Our
results demonstrate first that the fluctuating order has a nematic
component, confirming that the hidden-order phase
spontaneously breaks fourfold rotational symmetry, and second
that other symmetries must also be broken at the phase
transition.

To measure a general susceptibility of a system, one must apply
the appropriate conjugate field (that is, the physical quantity that
couples linearly to the given order) and measure the linear
response. For a tetragonal material, such as URu2Si2 above
the hidden-order transition, the conjugate field to electronic
nematic order is anisotropic biaxial in-plane strain (either
Eaniso¼ (Exx� Eyy) or Eaniso¼ gxy for spontaneous order in the
[100] or [110] directions, corresponding to B1g and B2g
representations of the D4h point group, respectively). The nematic
susceptibility for each of these orientations is then
wN / lim

Eaniso!0

dc
dEaniso

, where c represents any thermodynamic

quantity measuring the induced anisotropy in mutually
orthogonal directions ([100] and [010], or [110] and 1�10½ �,
respectively17; also see ‘Elastoresistance Measurements’
subsection in the Supplementary Discussion). For a continuous
electronic nematic phase transition, wN diverges towards the
phase transition, signalling an instability towards nematic order.
Such behaviour was recently observed for the representative
underdoped iron pnictide Ba(Fe1� xCox)2As2, demonstrating that
the structural phase transition that precedes the onset of collinear
antiferromagnetic order in that material is driven by electronic
nematic order17–19.

There are also classes of order for which there is a single
transition to an ordered state that has a nematic component,
while simultaneously breaking additional symmetries. A simple
example would be a unidirectional incommensurate density wave
with order parameter Di¼D(Qi), for which both translational
and tetragonal symmetries are simultaneously broken at the same
transition (Qi corresponds to the ordering wave vector of the
density wave, and i¼ x or y). In such a case, anisotropic strain is
not conjugate to the order parameter (that is, the coupling term in
the free-energy expansion is not bilinear). Nevertheless, the
inherent nematicity associated with the unidirectional density
wave motivates introduction of a nematic order parameter N ,
which couples linearly to (|Dx|2� |Dy|2) and to which anisotropic
strain is linearly coupled (see ‘Nematic� (?) Symmetry’ subsec-
tion in the Supplementary Discussion). For such a situation, and
with the assumption of a continuous transition, an analysis based
on standard Ginzburg–Landau theory for coupled order para-
meters reveals that the nematic susceptibility follows a Curie–
Weiss temperature dependence at high temperatures (as the
density wave fluctuations orient in the anisotropic strain field),

but then develops an additional divergence close to the transition
temperature, experimentally distinguishing the behaviour from
that of a ‘pure’ nematic transition. We find that hidden order in
URu2Si2 appears to fall into this latter class, having a nematic
component but also breaking additional symmetries at the
hidden-order phase transition (see ‘Nematic Susceptibility:
Theory’ subsection in the Supplementary Discussion).

Our measurements are based on a novel technique that
probes the differential response in the electrical resistivity
to anisotropic biaxial strain in mutually perpendicular
directions. We measure the induced resistivity anisotropy,

N ¼ ryy �rxx
1
2 ryy þrxxð Þ � DR=Rð Þyy � DR=Rð Þxx

� �
, which, by symmetry,

is proportional to c in the limit of asymptotically small values.
The induced anisotropy is characterized by specific terms in the
associated elastoresistivity tensor mij that relate changes in the
resistivity to strains experienced by the material19. In the regime
of infinitesimal strains (linear response), the elastoresistivity
coefficients (m11�m12) and 2m66 are linearly proportional to the
bare (unrenormalized) nematic susceptibility, wN 100½ �

and wN 110½ �
, for

strains in the [100] and [110] directions, respectively19. The
proportionality constant relating the resistivity anisotropy to the
nematic order parameter is governed by microscopic physics, but
does not contain any singular contributions. Consequently, any
divergence of the induced resistivity anisotropy is directly related
to divergence of the nematic susceptibility. Since this is ultimately
a derivative of a transport measurement, the technique is
especially sensitive to static or fluctuating order that affects the
Fermi surface.

