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Origin of band gaps in graphene on hexagonal
boron nitride
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Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions

has opened up a new frontier in materials physics. Here we address the intriguing energy

gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron

nitride substrate, demonstrating that they are produced by an interesting interplay between

structural and electronic properties, including electronic many-body exchange interactions.

Our theory is able to explain the observed gap behaviour by accounting first for the structural

relaxation of graphene’s carbon atoms when placed on a boron nitride substrate, and then for

the influence of the substrate on low-energy p-electrons located at relaxed carbon atom sites.

The methods we employ can be applied to many other van der Waals heterojunctions.
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R
ecent progress in preparing vertical heterojunctions of
graphene (G) and hexagonal boron nitride (BN) using
either transfer1 or growth techniques2 has opened a

new frontier for exploring both fundamental physics3–5 and
new device geometries6. Experiments have made it clear that G on
BN is very flat and that its low-energy electronic states are often
very weakly perturbed by the substrate1. However, when the
honeycomb lattices of G and BN are close to orientational
alignment, the electronic coupling strengthens and is readily
observed7. The source of this variability in behaviour is clearly
related to variability in structure. For example, although ab initio
theory8,9 predicts substantial gaps B50meV when the two
honeycomb lattices are identical, any incommensurability due to
misorientation or lattice constant mismatch drastically reduces
electronic coupling, giving vanishingly small gaps10.

Here, we show that the large gaps observed3 at the Fermi level
of neutral G sheets that are nearly rotationally aligned with a BN
substrate are not due solely in terms of the relative orientation-
dependent moiré pattern, but require in addition both
orientation-dependent structural relaxation of the carbon
atoms, as suggested by recent experiments11, and nonlocal
many-body exchange interactions between electrons. Our
theory involves two elements: (i) structural relaxation due to
interactions between G and the BN substrate and (ii) an effective
Hamiltonian for G’s p-electrons, which includes a substrate
interaction term that is dependent on the local coordination
between G and BN honeycombs. Our main results are that atomic
relaxation leads to substantially enhanced gap. The band gap for
rotationally aligned layers is only B1meV when the honeycomb

lattices are held rigid, but increases toB7meV when relaxation is
allowed. These gaps are further enhanced to B20meV, in
reasonable agreement with the experiment, when we also account
for electron–electron interactions. Moreover, unlike other
proposed mechanisms for band gaps in G12, ours does not
degrade the mobility of G.

Results
Moiré patterns and strains. The summary of our main results is
presented in Fig. 1 that shows the lattice relaxation-dependent
gap. The p-electron Hamiltonian of G/BN can be expressed as the
sum of the continuum model Dirac Hamiltonian of an isolated
flat G sheet, in which the honeycomb sublattice degree-of-
freedom appears as a pseudo spin, and a correction from the
interaction with the BN substrate7,9,10,13. We employ an
approach in which the correction is given by a sublattice-
dependent but spatially local operator HM(d) derived from the ab
initio theory9 that depends on the local alignment between G and
BN honeycomb lattices d. This pseudospin dependent operator
that gives rise to the moiré superlattice Hamiltonian is accurately
parameterized in ref. 9. (An alternate parameterization that
allows spatial variation in the interlayer separation is discussed in
the Methods section.)

When both G and BN form rigid honeycomb lattices

dðrÞ ! d0ðrÞ � erþ yẑ�r; ð1Þ
where e is the difference between their lattice constants, y is the
difference in their orientations and ẑ is the direction normal
to the G sheet. The two layers establish a moiré pattern in
which equivalent alignments repeat periodically on a length scale
that, when e and y are small, is long compared with the
honeycomb lattice constant. (The moiré lattice vectors LM solve
d(rþ LM)¼ d(r)þ L, where L is a honeycomb lattice vector.)
Since HM(d)¼HM(dþ L), the substrate interaction Hamiltonian
has the periodicity of the moiré pattern.

When the honeycomb lattices of the G and BN layers are
allowed to relax, d(r) is no longer a simple linear function of
position. We write

dðrÞ ¼ d0ðrÞþuðrÞþ ðh0 þ hðrÞÞẑ ð2Þ
where h0 is the mean separation between G and BN planes, and
the in-plane and vertical strains, u(r) and h(r), also have the
moiré pattern periodicity. If G/BN systems achieved thermal
equilibrium e, y, u(r) and h(r) would be determined by
minimizing free energy with respect to the positions of atoms
in the G layer and in the BN layers close to the surface of the
substrate. Evidently, this is not the case since the observed value
of y varies in an irreproducible manner. In the following we take
the view that because the thermodynamic bias favouring a
particular value of y is weak, its observed value is fixed by transfer
kinetics. Similarly, the value of e, which can be adjusted only by
atomic rearrangements on long length scales, is also likely
determined by kinetics and not by equilibrium considerations. On
the other hand, given values for e and y minimizing energy with
respect to local strains u(r) and h(r) require only local atomic
arrangements. We therefore view e and y as experimentally
measurable system parameters. In practice, e is close to the
undisturbed relative lattice constant difference, whereas y varies
widely. The ratio of the honeycomb lattice constant to the moiré
pattern lattice constant lM is a/lM¼ (e2þ y2)1/2. For given values
of y and e, HM(d(r)) is dependent on strains because of their
contribution to equation (2). The strains must therefore be
calculated first in order to fix the y, e-dependent p-band
Hamiltonian of G/BN. As a side remark, we note that
d(r)¼ (a/lM)r is a convenient approximation for the coordination
vector that can account for the twist angle dependence through
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Figure 1 | Relaxation strains and band gaps of G on BN. (a) Relaxation

strain elastic and potential energies for orientation aligned G on BN as a

function of e the relative lattice constant difference. The black lines illustrate
the case in which only carbon atom positions are allowed to relax (black),

whereas the red curve is for the case in which both G and BN layer atoms

are allowed to relax. The parabolic curve labelled FK plots the energy

difference between an undistorted G sheet and one with a lattice that has

expanded to be commensurate with that of the substrate that is discussed

in the text. Eelastic and Epotential are, respectively, the elastic energy cost and

the potential energy gained by straining both G and BN (black) layers, and

the G (red) only while keeping the moiré lattice constant fixed. We use

e¼ �0.017 for G on BN in the absence of G lattice expansion. (b) Energy

gaps including strain effects versus e when G and BN layers are allowed to

relax (black) and when only G atoms are allowed to relax (red), when the

layers are held rigid at 3.4Å separation (blue), and when electron–electron

interactions are also included (inset). The interaction-enhanced gaps are

bracketed by Hartree–Fock calculations that use dielectric constants of 2.5

and 4 to account for screening effects. The y label indicates the one-to-one

relation with lM when we fix |e|¼0.017 and provides an approximate

representation of the twist angle dependence.
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the magnitude of lM but ignores the variations in the shape of the
moire pattern.

