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Real-time tracking of cell cycle progression during
CD8þ effector and memory T-cell differentiation
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The precise pathways of memory T-cell differentiation are incompletely understood. Here we

exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the

division dynamics of individual CD8þ T cells. During influenza virus infection in vivo, naive

T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine

generations. At the peak of the anti-viral immune response, a subpopulation of these cells

markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype.

Construction of T-cell family division trees in vitro reveals two patterns of proliferation

dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling

times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory

phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by

the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate

their proliferative activity to diversify differentiation pathways.
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C
D8þ T cells are crucial for the fight against intracellular
pathogens and tumorigenic cells through their capacity of
targeted cytolysis. After encounter with an antigen, naive

T cells initiate proliferation and differentiate into effector cells
equipped with cytotoxic molecules and cytokines. Following
eradication of foreign or tumour antigens, the effector population
contracts and leaves behind a smaller pool of antigen-specific
memory T cells that achieve quick recall responses upon antigen
re-encounter1–4.

Although the generation of CD8þ memory T cells is a defining
feature of adaptive immune responses, how exactly memory
T cells develop during primary immune responses has remained a
controversial subject. Proposed models include a conventional
linear differentiation pathway, whereby naive T cells go through
consecutive effector, effector memory (Tem) and then central
memory (Tcm) stages5,6, as well as the decreasing potential and
progressive differentiation model where the duration and strength
of activating signals regulate the differentiation of memory
cells7,8. Alternatively, lineage fate may already be determined
during the first division of naive T cells giving rise to progeny
with different fates (asymmetric division model)9,10. Recent
reports that utilized barcoding or congenic marking of individual
T cells have proposed that heterogeneous T-cell families
with divergent expansion histories and cell fates arise during
primary immune responses11,12. The existence of these
partially conflicting models indicates that we require a better
understanding of memory T-cell generation.

In all of these models, cell division plays a key role not only by
regulating available T-cell numbers13,14 but also potentially by
contributing to the diversification of differentiation pathways.
Following the initial encounter of cognate antigen, quiescent
naive CD8þ T cells initiate proliferation supported by interleukin
(IL)-2 (refs 15,16). The regulation of cell cycle activity is critical
for the clonal expansion of effector cells and secondary response
of memory cells17–19, and is also potentially involved in the
stepwise differentiation into memory T cells20–23 (division-linked
differentiation). Given the importance of cell cycle progression in
immune responses, T-cell proliferation has been analysed
extensively. Bromodeoxyuridine (BrdU) and cell cycle marker
staining have been used to examine turnover rate or identify
proliferating populations but cannot be applied for analysis of
real-time cell cycle progression. Most of the efforts have focused
on dissecting proliferation dynamics at the population level using
cell trace dyes24,25. These approaches are limited to examining
proliferation history until the time when the dye is diluted out.
Thus, during critical phases of adaptive immunity, in particular,
at a time when memory T-cell precursors first appear in vivo, very
little information is available on the proliferative signature of
T cells. In addition, dynamic studies that determine the
correlation between proliferative behaviour and cell fate
plasticity of individual T cells within populations over
prolonged time periods have not been performed.

To gain insight into these outstanding questions, we utilized
transgenic mice that express the fluorescent ubiquitination-based
cell cycle indicator (‘Fucci’), in which cells become reversibly
fluorescent depending on their cell cycle state26. This enabled
us to investigate the dynamics of cell cycle progression at the
single-cell level during immune responses in vivo and in vitro.
Correlation of the differentiation state of T cells and proliferative
activity revealed that naive T cells initially undergo vigorous
proliferation after the encounter of antigens. After nine or more
division cycles, a subpopulation of T cells separated from the fast
cyclers characterized by slowing down of proliferation speed
and paralleled by acquisition of a central memory precursor
phenotype. Slow cycling and phenotype were an inherited feature
of these cells. Thus, our findings suggest that activated T cells can

reset their cell cycle machinery to initiate memory cell
differentiation programmes separately from the fast-cycling
effector pool.

Results
Fucci mice facilitate tracking of the cell cycle in T cells. In Fucci
mice, cells in G0/G1 and S/G2/M cell cycle phases express
mKusabira-Orange 2 (mKO2) and mAzami-Green (mAG),
respectively26 (Fig. 1a). The schematic in Fig. 1a represents the
originally designed Fucci probe pattern for cell cycle progression,
where Fucci probes are matched to cell cycle phases26. To dissect
proliferative kinetics of CD8þ T cells after antigen activation,
Fucci (Fucci-G1/Fucci-SG2M-double transgenic) mice were
crossed with T-cell receptor transgenic OT-I mice27, in which
CD8þ T cells recognize OVA257–64 (SIINFEKL) peptide
presented in the context of the major histocompatibility
complex-I. As expected from the previous observation that
Fucci cells in quiescent G0 phase were mKO2þþ (ref. 28), naive
CD8þ T cells isolated from naive Fucci/OT-1 mice were
predominantly mKO2þþmAG� (mKO2þþ ; Supplementary
Fig. 1a), reflecting their resting state. Following stimulation with
SIINFEKL peptide in vitro, we found that mKO2þþ naive cells
became mKO2þmAGþ (double positive), mKO2� mAGþ