As we describe in this study, our measurements reveal a strongly
anisotropic differential elastoresistance between the B1g and B2g
symmetry channels. In the B2g channel for temperatures well above
THO, the 2m66 elastoresistivity coefficient follows a Curie–Weiss
dependence. This behaviour directly implies that the fluctuating
order has a nematic component. However, we also find a striking
additional divergence in 2m66 close to the phase transition, which
tracks the heat capacity. This additional contribution to the
differential elastoresistance demonstrates that while hidden order
in URu2Si2 must break fourfold rotational symmetry, it also breaks
other symmetries and hence is not purely nematic.

Results
Representative measurements of (DR/R)yy for five different
temperatures are shown in Fig. 1b,c for 1�10½ � and [100] oriented
crystals, respectively, revealing a linear response. The sign of (DR/
R)xx is opposite to that of (DR/R)yy due to the anisotropic strain
(that is, the imposed symmetry breaking), distinct from changes
in resistance observed under conditions of hydrostatic pressure20.
This procedure was performed for both the (DR/R)xx and
(DR/R)yy orientations on the same sample by removing the
crystal from the piezo with acetone between each measurement.
The slopes DR/R versus strain for each orientation were found
using a linear fit and the difference was taken. The resulting
elastoresistivity coefficients 2m66 and m11�m12 are plotted in
Fig. 2 as a function of temperature.

The data shown in Figs 1 and 2 reveal a striking anisotropy in
the elastoresistivity coefficients, with 2m66 values considerably
larger, and also more strongly temperature dependent, than
m11�m12. For comparison, the elastoresistivity coefficients of
simple metals are small (of order one) and essentially isotropic19.
It is worth remarking that the differential elastoresistance of
URu2Si2 is comparable to that of BaFe2As2, for which the
response along the [100] and [110] orientations is also strongly
anisotropic, with 2m66 values reaching B40 approaching the
tetragonal-to-orthorhombic phase transition in that material.
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Recalling that 2m66 is proportional to the nematic susceptibility

in the [110] direction wN 110½ �

� �
, the large values of 2m66 (red data

points in Fig. 2) and the strong temperature dependence both
indicate a diverging nematic susceptibility in the B2g (dxy
symmetry) channel, and hence motivate fitting the data to the
Curie–Weiss form 2m66 ¼ C= T � yð Þ½ � þ 2m0

66

� �
. Since the

elastoresistance only develops significant values below B60K,
the range of temperatures over which this fit can be applied is
necessarily small. Nevertheless, if we attempt fits over different
temperature ranges, the best fit, defined by a reduced w2 statistic
closest to 1, occurs for a range from B30K to the maximum of
60K, with a Weiss temperature y¼ 15.2±0.3 K (see ‘Curve
Fitting’ subsection in the Supplementary Discussion). Extrapola-
tion of the best fit function to lower temperatures (shown as a
green line in Fig. 2) reveals significant deviation from Curie–
Weiss-like behaviour for temperatures below B30K. The onset
of this deviation at 30 K is coincident with a suppression in
(T1T)� 1 seen in recent NMR experiments21, suggestive of a
common origin, possibly associated with the progressive
development of strongly fluctuating order.

In contrast, m11�m12, which is proportional to wN 100½ �
, is small

and exhibits only a weak temperature dependence (cyan data

points in Fig. 2); additional measurements on a separate crystal
confirmed the small value of m11�m12 (see ‘Elastoresistance
Measurements’ subsection in the Supplementary Discussion).
Given the large values of 2m66, it is likely that this weak
temperature dependence derives from slight sample misalignment
(that is, a small amount of contamination from 2m66 in the [100]
orientation due to imperfectly constrained current paths within
the crystal). For the remaining discussion we focus solely on the
2m66 data.