Similar to the p-electron Hamiltonian, the G sheet energy can
be written as the sum of an isolated G layer contribution and a
substrate interaction contribution that depends on the local band
alignment d(r). The substrate interaction U(d) is most attractive
when half the carbon atoms are directly above boron atoms, and
the centres of G’s hexagonal plaquettes are directly above the
nitrogen atoms (BA alignment). This alignment is energetically
more stable than one in which half the carbon atoms sit on top of
nitrogen (AB alignment), or one in which all carbon atoms sit on
top of either boron and nitrogen atoms (AA stacking). By
performing ab initio calculations for commensurate lattices we
find that UBAoUABoUAA. The full dependence of U on d is
plotted in Fig. 2.

When e or y are nonzero, the substrate interaction forces
plotted in Fig. 2 drive strains that attempt to match G and BN
lattice constants locally and increase the sample area that is close
to local BA coordination. For a given value of e, the G sheet lattice
constant expansion near BA points must be compensated by
lattice compression elsewhere. This kind of local expansion and
compression of the G lattice within the moiré unit cell was
recently identified experimentally11,14.

We determine the strains by minimizing the sum of the
isolated G and substrate interaction energies. For the long-period
moiré lattices, the G sheet energy is accurately parameterized in

terms of its elastic constants. The competition between isolated G
and substrate interaction energies can then be understood by
comparing the energies of the configurations in which the two
terms are minimized separately. The substrate interaction energy
is minimized by maintaining perfect BA alignment everywhere
and therefore establishing commensurability between the BN and
G lattices. Because the lattice constants of BN and G differ,
this arrangement has an elastic energy cost in the G sheet. After
an elementary calculation we find that the total energy per area is

eBA ¼ UBA=A0 þ 2ðlþmÞe20 ð3Þ
where l and m are elastic constants, e0 is the relative difference
between BN and G lattice constants and A0 is the unit cell area of
G. The elastic energy, on the other hand, is minimized by keeping
the G sheet lattice constant at its isolated value. In this
configuration, because of the linear relationship between d and
r the substrate interaction energy per unit area is equal to the
average of U(d) over d:

eiso ¼ �U=A04UBA=A0: ð4Þ
As indicated in Fig. 1, when our theoretical values for U are
combined with the elastic constants of a G sheet, the energy of the
commensurate state is substantially lower. However, equation (3)
overestimates the elastic energy cost of lattice-matching between
BN and G. For example, in the extreme case of a single BN layer,
lattice-matching can be achieved by adjusting the lattice constants
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Figure 2 | Relaxation strain and degree of commensuration as a function of the moire pattern lattice constant. (a) Substrate interaction energy U(d) per

unit cell area as a function of stacking coordination d. The arrows indicate the magnitudes and directions of substrate interaction forces F¼ �rdU, which

drive atoms towards local BA coordination. The stacking arrangement cartoons use blue for boron, red for nitrogen and black for carbon. (b) Width of the

distribution of carbon atom displacements (FWHM) as a function of the moiré pattern lattice constant at y¼0. The typical displacement varies from

B5 to B8 nm when the moiré pattern lattice constant varies by a factor of four. (c) Vertical strains for |e|¼0.017 and (d) for |e|¼0.0068. Note that
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panels for G- and BN-relaxed geometries. The maps for the elastic and substrate interaction energies are discussed in the Supplementary Material.
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of each layer towards their mean value, approximately
reducing the required strains by a factor of 2. In this case,
the incommensurate structure still has lower energy, but the
difference is smaller. We conclude that when they are
orientationally aligned, the interaction between a G sheet and a
BN sheet is nearly strong enough to favour lattice-matching.

G/BN is close enough to an incommensurate to commensurate
transition that substantial strains can be driven by substrate
interactions. Indeed, we find by explicit energy minimization that
both vertical and horizontal strains can assume values large
enough to introduce changes in the electronic structure. We
determined these strains numerically for the case of a single-layer
BN substrate subject to a fixed periodic potential created by the
layers underneath explained in the Methods section. We find that
strains in the G sheet are comparable as those in the BN layer.
Note that the atomic structure, and hence the p-band
Hamiltonian, might therefore depend on the thickness of the
BN and on other features that vary from one experimental study
to another. Similarly, the addition of encapsulating layers can lead
to reductions in strains and hence gaps, as recently reported in
ref. 11, although the gap can in principle persist.

Strained moiré band hamiltonian. Given HM(d) and d(r), we
obtain a sublattice-pseudospin-dependent continuum Hamiltonian
with the periodicity of the moiré pattern, which is conveniently
analysed using a plane-wave-expansion approach. We write the
full Hamiltonian in the form

k0;s0 Hj jk;sh i ¼ dk;k0 s0 HDðkÞj jsh iþ
X
G

s0 HM;G

�� ��s� �
Dðk0 � k�GÞ

ð5Þ
where HD is the Dirac Hamiltonian and HM,G is the Fourier
transform over one period of the moiré pattern of HM(d(r)) and
G is a moiré pattern reciprocal lattice vector. In equation (5),
D(k)¼ 1 when k is a moiré pattern reciprocal lattice vector and
zero otherwise.

The electronic structures implied by the Hamiltonian in
equation (5) for rigid lattices, for G relaxation only and for
mutual G and BN relaxation are compared in Fig. 3. These results
demonstrate that the electronic structure, and the gap at
neutrality in particular, depends sensitively not only on y and e
but also on the strains. Sizable band gaps appear at the neutral
system Fermi level only when in-plane relaxation strains u(r) are
allowed.