(mAGþ ) or mKO2�mAG� (double negative (DN)) after
entry into the first cell cycle (Supplementary Fig. 1a; 20 h). Cell
cycle profiling using DNA stains confirmed that mAGþ cells
exhibited higher DNA content than 2N corresponding to S/G2/M
phases, and mKO2 positivity was matched to the 2N state
(Supplementary Fig. 1b). At time points when CD8þ T cells are
known to proliferate vigorously, cycling cells were found as
mAGþ or DN cells with very low mAG or mKO2 intensity
(Supplementary Fig. 1a; 50 h). The DN state arises from the gap
between the degradation of mAG-hGeminin(1/110) and
accumulation of mKO2-hCdt1(30/120) at the early G1 phase26.
Thus, when cells cycle with a short G1 phase, a substantial
fraction of cells may be found as DN (Supplementary Note 1). In
addition, we cannot formally exclude a certain degree of
heterogeneity in Fucci transgene expression, which could also
contribute to the DN state in the current transgenic mice.
Therefore, in this study we decided to take advantage of the Fucci
system by mainly focusing on mAG- or mKO2-positive cells to
track the real-time proliferative dynamics in vivo during an
immune response, which could not be addressed with classical
methods.

Slow-cycling memory precursors appear in influenza infection.
To examine the cell cycle kinetics of individual virus-specific
CD8þ T cells in the course of infection, we adoptively transferred
Fucci/OT-I cells to recipient mice that were subsequently infected
with influenza A virus PR8 engineered to express ovalbumin
(PR8-OVA)29. As early as 2 days post infection (p.i.), Fucci/OT-I
cells in the mediastinal lymph nodes (MLN) entered the cell cycle
as indicated by the transition from mKO2þþ to the double-
positive state, before the first dilution of the cell trace dye became
detectable (Fig. 1b). By day 4 p.i., the percentage of mKO2þ cells
dropped in MLNs, lungs and spleens while mAGþ cells increased
(Fig. 1b, right). At the peak of infection (day 7 p.i.), when cells
had diluted out the cell trace dye after nine or more divisions,
the presence of a high percentage of mAGþ indicated the
continuance of intensive proliferation (Fig. 1b). Lung sections on
day 7 p.i. confirmed the presence of mAGþ cells in situ,
indicating that virus-specific CD8þ T cells continued to divide
within the effector site30 (Supplementary Fig. 2). Importantly,
at the memory phase (day 32 p.i.), most of Fucci/OT-I cells
displayed a CD44hiKLRG-1loIL-7Rahi memory phenotype and
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became mKO2þþmAG� , indicating that they became quiescent
(Supplementary Fig. 3).

Taking advantage of the Fucci system, we dissected the cell
cycle status of highly divided cells after complete dye dilution.
Consistent with previous reports31, a population of
CD44hiCD62Lhi Tcm-like cells appeared on day 7 p.i. in the
spleens and MLNs, but not in the lungs (Fig. 2a). When gating on
CD62Lhi cells, approximately half of them were mKO2þmAG� ,
indicating slowing of their cell cycle as compared with CD62Llo

effector T cells, which remained mAGþ (Fig. 2b). Conversely,
mKO2þ cells in the MLN and spleen contained a sizeable

population of CD62Lhi cells, while mAGþ cells were largely
CD62Llo (Fig. 2a).

To confirm that the mKO2þ T cells that reappeared on day 7
p.i. were indeed slower cyclers than their mAGþ counterparts,
mice received a single intraperitoneal injection of BrdU on that
day (Fig. 2c). After 3 h, while about 60% of mAGþ cells
incorporated BrdU, mKO2þ cells mostly stayed BrdU� . The
proportion of BrdUþmKO2þ cells increased over the next 5 h,
but never reached the level of mAGþ cells. As only cells in the
S phase can incorporate BrdU, BrdUþmKO2þ cells must be
the cells that have newly entered the G1 phase after recent
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Figure 1 | Dynamic cell cycle progression of virus-specific CD8þ Tcells shown by Fucci probes. (a) Fucci fluorescent signals in cell cycle dynamics. The

originally designed Fucci system, in which mutually expressed Fucci probes correspond to each cell cycle phase. The cells in G0/1 show high intensity of

mKO2-hCdt1(30/120), and S/G2/M cells represent the accumulation of mAG-hGem(1/110). (b) Magnetic-activated cell sorting-purified Fucci/OT-I

(CD45.2þ ) cells were labelled with Cell Trace Violet (CTV) dye and transferred into CD45.1þ recipients prior to intranasal (i.n.) PR8-OVA influenza A

virus infection. Representative flow plots show the CTV dye dilution profile and mAG versus mKO2 expression level. Bottom panels depict the percentage

of mKO2þ (orange lines) or mAGþ (blue lines) from all mice (n¼9). Data are presented as means±s.e.m.
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Figure 2 | The mKO2-positive cells reappearing on day 7 p.i. are slower cycling cells. Magnetic-activated cell sorting-purified Fucci/OT-I (CD45.2þ )

cells were labelled with CTV dye and transferred into CD45.1þ recipients prior to intranasal (i.n.) PR8-OVA influenza A virus infection. (a) Representative

flow plots of mediastinal lymph nodes (MLNs), lungs and spleens on day 7 p.i. The histograms show CD44 and CD62L levels for mAGþ (blue), mKO2þ

(orange) and DN (black dot) cells from infected mice against naive cells in uninfected mice (grey solid). Data are representative of three independent

experiments with three to five mice each. (b) Backgating analysis for expression profiles of mAG versus mKO2 in CD62Lhi and lo subsets from the spleens

of mice on day 7 p.i. CD62Lhi (red) and lo (blue) gates were determined as shown in the histogram and compared for mAG versus mKO2 in dot plots.