The most striking aspect of the temperature dependence of the
elastoresistivity coefficients is the sharp downward anomaly
observed at THO. The 2m66 data are replotted in Fig. 3a on an
expanded scale for the temperature window from 15.5 to 19K,
spanning THO. The anomaly exactly aligns with the sharp peak in
the temperature derivative of the in-plane resistivity dr/dT
(Fig. 3b,c), indicating that the effect is associated with the
thermodynamic phase transition at THO. For comparison, heat-
capacity measurements were also performed for the same crystal
that was used for the 1�10½ � oriented measurements. The data
closely follow the temperature dependence of dr/dT (ref. 22),
reminiscent of the theoretical treatment of critical fluctuations in
metallic antiferromagnets by Fisher and Langer23, with slight
differences in the peak position attributed to small differences in
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Figure 1 | Measurement of elastoresistivity coefficients. Anisotropic strain is achieved by gluing thin crystals of URu2Si2 to the side of a PZTpiezoelectric

stack such that Exx is opposite in sign to Eyy. The Cartesian axes are defined relative to the piezo stack itself, with the x-(y-)direction parallel to the short

(long) axis of the piezo. (a) Photograph of [100] oriented URu2Si2 crystals mounted in the (DR/R)yy and (DR/R)xx directions on the surface of a PZT

piezoelectric stack. Strain gauges mounted on the opposite face of the piezo stack measure Eyy and Exx, which are related by the effective Poisson ratio of the

PZT stack, np�� Exx/Eyy. (b) and (c) show representative (DR/R)yy elastoresistance data for five different temperatures as a function of Eyy for 1�10½ � and
[100] orientations, respectively. Data are plotted for both warming and cooling cycles and are identical within the resolution of the experiment. The

resistive response to anisotropic strain is considerably larger (by a factor of B4) for measurements made in the 1�10½ � direction compared with the [100]

direction.
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thermometry between the two different systems used for
transport and thermodynamic measurements.

Discussion
The observation of the Curie–Weiss temperature dependence of
the 2m66 elastoresistivity coefficient, combined with the large
anisotropy between 2m66 and m11�m12, strongly implies a
nematic character to the fluctuations associated with the hidden-
order phase. However, the sharp downward anomaly in 2m66 at
THO, which apparently closely follows the anomaly in the heat
capacity at THO, is not consistent with a ‘pure’ nematic behaviour,
implying that hidden order does not couple bilinearly to
anisotropic strain. Motivated by these results, we consider below
a Ginzburg–Landau model of a more complex system described
by a multicomponent (vector) order parameter (see
‘Nematic� (?) Symmetry’ subsection in the Supplementary
Discussion).

As described previously, the nematic susceptibility of a material
that suffers an electronic nematic instability follows a Curie–
Weiss temperature dependence, as has been observed for the iron
pnictides17–19. However, a nematic response is also possible if the
ordered state breaks fourfold spatial rotation symmetry, but does
not couple to strain as a bilinear term in the free energy. In this
scenario, the hidden order state would be described by a two-
component vector-order parameter ~D ¼ Dx;Dy

� �
. Motivated by

the inherent nematicity in such a system, the nematic response
can be modelled in mean field theory by introducing a separate
nematic order parameter N , which couples to the strain in the
form

DF ¼ Eaniso þ lNð Þ Dxj j2 � Dy

�� ��2� �
; ð1Þ

where l is a coupling constant. The theory does not depend on
the microscopic origin of N , which could be an independent-
order parameter or parasitic to the hidden order. Within such a
theory, an additional contribution to the nematic susceptibility
occurs close to the hidden-order transition, which is proportional
to the singular part of the heat capacity (DCV) associated with the
critical behaviour:

w
N

� 1
T �TN

1þbDCVð Þ; ð2Þ

where the constant b depends on the strengths of the couplings
between N , ~D, and Eaniso (see ‘Nematic� (?) Symmetry:
Functional Form’ subsection in the Supplementary Discussion).
This effect is analogous to anomalies observed in the
elastic moduli and thermal expansion coefficients at a structural
phase transition, first described by Testardi24. Intuitively, the
relationship between the nematic susceptibility and heat
capacity arises because it is the square of hidden order that
generates a nematic distortion; within mean field considerations,
both nematic and energy density fluctuations (that is, the
heat capacity) are related to the square of the order parameter
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Figure 2 | Temperature dependence of the elastoresistivity coefficients.