Physics of the gaps. Several potential mechanisms of gap
formation in neutral G have been discussed in the literature
including antidots15, combinations of periodic scalar and vector
fields16,17 and zero-line localization18. Our approach allows for a
simple classification based on the Fourier expansion of HM. We
will discuss leading contributions to the gap at neutrality in terms
of the expansion of each moiré pattern Fourier component of HM

into four sublattice Pauli matrix components. We start with the
G0¼ 0 Fourier component, that is, with the spatial average of HM.
In the absence of relaxation, HM;G¼0 ¼ 0 because the average of
HM(d) is zero9, and d in this case is a linear function of r.
(We neglect an irrelevant contribution proportional to the
identity sublattice Pauli matrix t0.) When d is a nonlinear
function of r, however, the spatial average of Hamiltonian
contributions that are sinusoidal functions of d do not vanish.
Among these, the term proportional to t0 is an irrelevant
constant, and the terms proportional to tx and ty, often
interpreted in Dirac models as effective vector potentials,
simply shift band crossings away from zero momentum. (In the
continuum Dirac model of G, momentum is measured away from

the Brillouin-zone corners.) However, the G¼ 0 term
proportional to tz produces a gap

D0 ¼ 2Hz
M;G0¼0 ¼ HAA

M;G0¼0 �HBB
M;G0¼0: ð6Þ

Physically this gap appears simply because the average site
energy is different on different honeycomb sublattices.

The leading contributions to the gap from Ga0 terms in HM

are more subtle and appear at second order in perturbation
theory. A perturbative treatment is in fact valid in practice
because it turns out that ‘ u|G| is substantially larger than HM,G.
Applying the degenerate state perturbation theory we obtain the
following expression for their contribution to the effective 2� 2
sublattice Hamiltonian at the Dirac point:

Heff ¼ HM;G0¼0 �
X
G 6¼ 0

HM;GH
� 1
G Hy

M;G; ð7Þ

where HG¼ ‘ uG � t (u is the Dirac velocity and t is the vector of
Pauli matrices), ignoring the k dependence close to the Dirac
point that will be higher order. Note that HM,G connects the k
and kþG blocks of the plane-wave-expansion moiré band
Hamiltonian. Because only the term proportional to tz can
produce a gap at second order, it is instructive to decompose Heff

into Pauli matrix contributions.

Heff ¼
X

a¼0;x;y;z

Ha
efft

a: ð8Þ

Note that higher-order terms proportional to tx and ty may in
principle contribute to the gap, but we find them to be negligible.
We have derived analytic expressions for Ha

eff in terms of the
Pauli matrix decomposition of HM;Gi , which are discussed in
detail in the Methods section. We find that, although the G¼ 0
contribution to the gap is always larger, the Ga0 contributions
are not negligible. Both the difference in the spatial average of
sub-band energies and the detailed form of the full substrate
interaction Hamiltonian play a role in determining the size of the
gap at neutrality, and both are sensitive to the detailed structure
of the lattice relaxation strains.

In G, nonlocal exchange interactions are expected to enhance
gaps19–21 at neutrality produced by sublattice-dependent
potentials. We have performed plane-wave-expansion self-
consistent Hartree–Fock calculations in which Coulomb
interactions are added to the moiré band Hamiltonian we have
discussed. The calculations were performed using effective
dielectric constants bracketing the expected values between
er¼ 2.5 and er¼ 4. When all effects are included we find band
gaps B20meV, as shown in the inset of Fig. 1. The values chosen
for er partly account for dielectric screening by the substrate and
partly accounts for dynamic screening effects in the same spirit as
in the screened exchange functionals used in density functional
theory. We have previously used a similar dielectric constant of
er¼ 4 to successfully predict spontaneous band gaps B50meV in
ABC trilayer G22. Further details of the Hartree–Fock theory in
moire superlattice bands will be presented elsewhere.

Discussion
We have derived a p-band continuum model Hamiltonian
intended to describe states near the Fermi level of G/BN and
used it to address the energy gaps often observed in neutral G
when it is nearly aligned with a BN substrate. In this theory the
interaction of p-band electrons with the substrate is described by
a local but sublattice-dependent term HM that is dependent on
the local relative displacement of the G sheet and substrate
honeycomb lattices, d(r). When neither the G sheet’s carbon
atoms nor the boron and nitrogen atoms in the substrate are
allowed to relax, d(r) is a linear function of position because of
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the difference between the lattice constants e and because of
difference in orientations specified by a relative angle y. The gap
produced by substrate interactions in the absence of relaxation
reaches its maximum at y¼ 0, but is never larger than a few meV
and too small to explain experimental observations. Only by
allowing the carbon and substrate atoms to relax we can explain
the much larger experimental gaps.

The moiré pattern formed by G and a BN substrate is
characterized in the first place by the lattice constant difference e
and by the relative orientation angle y. These two quantities can
be changed only by collective motion of many atoms. We take the
view that because of large barriers and weak thermodynamic
drivers these two macroscopic variables are not in practice
relaxed to equilibrium values. We therefore view them as
observables that characterize particular G/BN systems and
calculate relaxation strains and p-band electronic structure as a
function of e and y, and hence as a function of the moiré pattern
period. The explicit calculations reported on in this paper are for
y¼ 0, the orientation that leads to large experimental gaps.