Data are representative of three independent experiments with three to five mice each. (c) BrdU incorporation in virus-specific CD8þ Tcells on day 7 p.i.

The percentages of BrdUþ cells in mAGþ , mKO2þ or DN subpopulations in spleens were assessed at 3, 5 and 8 h after BrdU intraperitoneal

administration on day 7 p.i. Data are representative of three independent experiments with four mice each. Bars show mean with s.d. (n¼ 12, *Po0.001,

**Po0.01; two-way analysis of variance (ANOVA)). (d) mAGþCD62Llo, DN CD62Llo, mKO2þCD62Llo and mKO2þCD62Lhi subsets within the

CD8þ CD45.2þ cell population were sorted on day 7 p.i. as single cells and cultured in rIL-2 (10 ngml� 1) containing medium. The wells with a single cell

at the time 0 were observed by time-lapse imaging to count the cell number at 48 h. Data were summarized from three independent experiments.

Bars show mean with s.d. (n¼ 35, *Po0.001 versus KOþCD62Lhi; NS, not significant. ANOVA). (e) Memory-specific cell surface markers on virus-specific

CD8þ Tcells on day 7 p.i. Top panel: histograms of each marker are shown for mAGþ (blue line) versus mKO2þ (orange line) compared with naive cells

in uninfected mice (grey solid). Bottom panel: histograms of each marker are shown for CD62Lhi (red line) versus CD62Llo (blue solid). Data are

representative of three independent experiments with three mice each.
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cytokinesis. The BrdU�mKO2þ cells remaining after 8 h likely
contained not only the cells that have just moved from the G2 to
M phase but also those that stayed in the G1 phase for 8 h,
indicating that the mKO2þ population contained the slower
cycling cells.

Furthermore, culture of sorted single cells isolated on day 7
after PR8-OVA infection showed significantly less expansion of
mKO2þ cells compared with mAGþCD62Llo cells ex vivo
(Fig. 2d). Thus, activated virus-specific Fucci transgenic CD8þ

T cells were found as mAGþ or DN cells during the initial
vigorous expansion phase, and some of them slowed down their
cell cycle speed paralleled by the accumulation of mKO2-
hCdt1(30/120) on day 7 p.i.

Cell surface marker profiling revealed that both mAGþ and
mKO2þ cells on day 7 p.i. displayed an activated phenotype with
elevated expression of CD44, CD27, Ly6C and CXCR3 (Fig. 2e).
The mAGþ population showed higher expression of CD71
(transferrin receptor protein 1), indicating their highly prolif-
erative status32,33, and slightly higher expression of KLRG-1.
Consistent with a memory precursor phenotype, mKO2þ cells
expressed higher levels of IL-7Ra. In addition, messenger RNA
expression levels of transcription factors ELF4 and KLF2,
which are known to bind and activate CD62L and S1PR1
(sphingosine-1-phosphate receptor) promoters34–36, were
upregulated in mKO2þ cells similarly to CD8þ memory
control (Supplementary Fig. 4). In contrast, the expression
levels of interferon (IFN)-g and IL-2 were higher in mAGþ

cells than mKO2þ cells (Supplementary Fig. 4). These data
suggest that slow-cycling mKO2þ cells exhibit a Tcm precursor
phenotype.

Memory precursors arise from highly proliferative T cells. The
fact that mKO2þCD62Lhi cells had diluted cell tracker dye
indicated that they may have arisen from the effector cell pool.
Alternatively, they may have developed as an independent
population with a constantly high CD62L level that initially went
through a similar expansion as effector T cells. Following acti-
vation, naive T cells proliferated and also downregulated CD62L
expression37 (Fig. 3a). By day 4 p.i., most of the virus-activated
cells showed intermediate level of CD62L, as a relatively
homogenous population, compared with the distinct CD62Lhi

and CD62Llo subsets present on day 7 p.i. To determine whether
both CD62Lhi and CD62Llo populations developed from the same
activated CD62Lint T-cell pool, we sorted CD44hiCD62Lint T cells
within the 4–8th division on day 4 p.i., and transferred them to
secondary recipient mice that were concurrently infected with
PR8-OVA. After 10 days, we found that the transferred
T cells continued to proliferate, and that they gave rise to both
CD62Llo and CD62Lhi populations (Fig. 3b). Therefore, virus-
activated T cells retain their potency to become effector or
memory cells during the early expansion phase, and at some later
time point, split into either effector or memory differentiation
pathways after multiple division cycles.

Real-time tracking of CD8þ T-cell divisions in vitro. Recent
evidence suggests that during primary immune responses,
individual naive T cells give rise to separate families with distinct
differentiation profiles, namely highly proliferative effector
and less-expanding Tcm families11,12,38. These observations are
somewhat at odds with our data that suggest that Tcm precursors
undergo initial vigorous proliferation prior to switching to a
slow-cycling mode. If indeed distinct proliferative families would
be generated, one would expect to find heterogeneity in cell
cycle times, and a high correlation (inheritance) of times between
generations within individual T-cell families. To better