The 2m66 (red circles) and the m11�m12 (cyan diamonds) elastoresistivity

coefficients reveal a large directional anisotropy, with 2m66 reaching very

large values close to and below the hidden-order transition. The dashed

vertical black line indicates the hidden-order transition, THO¼ 17.17 K,

determined from the peak in the temperature derivative of the resistivity.

The green curve is a fit of 2m66 to a Curie–Weiss temperature dependence

2m66 ¼ C
T� y þ 2m0

66 from 60 to 30K, as described in the main text. The fit

is extrapolated below 30K to emphasize deviations from Curie–Weiss

behaviour below this temperature. The best-fit values for the parameters

are C¼ 375K, y¼ 15.2 K and 2m0
66 ¼ � 7:9. The inset shows

2m66 � 2m0
66

� �� 1
versus temperature, with 2m0

66 determined from the

green fit in the main figure.
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Figure 3 | Temperature dependence of 2m66 and heat capacity near THO.

Temperature dependence of (a) the 2m66 elastoresistivity coefficient, (b)

the in-plane resistivity r, (c) the temperature derivative of the in-plane

resistivity dr/dT and (d) the electronic specific heat in the immediate

vicinity of THO, all measured on the same 1�10½ � oriented crystal. The phonon

component to the specific heat was subtracted out by using ThRu2Si2, such

that Celec(URu2Si2)¼ (C(URu2Si2)�C(ThRu2Si2)). Data for all four panels

are plotted as a function of T� THO, with the absolute temperature scale for

the transport measurements shown on the upper axis. The temperature

range in absolute units for all four plots is the same. The position

(THO¼ 17.17 K) and width of the peak in 2m66 exactly match that of dr/dT,
while there is a slight temperature offset (THO¼ 17.47K) relative to the

heat capacity measurement (but with the same width). Differences

between THO obtained from transport and electronic specific heat are

attributed to slight differences in thermometry between the two

measurements.
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(see ‘Nematic� (?) Symmetry: Mean Field Intuition’
subsection in the Supplementary Discussion), so these
two quantities necessarily mirror each other near the phase
transition.

The close correspondence between the predictions of
this Ginzburg–Landau treatment and the observed data
strongly suggest that hidden order in URu2Si2 is described
by a two-component order parameter that breaks fourfold
symmetry. Since the 2m66 coefficient diverges but
m11�m12 does not, the orientation of the nematic fluctuations
is along the [110] and 1�10½ � directions, consistent with
the orientation deduced by measurements in the broken
symmetry state13.

The significance of this result is not so much the deduction that
other symmetries are broken in the hidden-order phase. Over a
period of many years, a growing body of evidence points to
partial gapping of the Fermi surface and a possible doubling of
the unit cell in the c-direction3,25–36. Rather, our result is
significant because it confirms the more controversial conclusions
drawn from earlier torque13, NMR15, cyclotron resonance16 and
X-ray diffraction14 measurements that the hidden-order phase
spontaneously breaks fourfold lattice symmetry. Our results,
which are ultimately based on statements about symmetry, do not
identify a specific microscopic model for hidden order, but they
clearly place tight constraints, namely that the hidden-order
phase is described by a vector-order parameter that breaks
fourfold symmetry.