To account for relaxation strains, we minimize the total energy
with respect to carbon and substrate atom positions. For this
purpose we assume that the interaction energy U between G and
substrate is also a local function of d and obtain U(d) from
density functional calculations of commensurate structures. The
strains minimize the total energy by increasing the number of
carbon atoms that are on top of boron atoms and the number of

hexagonal carbon atom plaquettes that are centred above
nitrogen atoms. Our study emphasizes that atom relaxation in
the BN sheets is as important for the electronic structure as atom
relaxation in the G sheet. Although only atom positions in the top
BN sheet are important for electronic structure, these will be
affected by interactions with atoms in remote layers. We have
performed calculations for two extreme cases, rigid BN atoms and
a single layer of BN in which atom positions relax to minimize
total energy, finding that relaxation increases the energy gap
substantially. The physical origin of these gaps can be revealed by
expanding the continuum model p-band Hamiltonian in terms of
Pauli matrix pseudospin operators and in terms of moiré pattern
reciprocal lattice vector components. Because of the wide p-band
width and the relatively short moiré periods, the contribution of
each term in the Hamiltonian to the gap can be analysed using
the leading order perturbation theory. The Ga0 terms that
capture detailed spatial patterns contribute at second order and
are not negligible. The largest contribution to the gap comes from
the G¼ 0 term, which vanishes in the absence of lattice relaxation
and has a very simple interpretation. Because of relaxation strains
the average site energy in the carbon sheet is different for the two
carbon atom sublattices. It is well known that this type of
perturbation produces a gap at the Fermi level of a neutral G
sheet. Surprisingly, the gap is a substantial fraction of the gap of
the same origin present in the commensurate BA-aligned G on
BN. The gaps are therefore due to the contrast between the local
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Figure 3 | Electronic structure of G/BN heterojunctions. (a) Schematic representation of the moiré Brillouin zone and the moiré reciprocal lattice

vectors. (b) Three-dimensional representation of the band structure in the moiré Brillouin zone showing superlattice Dirac point features. (c) Local

density of state (LDOS) maps near the charge neutrality Fermi energy for G and BN relaxed and rigid lattice structures at y¼0 that show contrasts for

electrons and holes. Lattice relaxation affects the LDOS maps. (d) Band structure and density of states for three different values of e at y¼0 allowing G

and BN relaxation, G-relaxation only and with no relaxation. In-plane lattice relaxation leads to sizeable band gaps in the limit of long moiré periods.
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classical physics of energy minimization with respect to atom
position, and the wide p-bands and nonlocal quantum physics,
which forces the quantum wave functions to be smooth and
sensitive mainly to spatial averages over the moiré period. When
many-body interaction effects19 are accounted for, these gaps are
enhanced to values that are consistent with experiment. The
approach described in this paper can be applied to other van der
Waals materials that can form heterojunctions in which different
layers have slightly different lattice constants or differ in
orientation—such as transition metal dichalcogenide stacks or
twisted bilayer G9,23–27. Finally, we note that after the submission
of this work, two recent papers also appreciated the importance
of strain in the moiré superlattices formed in van der Waals
heterostructures28,29.

Methods
Elasticity theory and interaction potentials. The elastic energy functional was
modelled using the Born-von Karman plate theory30. Neglecting the small bending
rigidity of G k¼ 1.6 eV (ref. 31) the elasticity theory depends on the two Lamé
parameters whose estimates for G from empirical potentials gives l¼ 3.25 eVÅ� 2

and m¼ 9.57 eVÅ� 1 (ref. 32) in the low temperature limit, and for a single BN
sheet we have used lB3.5 eVÅ� 2 and mB7.8 eVÅ� 2 obtained averaging the
local density approximation (LDA) and generalized gradient approximation
(GGA) values, respectively33. The potential energy has been parametrized from the
stacking-dependent and separation-dependent energy curves in ref. 33 calculated at
the exact exchangeþ random phase approximation (EXXþRPA) level as we show
below.

The total elastic energy superlattice area is given by30,34,35

Eelastic ¼
k

2AM

Z
AM

d2r r2hðrÞ
� �2 þ 1

2AM

Z
AM

d2r l u11ðrÞþ u22ðrÞ½ �2
�

þ 2m u211ðrÞþ u222ðrÞþ u212ðrÞ
� �� ð9Þ

The strain tensors uij(r) associated with the deformation of the G layer depend
both on the in-plane displacements and heights in Monge’s representation:

u11 ¼
@ux
@x

þ 1
2

@h
@x

	 
2

u22 ¼
@uy
@y

þ 1
2

@h
@y

	 
2

u12 ¼
1
2

@ux
@y

þ @uy
@x

	 

þ 1

2
@h
@x

@h
@y

ð10Þ

In a practical calculation, it is convenient to use an integration domain that
remains fixed for every moiré period. For this purpose we use rescaled coordinates
to operate in the coordination vector d defined in the unit cell of G. Using the chain
rule to relate the reduced vector d in G’s unit cell and the real-space r coordinates
for zero twist angle and assuming variable lattice constant mismatch e we have

rr ¼ erd: ð11Þ

When we neglect the contributions from the height variation the elastic energy can
be written as

Eelastic ¼
e2

AM

Z
AM

d2r Sel dðrÞ; uð Þ ð12Þ

where Sel represents the integrand of equation (12) in rescaled coordinates d. This
form shows more explicitly a e2 weakening of the elastic energy as the lattice
constant mismatch becomes smaller.

Parametrization of the hamiltonian. The diagonal and off-diagonal elements of
the Hamiltonian for a fixed interlayer separation distance can be written in the
sublattice basis in a manner similar to the pseudospin representation used in ref. 9,

Hii K : dð Þ ¼ 2CiiRe f ðdÞ exp½ij0�½ � ð13Þ

HABðK : dÞ ¼

2CAB cos

ffiffiffi
3

p

2
G1dx

	 

cos

G1dy
2

�jAB

	 

þ sin

G1dy
2

�jAB �
p
6

	 
	 


þ 2CAB sin G1dy þjAB �
p
6

� 

þ i2CAB sin

ffiffiffi
3

p

2
G1dx

	 

cos

G1dy
2

�jAB

	 

� sin

G1dy
2

�jAB �
p
6

	 
	 

:

The out-of-plane z axis layer separation dependence can be incorporated into the

three main coefficients Cii(z) with an exponentially decaying behaviour in the form

C zð Þ ¼ C z0ð Þ exp �B � ðz� z0Þð Þ ð14Þ
where z0¼ 3.35Å, and the three decay coefficients B¼ 3.0, 3.2, 3.3Å� 1 for each
one of the terms of the Hamiltonian in the sublattice basis were found fitting the z
dependence between 2.8 and 5Å, where we use the parameters obtained from ab
initio calculations

CAAðz0Þ ¼ � 14:88meV; jAA ¼ 50:19� ð15Þ

CBBðz0Þ ¼ 12:09meV; jBB ¼ � 46:64� ð16Þ

CABðz0Þ ¼ 11:34meV; jAB ¼ 19:60� ð17Þ
whose equivalent values in the pseudospin basis had been calculated previously9.
The variation of the phase with z shows a weak linear dependence and we can
approximate it as a constant value. The effects due to lattice relaxation can be
conveniently incorporated when calculating the Fourier expansion of the above
Hamiltonian by accounting for the in-plane displacement u(r)¼ (ux(r), uy(r)) in
the stacking coordination vector d(r)¼ d0(r)þ u(r), and the height z¼ h(r) that
represents the local distance of G to BN, where r¼ (x, y) is a two-dimensional (2D)
vector. Both the displacement vectors u(r) and the height maps h(r) are assumed to
respect the moiré periodicity and are therefore modelled from the scalar fields that
we introduce in the following.