understand the cycling characteristics of T-cell families, we
measured actual cell cycle duration by time-lapse imaging
in vitro. We sorted in vitro activated Fucci CD8þ T cells from
early- (first and third) and late- (eighth) division generations, and
performed single-cell time-lapse imaging of cells placed in a
microgrid array for up to 90 h (Fig. 4a; Supplementary Movie 1).
Next, we manually tracked each cytokinesis by identifying
individual cells, and measured their cell cycle duration. Since it
was not possible to determine the exact time to the first
cytokinesis in the acquired movies, we started measurements
after the observed first cytokinesis for two subsequent division
rounds (Fig. 4a; Supplementary Fig. 5). To distinguish each cell
arising from the same progenitor, we named the cells from the 1st
divisions as ‘mothers (M1 and M2)’ and the cells from the 2nd
divisions as ‘daughters (D1, D2 or D3, D4)’. For further analysis,
daughters’ groups are distinguished as ‘siblings (D1 versus D2, D3
versus D4)’ from the same mother or ‘cousins (D1/D2 versus
D3/D4)’ originating from different mothers from the same initial
progenitor (C1). By collecting cell cycle time data, we found cells
from the 1st and 3rd generations showed similar and fast cell
cycle times with a mean of 13.4±5.4 and 14.3±4.4 h, respectively
(Fig. 4b). In generation-8 cells, in addition to fast-cycling cells
(early dividers) with similar proliferation and inheritance features
to the cells from earlier generations, we also observed the
occurrence of a subset of slow- and non-cycling cells, some
of which had division times of more than 24 h (Fig. 4b;
Supplementary Fig. 6a). This was evidenced by the fact that
their first cytokinesis was not observed until the 2nd imaging day
(late dividers) and their daughters did not divide again before the
end of the observation period (Fig. 4b, data below). Consistent
with their long division times, the slow-dividing cells had
markedly increased periods of mKO2 positivity (Fig. 4c;
Supplementary Fig. 6b). These differences in division patterns
between the 1st/3rd generation and 8th generation were highly
significant (Supplementary Fig. 6c).

Furthermore, we found that the cells with longer mKO2þ

phases were smaller in cell size than fast-proliferating mAGþ

cells, and were mostly CD62Lhi (Fig. 5a,b; Supplementary
Movie 2). A similar small CD62Lhi cell population was identified
during influenza virus infection in vivo (Fig. 5c). When we
cultured sorted small mKO2þCD62Lhi and large mKO2þ

CD62Llo cells ex vivo, the larger cells were more proliferative
and stayed CD62Llo, while the smaller cells stayed CD62Lhi and
proliferated less (Fig. 5c,d).

Correlation of cell cycle times between T-cell relatives. To
examine whether there was evidence for inheritance of cell cycle
times within division trees arising from individual T cells, we
analysed the correlation of horizontally (that is, siblings and
cousins) and vertically (that is, mother versus daughter) related
cell cycle times (Figs 4a and 6a). In all generations, siblings
showed a very strong correlation, while mothers and daughters
exhibited a weaker correlation of division times. The correlation
between cousins was higher than that of mothers and daughters.
Nevertheless, cell cycle times were not strictly identical between
generations, but rather showed variations with s.d. of more
than 4 h.

The fact that siblings showed high correlation of cycling times
could be cell intrinsic, due to equal partitioning of the cycling
machinery in the two daughters after cytokinesis, or due to
environmental factors within the microgrids. To distinguish
between these possibilities, we performed time-lapse imaging of
separately stimulated CD8þ T-cell populations expressing either
cytoplasmic green fluorescent protein (GFP)39 or membrane-
targeted tdTomato40 seeded in the same wells (Fig. 6b). Analysis
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showed that same-colour siblings divided synchronously (Fig. 6c),
but non-relatives from differentially-coloured progenitors divided
without correlation (Fig. 6d), indicating that cell intrinsic, rather
than environmental, factors determine cycling times of activated
T cells.

Inheritance of cell cycle times in sequential divisions. Thus far,
our data have shown that within a cycling population of activated
T cells two basic cycling patterns with respective early and late
dividers can be identified in the 8th generation (Fig. 7a). To
determine whether these patterns were an inherited feature, we
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arbitrarily categorized cycling times of in vitro stimulated Fucci
CD8þ T cells into fast (o600min), medium (600–800min),
slow (41,000min) and undivided cells. This analysis revealed
that 8th-generation cells gave rise to a much higher proportion of
slow dividers and undivided daughters as compared with earlier
generations (Fig. 7b). Inheritance was then tested by grouping
mothers into fast, medium and slow dividers, and comparing
them with the division category of daughters (Fig. 7c). In the 1st
and 3rd generation, both fast- and slow-cycling mothers gave rise
to a similar distribution of cycling times of progeny, which is
consistent with stochastic resetting of cycling times between
generations as described above. In contrast, in the 8th-generation
slow-dividing mothers gave rise to a much higher proportion of
slow- or non-dividing daughters than faster dividing mothers
(Fig. 7c). We concluded that at this stage slow division was an
intrinsic, inherited feature of Tcm-like cells arising in vitro.

Transcriptome analysis of small slow-cycling CD8þ T cells. To
gain further insight into the characteristics of slow-cycling smaller
cells that segregated from the activated T-cell pool, we performed
a genome-wide microarray expression analysis. Larger and
smaller cell-sized CD8þ OT-I cells were sorted on day 7 after
in vitro stimulation or influenza virus infection in vivo. In heat-
map and clustering analyses, the large cells clustered with effector
T-cell control samples, while the smaller cells clustered with
memory control samples (Fig. 8a), which indicates that large cells
have a closer gene expression pattern with effector cells, but
smaller cells are more similar to memory cells. Analysis of
selected genes showed that the larger sized cells expressed more
cytotoxic molecules and cell cycle regulators associated with their
effector phenotype and active proliferation (Figs 5c and 8b). In
contrast, smaller sized cells had acquired homing receptors such
as CCR7 and CXCR3, and expressed transcription factors such as
ELF4 and KLF2, reported to be critical for memory cells (Fig. 8b).
Gene set enrichment analysis further demonstrated that smaller

sized cells were enriched for genes previously shown to be
upregulated in memory cells41 (Fig. 8c), suggesting they are on
their way to differentiate into memory cells rather than being
effector cells. The larger cells were enriched for genes related to
the cell division process, DNA replication, cell cycle regulation,
microtubule cytoskeleton and the DNA repair process compatible
with their proliferative phenotype (Fig. 8d). Taken together, the
slower cell cycle times and higher CD62L expression level of small
sized T cells, arising during the peak of the influenza response
in vivo and after eight divisions in vitro, match the gene
expression profile of bona fide memory T cells.