The same coupling to the crystal lattice that yields the resistive
response to strain must also cause an orthorhombic distortion
below THO, consistent with reports of high-resolution X-ray
diffraction measurements14. Whether or not this anisotropy is
observed in thermodynamic measurements of macroscopic
crystals is then a matter of the resolution of the specific
measurement and the relative population of the two orthogonal
orthorhombic domain orientations (which will be influenced by
both crystal size and quality, via effects associated with pinning of
domain walls). Both aspects illustrate the distinct advantage of
probing the nematic susceptibility in the temperature regime
T4THO, for which there are no domains (one is simply probing
the susceptibility of the symmetric phase) and for which the
resistivity anisotropy is extremely sensitive to subtle perturbations
of the Fermi surface.

Despite these advances, important questions remain. In
particular, since nematic fluctuations in the B2g channel couple
linearly to the shear modulus, one anticipates a softening of the
C66 elastic constant approaching the hidden-order phase transi-
tion. However, earlier measurements of the elastic moduli37,38 do
not show such a softening. At least in principle, weak coupling
between the nematic-order parameter and the crystal lattice
(consistent with the small magnitude of the orthorhombic
distortion observed in X-ray diffraction experiments14) would
limit any appreciable renormalization of C66 to small values of the
reduced temperature close to the phase transition (see ‘Nematic
Susceptibility: Theory’ subsection in the Supplementary
Discussion). Nevertheless, the present results, in conjunction
with other measurements that reveal a twofold anisotropy in the
hidden-order phase13, clearly motivate a careful reinvestigation of
the elastic properties of URu2Si2 for samples of a comparably high
RRR.

Methods
To probe a thermodynamic susceptibility, one measures the response of an
order parameter to an application of its conjugate field. In this context, the
elastoresistivity measurements presented here track the induced resistivity
anisotropy as a function of anisotropic biaxial strain. For a tetragonal material, the
elastoresistivity tensor (which relates the normalized resistivity change to the strain

experienced by a material) is defined by

Dr=r
� �

xx

Dr=r
� �

yy

Dr=r
� �

zz

Dr=r
� �

yz

Dr=r
� �

zx

Dr=r
� �

xy

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

m11 m12 m13 0 0 0
m12 m11 m13 0 0 0
m31 m31 m33 0 0 0
0 0 0 m44 0 0
0 0 0 0 m44 0
0 0 0 0 0 m66

0
BBBBBB@

1
CCCCCCA

Exx
Eyy
Ezz
Eyz
Ezx
Exy

0
BBBBBB@

1
CCCCCCA
:

Anisotropic strain is achieved by gluing thin crystals of URu2Si2 to the surface of
a PZT piezoelectric stack. The high-quality crystals used for these experiments were
characterized by residual resistance ratios (RRR) of 170 (for the 1�10½ � oriented
measurements) and 81–87 (for the [100] oriented measurements; see
Supplementary Table I). The elastoresistivity coefficients m11�m12 and 2m66 are
determined from the difference of (DR/R)yy and (DR/R)xx for a given set of strains
for [100] and 1�10½ � oriented crystals, respectively19. To first order this is also equal
to the induced resistivity anisotropy N, expressed below in terms of the anisotropic
biaxial strain (Eyy� Exx):

N½100� �
DR
R

� �
yy

� DR
R

� �
xx

 !
½100�

¼ ðEyy � ExxÞ ðm11 �m12Þ ð3Þ

N½110� �
DR
R

� �
yy

� DR
R

� �
xx

 !
½110�

¼ ðEyy � ExxÞ 2m66 ð4Þ

where x and y refer to the axes along which the piezo stack induces biaxial strain,
indicated in Fig. 1a and following the description given in previous work19. For
each temperature, five voltage cycles were performed. Voltage applied to the piezo
stack was increased/decreased in a stepwise manner. The time delay between steps
was varied from 0.25 to 2 s with no change in the measured elastoresistance,
indicating the absence of any appreciable heating effects. Data shown in all figures
were taken using a delay of 0.5 s. The strain was measured using mutually
perpendicular strain gauges glued to the back surface of the piezo stack.
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