Moire pattern scalar functions and vector fields. The scalar functions used to
obtain the moiré superlattice pattern for the height and the displacement vectors
from their gradients have used F written as a Fourier expansion in G vectors as

F dð Þ ¼
X
G

CG exp � iG � dð Þ

’ C0 þC0
1gðdÞþ f1 d;C1;j1ð Þþ f2 d;C2;j2ð Þ ð18Þ

where CG is in general a complex number, and we retain up to three nearest G
vectors for the scalar field that preserves the symmetry of triangular lattices. The
parameters C0, C0

1, C1, j1, C2 and j2 are real valued constants and we defined
auxiliary functions f and g in terms of the triangular lattice structure factors similar
as those used in a general tight-binding model of G36. The Fourier expansion
coefficients within the first shell consisting of C0

0 and the first shell f1 d;C1;j1ð Þ are
often good representation of the solutions that vary smoothly in real space and
respect the symmetry of the triangular superlattice. For brevity in notation, here we
use (x, y) to indicate the (dx, dy). The f function

fj r;Cj;jj

� 
¼ Cj exp ijj

� 
~fj rð Þþ c:c: ð19Þ

is defined in terms of the structure factors

~fj rð Þ ¼ exp � ijG1yð Þþ 2 exp ijG1y=2ð Þ cos j
ffiffiffi
3

p
G1x=2

� 
ð20Þ

where G1¼ 4p/3a, where a is the real-space periodicity of the moiré superlattice
and j¼ 1, 2. These are momentum space analogues of the real space intersublattice
hopping structure factors in a honeycomb lattice37. The explicit form of the
functions defined along the symmetry lines x¼ 0 or y¼ 0 can be obtained from
sums of

fi r; y ¼ 0;C;jð Þ ¼ 2C cosj 1þ 2 cosðj
ffiffiffi
3

p
G1x=2Þ

� 
fi r; x ¼ 0;C;jð Þ ¼ 2C cos j� jG1yð Þþ 4C cos jþ jG1y=2ð Þ:

ð21Þ

The analytical expression for the g function shell contribution reduces to a simpler
form

gðrÞ ¼ 2 cos G2xð Þþ 4 cos
ffiffiffi
3

p
G2y=2

� 
cos G2x=2ð Þ; ð22Þ

where G2¼ 4p, that for the symmetry lines reduces to

gðr; y ¼ 0Þ ¼ 2cos G2xð Þþ 4cos G2x=2ð Þ

gðr; x ¼ 0Þ ¼ 2þ 4 cos
ffiffiffi
3

p
G2y=2

� 
:

ð23Þ

The vector fields such as in-plane forces, displacement vectors and stresses can be
obtained as gradients of the scalar potentials given by the above forms that can
preserve the symmetry of the triangular moiré superlattice. The vector field that
can be obtained from the gradient of the scalar field is

rF¼rf1 þrf2 þrg ð24Þ
and can be obtained taking the respective partial derivatives. Thus, we have

rfj ¼ Cj exp ijj

� 
r~fj þ c:c: ð25Þ

where the partial derivatives of the constituent functions are given by

@x~fjðrÞ ¼ � j
ffiffiffi
3

p
G1 exp ijG1y=2ð Þ sin j

ffiffiffi
3

p
G1x=2

� 

@y~fjðrÞ ¼ ijG1 � expð� ijG1yÞþ expðijG1y=2Þ cosðj
ffiffiffi
3

p
G1x=2Þ

�
:

ð26Þ
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For the g terms we have

@xgðrÞ ¼ � 2G2 sin G2xð Þþ cos
ffiffiffi
3

p
G2y=2

� 
sin G2x=2ð Þ

� 

@ygðrÞ ¼ � 2
ffiffiffi
3

p
G2 sinð

ffiffiffi
3

p
G2y=2Þ cosðG2x=2Þ:

ð27Þ

Likewise, higher-order derivatives used in the stress tensors or the gauge fields can
be evaluated analytically. The pair of parameters C and j for each fj function and
the single parameter accompanying the g function specify the variational space we
used to minimize the energy functionals. Because the f1 term captures the first
harmonic contribution, the different variables such as u, h, Epotential can be
characterized in terms of just two parameters C1 and j1, or up to three when the
average value of the origin C0 is required. The most relevant G-vector Fourier
components used in our calculation corresponding to f1, f2 and g functions are
represented in Fig. 4. The self-consistent Hartree–Fock calculations used effective
relative dielectric constants between er¼ 2.5 and 4 and 217 k-points in the moiré
Brillouin zone.