Discussion
Proliferation critically determines the quality of immune
responses by regulating the number of available effector and
memory T cells. In addition, proliferative dynamics are linked to
the differentiation state of T cells. Characterization of T-cell
cycling dynamics during a time when memory T-cell precursors
appear during immune responses has been challenging, due to
technical limitations of conventional proliferation assays. Using
the Fucci cell cycle reporter system, we have longitudinally
dissected the proliferative behaviour of CD8þ T cells in the
course of immune responses in vivo and in vitro. We show that
memory T-cell precursors initially undergo fast proliferation
indistinguishable from effector T cells, and then switch to a
heritable slow-cycling mode paralleled by their acquisition of a
memory cell phenotype. Our data suggest a memory T-cell
differentiation pathway, whereby the fast-cycling T-cell pool
maintains a flexible programme that enables direct differentiation
into Tcm precursors and effector cells during a phase of anti-viral
immune responses when the T-cell population is still expanding
(Fig. 9). This plasticity of memory cells seems to be guided by cell
intrinsic modulation of cell cycle progression, which potentially
protects these cells from exhaustion due to slow-cycling
characteristics and small cell size.
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The rapid expansion of antigen-specific T-cell clones following
encounter of cognate antigen is a cardinal feature of the adaptive
immune response, and this process has been examined
extensively in a variety of infection and immunization models.
While it is well established that cell extrinsic and environmental
factors, such as major histocompatibility complex/antigen–T cell
receptor (TCR) interactions, co-stimulation and cytokines, as well
as specific anatomical locations are critical for the proliferation
and differentiation of naive CD8þ T cells42–44, it is less clear
whether lymphocytes have any intrinsic mechanism to regulate
their cell cycle duration. Our time-lapse imaging data of cycling
T cell in vitro demonstrate that T-cell siblings derived from the
same mother cell displayed synchronous cell cycle progression
during the initial expansion phase (until the 9th generation).
Considering that the cell cycle is composed of consecutive
G1–S–G2–M phases, which are regulated by distinct cell cycle
checkpoints, it is likely that siblings inherit the founders’ cell cycle
machinery components during cytokinesis when T cells clonally

expand. Previous reports have revealed that asymmetric division
during the first division may act as a mechanism for CD8þ

T cells fate determination9,10. Thus, prior to the first division,
asymmetric distribution of signalling molecules is established
during interactions with antigen-presenting cells, and cells
receiving less of such molecules proceed towards central
memory cells. While our data do not contradict these results,
they suggest that during subsequent divisions, which are more
IL-2 dependent and can occur without further antigen
stimulation, asymmetry may not play a role, resulting in
daughter cells that more closely resemble each other.
Nevertheless, division times between unrelated fast-cycling cells
do show variations, with cycling times apparently reset after
each generation. This is reminiscent of B cells, in which the
cycling machinery is inherited in each individual generation,
but that some, as yet unknown, stochastic process, randomizes
division times equally for the two daughters after each
division45,46.
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Previous studies have shown that a single naive CD8þ T cell
can achieve both effector and memory subset differentiation47,48,
supporting the idea that distinct T-cell subsets may develop by
intraclonal diversification during immune responses. Additional
evidence using barcoded or congenically labelled cell-transfer
methods suggested that naive T cells have the potential to
respond with heterogeneity to the initial antigen stimulation,
resulting in the generation of diverse families with different
capacity for expansion, as well as development into effector or
central memory cells11,12. Nevertheless, it is conceivable that

certain T-cell families are heterogeneous and may change their
proliferative behaviour over time. Indeed, even in proliferative
families, which were considered to be composed of fast-cycling
cells of effector phenotype, CD62Lhi were present11. Whether
such intra-familial phenotypic heterogeneity is also reflected by
varied cell cycle times would require the longitudinal tracking of
individual dividing cells over several generations. In our
experiments, we measured the cell cycle times of individual
CD8þ T cells during sequential cytokinesis using time-lapse
imaging and examined the relationship between families or
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T cells within a given family. Consistent with the mentioned
studies11,12,49, T-cell cycle times between progenies from the
same founder showed high correlation while they varied between
families. Importantly, however, a slower cycling subpopulation of
central memory-like cells appeared after many divisions from
the fast-cycling T-cell pool, suggesting that cycling capacity is
not fixed within T-cell families. Additional support for this

hypothesis comes from our adoptive transfer experiments using
CD62LintCD44hiCD8þ T cells in the 4–8th division generations,
which excluded weakly activated T cells and/or ‘late comers’
to the antigen-presenting site, as those cells are known to
preferentially obtain a memory phenotype. Upon transfer these
cells maintained the capability to differentiate into both CD62Lhi

and CD62Llo cells in the presence of cognate antigen. Although
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Figure 8 | Microarray analysis of larger and smaller sized T cells from influenza-infected mice. RNA samples were prepared from sorted populations

