
ARTICLE

Received 22 Aug 2014 | Accepted 12 Jan 2015 | Published 17 Feb 2015

Unveiling pseudospin and angular momentum in
photonic graphene
Daohong Song1, Vassilis Paltoglou2, Sheng Liu3,4, Yi Zhu5, Daniel Gallardo4, Liqin Tang1, Jingjun Xu1,

Mark Ablowitz6, Nikolaos K. Efremidis2 & Zhigang Chen1,4

Pseudospin, an additional degree of freedom inherent in graphene, plays a key role in

understanding many fundamental phenomena such as the anomalous quantum Hall effect,

electron chirality and Klein paradox. Unlike the electron spin, the pseudospin was traditionally

considered as an unmeasurable quantity, immune to Stern-Gerlach-type experiments.

Recently, however, it has been suggested that graphene pseudospin is a real angular

momentum that might manifest itself as an observable quantity, but so far direct tests of such

a momentum remained unfruitful. Here, by selective excitation of two sublattices of an

artificial photonic graphene, we demonstrate pseudospin-mediated vortex generation and

topological charge flipping in otherwise uniform optical beams with Bloch momentum

traversing through the Dirac points. Corroborated by numerical solutions of the linear

massless Dirac-Weyl equation, we show that pseudospin can turn into orbital angular

momentum completely, thus upholding the belief that pseudospin is not merely for

theoretical elegance but rather physically measurable.
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G
raphene, a two-dimensional honeycomb lattice of carbon
atoms, has been highly touted and tested as an
extraordinary material for many applications, apart from

elucidating fundamental phenomena in quantum and condensed
matter physics1–4. Central to this enthusiasm is the unique
electronic band structure of the graphene lattice, which exhibits a
linear energy dispersion relation in the vicinity of the so-called
Dirac points. Electrons around these Dirac points behave as
massless relativistic particles. Although extracting a single atomic
layer of graphite (as ‘natural’ carbon-based graphene) can be
readily accomplished nowadays with simple laboratory
techniques3, there is a surge of interest recently in creating
‘artificial’ graphene systems; not only for electrons but also for
atoms, photons and polaritons. These include, for example,
nanopatterning of two-dimensional electron gases, assembling
molecules on metal surfaces, trapping ultracold atoms in optical
lattices and engineering coupled micropillars in semiconductor
microcavities5–13.

Artificial graphene can provide a tunable platform to explore
physical phenomena that are otherwise difficult or impossible to
achieve in natural graphene. In particular, photonic graphene
(a honeycomb array of evanescently coupled waveguides14) has
proven to be a useful tool for investigating graphene physics in
various optical settings15–23. As photonic lattices offer exquisite
control over initial conditions and allow for monitoring the actual
wavefunction (including phase), it is possible to directly observe
graphene wave dynamics using classical light waves in regimes
not accessible in natural graphene. Exemplary successes
include the recent demonstrations of defect-free Tamm-like
edge states20,21, strain-induced pseudomagnetic fields and
photonic Landau levels22, and the photonic Floquet topological
insulators23.

Another intriguing concept in graphene is the ‘pseudospin’,
introduced initially due to the mathematical analogy between the
graphene sublattice degree of freedom and the electron spin in
the original Dirac equation. It has certainly turned into one of the
paradigms of graphene physics1–4. Although recent experiments
with angle-resolved photoemission spectroscopy has led to direct
probing of the Berry phase in graphene systems24, the pseudospin
itself is considered to be unmeasurable. This is simply because
that, unlike the electron spin, the pseudospin is not detectable by
any magnetic field even if it corresponds to an angular
momentum (AM)25,26.

In this letter, by use of photonic graphene as a test bed, we
investigate the pseudospin and its associated AM. In our optical
setting, we can selectively excite each of the two sublattices of
photonic graphene, breaking the degeneracy introduced by the
two inequivalent atomic sites in the honeycomb lattice (HCL),
and thus unveiling the underlying physics of pseudospin.
Specifically, we employ two different methods to alternatively
excite one of the two sublattices forming the photonic graphene,
and observe the vortex generation when an initially vortex-free

probe beam with Floquet momentum in the vicinity of the Dirac
points travels through the lattice. Moreover, the topological
charge of the generated vortex flips as the excitation of the probe
beam moves from one sublatttice to another. By comparing our
experimental results with numerical and theoretical analyses of
the linear massless Dirac-Weyl equation, we show that the
observed vortices (optical beams carrying orbital AM27) are a
direct consequence of the AM transfer from the lattice to the
probe beam. Unlike the electron spin, such pseudospin AM is not
associated with any intrinsic property of particles, but rather
arises from the substructure in space (sublattices) that the
particles (or wave packets) live in. Our work may lead to new
insights of pseudospin-mediated fundamental phenomena in
both natural and artificial graphene systems.