Parametrization of the potential energy. Likewise, it is convenient to use the
parametrization of the potential energy in the coordination vector d(r) and the
interlayer separation height. The potential energy term has been parametrized from
EXXþRPA calculations, binding energy curves for different stacking configura-
tions33 as a starting point to extract the potential energy curves needed for the
formulation of the Frenkel–Kontorova (FK) model for this 2D bipartite lattice. We
can neglect the van der Waals tail corrections from the bulk that bring the
equilibrium distances closer because their influence in distinguishing different
stacking energies are small. We make use of the property that the energy landscape
for a fixed z axis separation is given by a simple expansion in the first shell of G
vectors in Fourier space9 to represent the energy map with three parameters. As
noted previously, the simplest approximation for a scalar field that varies smoothly
in real space with the triangular lattice symmetry is given by

FðrÞ ¼
X
G

CG exp � iG � rð Þ ’ C0 þ f1 r;C1;j1ð Þ

where the constants CG are complex numbers. Owing to this simple form it is
possible to parametrize the whole energy landscape from the values of the
potentials at three inequivalent stacking configurations, for example, the three
symmetric stacking configurations AA, AB and BA. Its explicit expression

F x; y;C0;C1;jð Þ¼C0 þ 2C1 cos j�G1yð Þþ 4C1 cos G1y=2þjð Þ cos
ffiffiffi
3

p
G1x=2

� 
ð28Þ

repeats with the periodicity of a triangular lattice. The scalar function at the three
distinct symmetry points in units of G’s lattice constant

A ¼ Fð0; 0Þ ¼C0 þ 6C1 cosj ð29Þ

B ¼ F 0;
1ffiffiffi
3

p
	 


¼ C0 þ 2C1 cos j� 4p=3ð Þþ 4C1 cos 2p=3þjð Þ
ð30Þ

C ¼ F 0;
2ffiffiffi
3

p
	 


¼ C0 þ 2C1 cos j� 8p=3ð Þþ 4C1 cos 4p=3þjð Þ:
ð31Þ

These equations lead to the explicit values of the parameters

j ¼ arctan �
ffiffiffi
3

p

2ðDþ 1=2Þ

� �
ð32Þ

C1 ¼
C�B

6
ffiffiffi
3

p
sinj

ð33Þ

C0 ¼ � 6C1 cosjþA ð34Þ
where we have used the relation D¼ (A–B)/(B–C). From the layer separation z
dependence of these three coefficients C0(z), C1(z) and jðzÞ we can obtain the
complete potential landscape U(x,y,z) that we need for our model. We note that the
C0(z)¼ (A(z)þB(z)þC(z))/3 term is the average value of F(x, y) in the periodic
domain for every value of z and that the remaining C1(z) and jðzÞ terms accounts
for the landscape of the energy in the first harmonic approximation, which is often
an accurate approximation for functions varying smoothly with the moiré pattern9.
The difference between this average and the minimum Udif¼Uav�Umin gives a
measure of the in-plane forces associated with the energy gradient in a FK
problem37. The numerical values for A(z), B(z) and C(z) for the binding energy
curves as a function of separation distance z can be obtained from the calculations
provided in ref. 33. They can be interpolated numerically or, alternatively, we can
use analytic fitting expressions similar to that shown in ref. 38 used in the G/G case.
We define the auxiliary functions

MðxÞ ¼ �M0 1þ txð Þ exp � txð Þ ð35Þ

TðxÞ ¼ T0= x4 þT1
� �

ð36Þ

WðxÞ ¼ 1þ exp � 16ðx� 4Þð Þð Þ� 1 ð37Þ
with the parameters M0¼ 0.06975, t¼ 7, D0¼ 3.46, T0¼ � 10.44, T1¼ � 58.87 to
define the fitting function for the average value of C0(z) for all the stacking
configurations through

C0ðzÞ ¼ Mðz=D0 � 1Þþ TðzÞ�Mðz=D0 � 1Þð ÞWðzÞ ð38Þ
where z is given in angstroms. We used a rather simple model for W(x), which is
fairly accurate but can still be improved through additional parameters to better
capture the behaviour away from the equilibrium point. The z dependence of the
C1(z) term is easily captured through an exponentially decaying form

C1ðzÞ ¼ a exp � bðz� z0Þð Þ ð39Þ
where a¼ 2.226, b¼ 3.295 and z0¼ 1.295, a0¼ 2.46Å is the lattice constant of G.
The j¼ 50:4� term shows a weak linear dependence with respect to z; therefore, we
use a constant value. When necessary, the long-ranged van der Waals tails
originating from the bulk BN layers can be added through

TtailðzÞ ¼
X
n

T zþ ncð Þ ð40Þ

where c is the separation lattice constant between the layers and whose sum
saturates quickly. However, this correction term has a small influence for the
differences in energy for different stacking arrangements and we neglect this term.

G1

G2

G1 =
4π
3a

C0

f2(r,C2,�2)

g (r,C ′1)

f1 (r,C1,�1)

G2 = 4π

Figure 4 | Variational space associated with the first three G-vector

shells. Representation of the different G-vector shells corresponding to the

structure factors f1, f2 and g and the parameters that define the specific

form of the scalar functions.
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Figure 5 | First harmonic parametrization of the interlayer interaction

potential energy. (a) The total energy per unit cell area as a function of

sliding in the y axis for x¼0 shows a minimum when one of the carbon

atoms sits in the middle of the hexagon and another sits on top of boron.

(b) Potential energy of G’s carbon atoms per unit cell area. Right bottom

panel: potential energy experienced by the individual carbon atom per unit

cell area obtained assuming additivity of the energies.
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The energy landscape plots for a fixed separation distance z0¼ 3.4 Å presented in
Fig. 5 allow to estimate the average in-plane traction force being applied on the
two-inequivalent carbon atoms in the unit cell. Even though the LDA-binding
energies are substantially smaller than that shown in an EXXþRPA calculation, we
find that this in-plane energy map obtained through parametrization in Fig. 2 is
closely similar to the LDA energy map obtained in ref. 9, whose agreement is
attributable to the dominance of short-range character of the interactions near
equilibrium distances that is captured reasonably well by the LDA
approximation38.

From this potential landscape per two carbon atom unit cell we can infer the
potential experienced by the individual carbon atoms that can be useful for lattice
force-field calculations where the higher-energy optical modes are treated
explicitly. This is performed assuming that the total potential energy consists of

the sum of the potentials experienced by each carbon atom, which is separated by a
distance t ¼ a=

ffiffiffi
3

p

Uðx; yÞ ¼ UCðx; yÞþUCðx; yþ tÞ: ð41Þ
Solving the above equation we ge

UCðx; yÞ ¼ /ðx; y;C0
0;C1;j0

1Þ ð42Þ
where C0

0 ¼ C0=2 and j0
1 ¼ j1 � p=3. Likewise, if the long-range van der Waals

tails are used they would need to be reduced to one half of its value. In Fig. 5b we
show the potential energy repeated over several periods as well as the energy
landscape seen by each carbon atom, derived assuming additivity in the total
potential energy.