of larger or smaller sized cells from spleens of influenza virus PR8-OVA-infected mice on day 7 p.i. or from in vitro 7 days culture after stimulation with

plate-bound anti-CD3e (1.0 mgml� 1) and anti-CD28 mAb (0.5mgml� 1). Effector T-cell control samples were prepared from SIINFEKL (100 ngml� 1)

stimulated OT-I cells after 4 days of in vitro culture and sorted as CD8þCD44hiCD62Llo. Control bona fide effector memory and central memory T cells

were sorted from the spleens of PR8-OVA-infected mice on day 42 p.i. Naive cells were sorted as CD8þCD44loCD62Lhi cells from uninfected C57BL/6

mice. Duplicate samples were prepared from independent experiments. (a) Clustering analysis and heatmap of gene expression values to depict the

similarity of gene profiles between samples for the 934 significant genes (Po0.01). The colour key shown on the top illustrates the relative expression level

across all samples: blue represents expression above the mean and yellow represents expression lower than the mean. The in vivo samples of interest

are labelled with a double underline and in vitro samples are labelled with a single underline. (b) The effector or memory phenotype-associated genes

were compared between duplicate samples of larger and smaller sized cells sorted from the spleens of infected mice on day 7 p.i. The log fold change of the

expression value (the larger cells/the smaller cells) is shown as black bars. The means with s.d. are shown. (c) Gene set enrichment analysis (GSEA) plot

shows that the duplicated samples of sorted smaller cells from spleens on day 7 p.i. are enriched for previously reported gene sets for memory CD8þ cells

(Po0.001, false discovery rate (FDR)o0.25). (d) GSEA plots showing the enrichment of cell cycle checkpoint or DNA repair gene sets in the duplicate

samples of sorted larger cells from spleens on day 7 p.i. (Po0.001, FDRo0.25).
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our studies do not exclude that small Tcm cell families arise early
during immune responses, potentially through less proliferation,
we suggest that fully activated, fast-proliferating T cells keep the
capacity for direct differentiation into Tcm precursors during a
phase of anti-viral immune responses when the T-cell population
is still expanding. The fact that these cells are present in high
numbers may indicate that they outweigh Tcm precursors
differentiating directly from naive T cells. Future studies will
investigate the precise fate of these slow-cycling putative
memory-like precursors in long-term adoptive transfer
experiments.

An important question that remains to be addressed is how the
slow- and non-dividing cells segregate from the activated CD8þ

T-cell pool after multiple rounds of divisions. Since slow- and
non-cycling cells were observed in vitro under identical condi-
tions with parallel cells maintaining fast cycling speeds, a cell
intrinsic process that resets the cell cycle pace appears to be likely.
This intrinsic process may be regulable as the number of
generations cells undergo before returning to quiescence is
reported to vary with strength of TCR stimulation and availability
of costimulatory and cytokine signals50. Our gene profiling
analyses indicate that small slow cyclers are equipped with a bona
fide memory cell profile, with lower metabolic activity as
compared with fast cyclers. The cells with lower expression of
nutrient transporters may terminate proliferation and become
smaller in size, resembling memory cells51,52. On the other hand,
larger fast cycler cells are enriched in genes involved in the
response to DNA damage and oxidative stress. This may indicate
that fast cyclers are those cells that experience higher levels of
exogenous stress, which ultimately leads to the known propensity
of full-fledged effector T cells to undergo apoptosis. Conversely,
slowing of the cell cycle and reducing cell size may protect
memory precursor T cells from accumulating further cellular
toxic stress, which may be beneficial for their long-term
persistence. Further studies using genetic approaches or
signalling pathway inhibitors will be required to determine the
precise mechanism underlying the bifurcation of cycling
dynamics.

In summary, we uncovered the dynamics of cell cycle duration
with the advantage of Fucci cell cycle report system to track live
T cells in the course of the immune response, and identified a
sizeable proportion of Tcm precursors that separate from the
activated effector pool by slowing down the cell cycle at the peak
of the expansion phase. New insight that some progenies of fully
activated and extensively proliferated CD8þ T cells have the
plasticity to enter the central memory differentiation pathway to
escape the contraction phase adds new perspectives for memory
development in vaccination and immunotherapeutic strategies.

Methods
Mice. C57BL/6 (wild type) and B6.SJL/Ptprca (CD45.1) mice were purchased
from the Animal Research Centre (Perth, Australia). mKO2-hCdt1(30/120)
(Fucci-G1-#639) and mAG-hGem(1/110) (FucciS/G2/M-#474) transgenic mice
were described in a previous report26,28,53. Fucci-double transgenic mice
(#639/#474) were backcrossed onto the C57BL/6 background, and further crossed
with OT-I TCR transgenic27 (CD45.2) and B6.SJL/Ptprca (CD45.1) mouse strains.
DPE-GFP transgenic mice that express GFP under the control of the murine CD4
promoter39, and mT/mG transgenic mice that express membrane-targeted Tomato
fluorescent protein under the chicken b-actin promoter40 were described
previously. All mice were maintained in specific pathogen-free conditions at the
Centenary Institute animal facility. All experiments were performed in accordance
with protocols approved by the Animal Ethics Committee at the University of
Sydney and the Sydney Local Health District Animal Welfare Committee.

Adoptive transfers and influenza A virus infection. CD8þ T cells from spleen
and LNs of Fucci/OT-I mice were purified using anti-CD8a-conjugated microbe-
ads (Miltenyi Biotec) and labelled with 5 mMCell Trace Violet (CTV, Invitrogen) in
pre-warmed PBS at 106ml� 1. Labelling was performed by incubating in a 37 �C
water bath for 20min and stopped by adding 100% fetal calf serum (FCS) and
followed by incubation in RPMI with 10% FCS. Cells were washed twice using PBS
and counted. Labelled Fucci/OT-I cells (106) were adoptively transferred into
B6.SJL/Ptprca or Fucci/B6.SJL/Ptprca mice. On the next day, the mice were
anaesthetized by intraperitoneal injection of Ketamine/Xylazine (80/10mg kg� 1)
and infected intranasally with 100 plaque-forming units of OVA257–264 peptide
expressing influenza virus A/Puerto Rico/8/34 (PR8-OVA29; kindly provided by Dr
S. Turner, University of Melbourne) in 30 ml PBS.

Flow cytometry. Isolation of cells from lungs, MLNs and spleens, and surface
staining was performed as described previously54. Cell suspensions from lungs
were obtained by digestion with 2mgml� 1 collagenase IV (Sigma-Aldrich) for
20min in an air incubator at 37 �C. To obtain single-cell suspensions, tissue was
passed through a metal cell strainer (80 mm; Sefer filters). Cells were washed with
fluorescence-activated cell sorting (FACS) buffer (2% FCS, 2mM EDTA and 0.02%
sodium azide/1� PBS) and incubated with anti-CD16/32 (2.4G2; BD Biosciences)
for blocking Fc receptors. Cells were stained with biotin or fluorochrome-
conjugated primary antibodies for 30min on ice. Antibodies used for flow
cytometry were purchased from BD Biosciences (CD8; 53-6.7, CD27; LG.7F9,
CD44; IM7, CD45.2; 104), Biolegend (CXCR3; CXCR3-173, Ly6C; HK1.4),
eBioscience (CD45.1; A20, CD62L; MEL-14, CD71; R17217, KLRG-1; 2F1, IL-7Ra;
P84, IL-15Ra; DNT15Ra) or Invitrogen (SA-Alexa Fluor 594, SA-Alexa Fluor 647)
and were used at a dilution of 1/400–1/2,000. After staining, cell suspensions were
resuspended in 0.25 mgml� 1 propidium iodide (PI; Molecular probes) or
0.5 mgml� 1 40 ,6-diamidino-2-phenylindole (DAPI; Molecular probes) containing
FACS buffer for exclusion of dead cells. Data were collected on a LSRII or Fortessa
(BD Biosciences) and analysed with FlowJo software (Tree Star). Cell sorting was
performed using a BD Aria II (BD Biosciences).

BrdU labelling in vivo. On day 7 p.i., influenza virus-infected mice were intra-
peritoneally injected with 100ml of 1mgml� 1 BrdU (BD Biosciences) at 3, 5 and
8 h prior to tissue harvest. Cell suspensions from spleens of infected mice were
stained for surface markers, and BrdUþ cells were identified using the BrdU Flow
Kit according to the manufacturer’s specifications (BD Biosciences).

Whole-mount confocal microscopy. On day 7 after infection, lungs were har-
vested and fixed in 10% sucrose, 4% formaldehyde solution at 4 �C overnight. The
lungs were embedded in 4% agarose (Sigma-Aldrich) prepared in triple-distilled
water and cut as 200-mm sections with a vibratome (Vibratome 1000 Classic; SDR).
Staining was performed by incubating sections with purified anti-mouse CD45.2
antibody (eBioscience) and anti-laminin antibody (L9393; Sigma-Aldrich) over-
night at 4 �C. The section was washed with 10% of FCS and incubated with Alexa
Fluor 594 goat anti-rabbit IgG (Invitrogen) and Alexa Fluor 647 goat anti-rat IgG
(Invitrogen) at 4 �C for 4 h. After washing, the sections were mounted on slides
using Mounting medium (DAKO) and imaged with a SP5 confocal microscope
(Leica Microsystems) with � 63 oil immersion objective (HCX PL APO 63� /
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Figure 9 | Proposed model for the development of early-memory

precursors. Naive Fucci CD8þ T cells are mKO2hi small cells in the

G0 phase with high CD62L expression levels. Following virus infection,

antigen-activated CD8þ T cells enter the cell cycle and downregulate

CD62L expression. During the vigorous expansion phase, most of the

activated CD8þ Tcells increase in size and are found as mAGþ or DN cells

reflecting fast cell divisions accompanied by intermediate CD62L levels

(around days 4–6). On day 7 p.i., the proliferative CD8þ T-cell pool starts

to segregate into the smaller CD62Lhi mKO2þ central memory precursor

cells, and the larger CD62Llo phenotype cells, which maintain proliferation

and differentiation into terminal effector cells.
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1.4� 0.60 OIL Lbd Bl; Leica Microsystems). The maximum intensity z-projection
images were generated using Volocity software (PerkinElmer).