G relaxation-only model. The resolution of the elastostatic problem of G subject
to a superlattice potential requires the minimization of the total energy functional

Etotal ¼ Eelastic þ Epotential ð43Þ
where Eelastic is given in equation (12) and the potential energy is given by the
integral in the moire supercell of area AM of the potential energy kernel U(r, d, h)
given in equation (28)

Epotential ¼
1
AM

Z
AM

dr Uðr; d; hÞ: ð44Þ

The stacking coordination vector is modelled as

dGðrÞ ¼ d0ðrÞþ uGðrÞ ð45Þ
assuming that the substrate produces a rigid periodic potential pattern. We use the
gradients of the scalar field in equation (24) to model the displacement vectors uG.
The local elastic and potential energy maps corresponding to the small and large
strain limits are represented in Fig. 6.

Coupled relaxation of the BN lattice. Here we explore the influence in the elastic
of energy of G when the BN atoms of the topmost layer in the substrate are allowed
to relax in response to the stacking rearrangement of the G sheet. The coupled
motion of the substrate atoms contributes in decreasing the total elastic energy of
the G BN heterojunction because a smaller displacement in the G sheet is needed
than if the substrate remains rigid. For solving the coupled G/BN elasticity problem
we will assume that the topmost BN sheet is subject to a potential stemming from
the G sheet itself and the BN layers underneath, assuming that the BN atoms below
the topmost layer remain fixed. The potential energy for fixed interlayer separation
of c¼ 3.4 Å for G/BN and BN/NB along the y direction of stacking arrangement
vector is shown in Fig. 7. A comparison of the potential energy maps and the
magnitudes of the moire strains are illustrated in Figs 8 and 9, respectively. Their
influence in the real-space pseudospin Hamiltonian map is shown in Fig. 10 and
the magnitudes of the pseudomagnetic vector potentials resulting from strains are
shown in Supplementary Fig. 1. The interaction potential between the two topmost
BN layers are defined by C1¼ � 2.47meV and j1 ¼ � 57:75� through the fun-
citon UBN=NB r; dBNð Þ ¼ f1 dBN;C1;j1ð Þ.
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28) corresponding to small and large strains using constant h model

corresponding to lattice constant differences of |e|¼0.017 and 0.0082,

repectively. The large strain configuration we represent here is just before

the point of steep transition, which happens for longer moiré periods than

when the z axis relaxation is allowed.
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tAA¼ (0, 0), tAB ¼ ð0; a=
ffiffiffi
3

p
Þ and tBA ¼ ð0; 2a=

ffiffiffi
3

p
Þ. The energy minimum for G/BN stacking happens at tBA, whereas for BN/NB the energies are

smallest near tAA and tAB. (b) We show the stacking configurations for G/BN and BN/NB and minimize the total energy, which shows that deformation of

the topmost BN layer is easier when it preserves the BA stacking of the G/BN hererojunction. The minimum energy configurations are indicated with labels

1 and 2, whereas the maximum energy ones are labelled with 3 and 4.
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Even though the binding energies and forces predicted by the LDA typically
underestimate the values obtained from higher-level RPA calculations39–42, we
assume that the energy landscape for different strackings We used LDA energies
for BN/NB coupling as a function of sliding, assuming that their sliding energy
maps are comparable to EXXþRPA as we found for the G/BN case. The total
energy of G/BN/NB where both sheets are allowed to relax is given by the sum of
the elastic and potential energies of G and the topmost BN sheet. The total
potential energy term can be obtained from the interaction energies between the
neighbouring layers through

Epotential ¼ Epotential; G=BN þEpotential; BN=NB; ð46Þ
and can be calculated from the parametrized potential energies evaluating the
integrals in the moiré supercell

Epotential; G=BN ¼ 1
AM

Z
AM

dr UG=BN r; dG;hG
� �

; ð47Þ

Epotential; BN=NB ¼ 1
AM

Z
AM

dr UBN=NB r; dBNð Þ; ð48Þ

where the kernels are functionals of the local stacking coordination functions dG
and dBN that depend on the displacements relative to the neighbouring layers

dGðrÞ ¼ d0ðrÞþuGðrÞ� uBNðrÞ; ð49Þ

dBNðrÞ ¼ uBNðrÞ: ð50Þ

We used explicit labels G/BN and BN/NB to distinguish the interaction potentials.
For the G sheet, the only relevant reference frame is the topmost BN layer, whereas
the latter interacts both with the G sheet and the BN layers underneath whose
coordinates are assumed to remain fixed. Further discussions on the equilibrium
strains and the Fourier components of the Hamiltonian can be found, respectively,
in Supplementary Note 1 and Supplementary Note 2.

Second-order perturbation theory. Further insight on the contributions to the
band gaps can be achieved from second-order perturbation theory from the first
shell approximation38–42. We distinguish two scenarios: one for rigid unrelaxed
lattices and another where strains are allowed to modify the stacking coordination.
Formally it is possible to show that for rigid unrelaxed lattices the in-plane HAB

M;G
gives a zero contribution to the band gap to second order in the perturbation
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theory. When in-plane strains are allowed, band gaps develop owing primarily to a
nonzero average mass, and all three pseudospin components make a nonzero
contribution to the gap to second order. Among these, in our calculations the
in-plane pseudospin terms contribute to the gap with a smaller magnitude than the
Fourier expansion of the mass terms Hz

M;G .
First, for unrelaxed configuration the effective 2� 2 Hamiltonian is obtained

from the perturbation theory around the Dirac point. Our initial Hamiltonian is a
2N� 2N matrix, where N is two times the number of Moiré reciprocal lattice
vectors in the Fourier transform. Treating the 2� 2 diagonal blocks as the
unperturbed Hamiltonian, the second-order degenerate perturbation theory gives
an effective Hamiltonian for the low-energy states,

Heff ¼ HM;G¼0 �
X
G 6¼ 0

HM;GH
� 1
G H

y
M;G ð51Þ

where HG are the 2� 2 blocks in the Hamiltonian associated with the moiré vector
G, and HM,G connect the k and kþG blocks of the Hamiltonian. If we ignore for a
moment the relaxation because of in-plane strains, the diagonal blocks are
HM;G ¼ ‘ uG � t, which has an inverse ðHGÞ� 1 ¼ ‘ uG � t=ð‘ uGÞ2. We can
decompose both the effective Hamiltonian and the HM,G into terms proportional to
Pauli matrices,

Heff ¼
X

a¼0;x;y;z

Ha
eff t

a ð52Þ

HM;Gj ¼
X

a¼0;x;y;z

Ma
j t

a ð53Þ

Since Heff is hermitian, the parameters Ha
eff must be real numbers. However, each

block HM;Gj is not necessarily hermitian; therefore, Ma
j are complex numbers.