In vitro CD8þ T-cell stimulation and live-cell imaging. CD8þ T cells from
spleen of naive Fucci/OT-I mice were purified and labelled with CTV as described
above. Cells were stimulated with plate-bound anti-mouse CD3e mAb
(1.0mgml� 1; 145-2C11; BD Biosciences) and anti-CD28 mAb (0.5 mgml� 1; 37.51;
BD Biosciences) in T-cell medium (TCM) consisting of RPMI 1640, 10% of FCS,
1mM sodium pyruvate, 10mM HEPES, 100Uml� 1 penicillin, 100mgml� 1

streptomycin and 50mM 2-mercaptoethanol (Gibco). On the next day, cells were
washed and cultured in TCM with 10 ngml� 1 rIL-2 (R&D Systems). The cells
were then collected on day 2 or 4 after stimulation and stained with anti-CD8a-
APC-Cy7 antibody and PI for dead-cell exclusion and sorted with a BD Aria II
(BD Biosciences). PI-negative cells were further gated for CD8 positivity and into
the 1st, 3rd and 8th generations according to the CTV dilution profile. Sorted cells
were washed and resuspended in 10 ngml� 1 rIL-2 containing TCM and loaded
onto microgrid arrays55 (Microsurfaces Pty. Ltd.) inside a four-well chamber
coverglass slide (Lab-Tek II 155382; Nunc). The chamber slide was filled with
1,000 ml of rIL-2 containing (10 ngml� 1) TCM and set to an environment-
controlled (37 �C, 5% CO2) TCS SP5 confocal microscope (Leica Microsystems).
Time-lapse images were captured by 20� 0.5 numerical apperture objective (HCX
PL � 20/0.50 FLUOTAR; Leica) every 3–4min for 66–90 h with 6–8 stacks at
0.8–1.2 mm of the z-plane.

Single-cell tracking and analysis of time-lapse imaging. Time-lapse image files
were converted into movie format using Volocity software (PerkinElmer) to track
cells. Only wells containing single cells at the beginning of imaging were selected
and tracked manually for sequential cell division until the end of imaging. If cells
exited from the well or if other cells entered the same well, or if the cells died
during imaging, wells were excluded from further analysis. Cell death was
determined by cell morphology in bright-field images. The cell cycle times of
tracked cells were measured and subjected to frequency distribution and
correlation analysis using Spearman’s rank correlation coefficient45,46. For the
permutation test, the raw data of cell cycle time from tracking cells in generation
8 were randomized and subjected to correlation analysis.

In vitro stimulation with OVA peptide. Total splenocytes from Fucci/OT-I were
incubated with Kb-restricted ovalbumin-derived SIINFEKL peptide (100 ngml� 1,
Auspep) in TCM for indicated times before FACS analysis.

Quantitative real-time RT–PCR. Sorted populations from influenza virus-infected
mice spleens were applied for quantitative PCR. Total RNA was extracted using
Trizol reagent (Invitrogen) according to the manufacturer’s instructions. Reverse
transcription (RT)–PCR was carried out with the Maloney MLV reverse tran-
scriptase with Oligo (dT)15 Primer (Promega). Quantitative real-time PCR was
performed using a Mx3000P qPCR system with MxPro qPCR software v2.0
(Stratagene) with SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich). The
target specific primers were as follows: mHPRT, 50-GTTGGAGACAGGCCAGACT
TTGTTG-30 and 50-GAGGGTAGGCTGGCCTATAGGCT-30 ; mELF4, 50-CGGAA
GTGCTTTCAGACTCC-30 and 50-GGTCAGTGACAGGTGAGGTA-30 ; mKLF2,
50-CCAACTGCGGCAAGACCTAC-30 and 50-AGTCGACCCAGGCTACAT
GTG-30 ; mS1P1R, 50-GTGTAGACCCAGAGTCCTGCG-30 and 50-AGCTTTTCC
TTGGCTGGAGAG-30; mIFN-g, 50-GAGGAACTGGCAAAAGGATG-30 and
50-TGAGCTCATTGAATGCTTGG-30 ; mIL-2, 50-GACACTTGTGCTCCTTG
TCA-30 and 50-TCAATTCTGTGGCCTGCTTG-30 (refs 56,57).

Whole-transcriptome microarrays. The larger or smaller sized cells of DAPI�

CD8þ CD45.1�CD45.2þ cells from PR8-OVA infection on day 7 p.i. or in vitro
culture after stimulation with SIINFEKL peptide (100 ngml� 1) were sorted with
high purity. For CD8þ T-effector controls, cells were prepared from SIINFEKL-
stimulated OT-I cells after 4 days in vitro culture. Effector memory (CD8þ

CD44hiCD62Llo) and central memory (CD8þCD44hiCD62Lhi) cells were sorted
from the spleens of influenza virus-infected C57BL/6 mice on day 42 p.i. Naive
CD8þCD44loCD62Lhi cells were sorted from uninfected C57BL/6 mice. Total
RNA was extracted using the miRNeasy Micro Kit (Qiagen) from freshly sorted
cells. The quality of RNA was checked using the RNA6000 Nano LabChip kit and
2100 Bioanalyzer (Agilent Technologies). RNA quantities were determined using
the NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Labelling,
hybridization to Affymetrix GeneChip HT MG-430 PM Array Plate (Affymetrix)
was performed by the Ramaciotti Centre for Gene Function Analysis (University of
New South Wales, Sydney, Australia). Analysis of microarray data was performed
using limma under the Bioconductor package in R58. Normalization was
performed using the justRMA algorithm, and differential expression was calculated
using the lmfit and ebayes models. The microarray data have been deposited
to the National Center for Biotechnology Information Gene Expression
Omnibus under accession number GSE48219. Gene set enrichment analysis
(www.broadinstitute.org/gsea) was performed to determine whether the predefined

gene sets are enriched in the T-cell samples of interest by setting significant P less
than 0.05 and false discovery rate less than 0.25 in the online tool.

Statistical analyses. Unless otherwise indicated, the Student’s t-test (unpaired),
Mann–Whitney U-test, two-way analysis of variance and w2-test were performed
using Prism software (Graphpad). Significance was assumed if Po0.05.
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