Plugging in the decomposed forms, and restricting to just the nearest shell of
reciprocal lattice vectors j¼ 1,y,6 (we use the index j¼ 0 for G¼ 0), we get

H0
eff ¼

4‘ u
ð‘ uGÞ2

X3
j¼1

ReMz
j ImMj�Gj
� �

� ẑ� ImMz
j ReMj�Gj
� �

� ẑ
h i

ð54Þ

Hx
eff ¼ � 4‘ u

ð‘ uGÞ2
X3
j¼1

Gj;yIm M0
j M

z
j

n o
ð55Þ

Hy
eff ¼

4‘ u
ð‘ uGÞ2

X3
j¼1

Gj;xIm M0
j M

z
j

n o
ð56Þ

Hz
eff ¼

4‘ u
ð‘ uGÞ2

X3
j¼1

ReMj;0 ImMj�Gj
� �

� ẑ� ImM0
j ReMj�Gj
� �

� ẑ
h i

ð57Þ

The sums in the above equations are restricted to j¼ 1, 2, 3 because of the relation
Gjþ 3¼ �Gj and the property of the corresponding matrices, Mjþ 3 ¼ M

y
j .

We will now prove that hx¼ hy¼ 0. The moiré Hamiltonian has the property
M0

1 ¼ M0
3 ¼ M0�

2 and Mz
1 ¼ Mz

3 ¼ Mz�
2 . Therefore, ImM0

3M
z
3 ¼ � ImM0

1M
z
1 .

However, G1�G2þG3¼ 0. Examining the above equations, we see that
Hx

eff ¼ Hy
eff ¼ 0 because of the symmetry properties of the Hamiltonian, and

the gap for the unrelaxed configuration arises entirely from a mass term Hz
eff .

We have numerically calculated the low-energy eigenvalues as a function of the
parameters Ma

j to verify the second-order perturbation theory result and show
which terms contribute at third order and higher. Our numerical calculations are
performed by multiplying each of the Ma

i by interpolation parameters la, which
range from 0 to 1, thus keeping the same relationship (magnitude and phase)
between the different Gi terms while allowing us to see explicitly the power law
behaviour of the gap due to each term.

First, we set all la¼ 0 except for one. Power law fits show that there is no
second-order contribution from any of the terms individually, see Supplementary
Fig. 2. The lza0 term contributes at the third order, while all others are fifth order
or higher.

Next, we look at the interplay between the different matrix elements Ma
j , which

are found to contribute to the perturbation theory results for Heff ¼ H0
eff þHeff � t.

The aforementioned Supplementary Fig. 2 and the breakdown of the different
contributions to the band gap shown in Supplementary Fig. 3 confirm that to
second order, the gap is not opened by terms proportional to MxMz, MyMz, M0Mz

and MxMy. The first two, MxMz and MyMz do contribute to the energy levels at
second order: they lead to a nonzero H0

eff , which does not open a gap. The M0Mz

term we found to be zero in the second-order perturbation theory due to the
symmetry of the Hamiltonian, which is verified here. Finally, the term MxMy does
not appear in the second-order perturbation theory at all, which is again confirmed
by our numerical results. The only terms that contribute to the gap at the second
order, and are therefore most efficient at opening a gap, are M0Mx and M0My.

For relaxed configuration there is a large effect on the size of the gap. This is
due primarily to the emergence of nonzero mass in the 2� 2 block Hz

M;G0¼0. This
term alone slightly overestimates the gap. We again calculate a second-order
perturbation theory, equation (51). The main effect is a zero-order contribution to
the gap, Hz

M;G¼0 6¼ 0, equation (61) below. Assuming a form Hz
M;G0¼0 ¼ mtz ,

the perturbation theory restricted to the six nearest reciprocal lattice vectors gives
the following equations,

H0
eff ¼ � 4

ð‘ vGÞ2 þm2

X3
j¼1

mRe M0
j ðMz

j Þ
�

n o
� ‘ u Im Mz

j

� �
Gj�Mj
� �

� ẑ
n oh i

ð58Þ

Hx
eff ¼ � 4

ð‘ uGÞ2 þm2

X3
j¼1

mRe Mx
j ðMz

j Þ
�

n o
� ‘ uGj;yIm M0

j

� �
Mz

j

n oh i

ð59Þ

Hy
eff ¼ � 4

ð‘ uGÞ2 þm2

X3
j¼1

mRe My
j ðMz

j Þ
�

n o
�‘ uGj;xIm M0

j

� �
Mz

j

n oh i

ð60Þ

Hz
eff ¼Hz

M;G¼0 �
4

ð‘ uGÞ2 þm2

X3
j¼1

m
2

M0
j

��� ���2 þ Mz
j

��� ���2
	 


� m
2

Mx
j

��� ���2 þ My
j

��� ���2
	 
�

�‘ uIm M0
j

� �
Gj�Mj
� �

� ẑ
n oi

ð61Þ
Since m is about an order of magnitude smaller than ‘uG, the second-order terms
reduce approximately to those in equations (54–57) and the general results of the
previous section remain approximately true. Another complication is that the next
shell of reciprocal lattice vectors become relevant. In this case, the symmetry
properties that cause Hx

eff and Hy
eff to vanish do not strictly hold. We do, however,

find that these terms are small. The primary contribution to the gap comes from
the Hz

M;G0¼0 term, which overshoots the gap. Including the second-order terms
produces an excellent approximation to the calculated gap. Thus, we see explicitly
that the relaxation is a key source of the gap opening in G/BN bilayer systems.
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