Results
Pseudospin-mediated vortex generation by three-beam excitation.
The HCL is composed of two inter-penetrating triangular sub-
lattices, whose representing lattice sites are denoted by A and B as
shown in Fig. 1a. The band gap structure b(kx, ky) plotted in
Fig. 1b is calculated from the following paraxial Schrödinger-type
equation describing light propagation in the photonic lattice14:

i
@Cðx; y; zÞ

@z
¼ � 1

2k0
r2C x; y; zð Þ� k0Dn x; yð Þ

n0
Cðx; y; zÞ

� H0C;

ð1Þ
where C is the electric field envelope of the probe beam, x, y are
the transverse coordinates, z is the longitudinal propagation
distance, k0 is the wavenumber, n0 is the background refractive
index of the medium, and Dn is the induced index change
forming the HCL. In equation (1), H0 is the continuous
Hamiltonian of the system, whose eigenvalues are
the wavenumbers along the z-direction (that is, the propagation
constant b). From Fig. 1b, one can see clearly the touching of two
bands at the six Dirac points, where the Floquet-Bloch dispersion
relation is linear (Fig. 1c). These Dirac points are located at the
corners of the first Brillioun zone (BZ) of the HCL, noted as
K and K0 in Fig. 1d. Applying the coupled mode theory (under the
tight-binding approximation) to equation (1), one can obtain a
two-band simplified description of the paraxial model17. In the
continuous limit and for excitations near the Dirac points, the
coupled mode equation turns into the linear Dirac equations
typically used for describing massless Dirac particles in graphene:

i@zcA þ @x � im@y
� �

cB ¼ 0

i@zcB � @x þ im@y
� �

cA ¼ 0;
ð2Þ

where m¼ (� 1)m¼±1, and m¼ 0,y,5 is the index of the six
Dirac points shown in Fig. 1d. The associated Hamiltonian can be
written as H¼ sypx�msxpy, where p¼ (px, py) is the Bloch
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Figure 1 | Schematic of the lattice and band structure of the honeycomb lattice. (a) Honeycomb lattice structure of graphene, where arrows

illustrate the pseudospin representation of honeycomb sublattice (A or B) degree of freedom. (b) The band gap structure of graphene lattice exhibiting

six Dirac points. (c) Zoom-in of the linear dispersion close to one of the Dirac points. (d) The first Brillouin zone of the lattice where the locations

of two inequivalent corners are marked by K and K0.
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momentum measured from the Dirac points, r¼ (sx,sy) are the
Pauli matrices3. Detailed derivations and analysis of equation (2)
are presented in the Supplementary Information section. Thus, an
optical beam with Bloch momentum at the close vicinity of Dirac
points is governed by the Dirac equation, akin to massless Dirac
Fermions in graphene. The amplitude of the optical wave in the
spatially separated sublattice sites (marked as A and B in Fig. 1a)
is modelled by the two-component spinor function with
components cA and cB, respectively. Therefore, as we shall
elaborate below, the sublattice states play the role of electron
spins, typically referred to as ‘pseudospin’. In light of such an
analogy, a natural question arises: is the lattice spin associated
with real AM25 observable in our optical setting?

To answer the above question, we first perform a numerical
beam propagation simulation of the paraxial equation
(equation (1)) to illustrate the pseudospin-mediated vortex
generation by sending three interfering plane waves as a probe
to the HCL (Fig. 2a). The three input wave vectors point at three
alternative Dirac points (K or K0), thus the two sublattices can be
selectively excited by the probe beam, which exhibits a triangular
lattice pattern (Fig. 2e). Specifically, in the first setting (three
waves of equal phase), only sublattice A is excited (Fig. 2b). In the
second setting (three waves of a 2p/3 phase difference in k-space),
only sublattice B is excited but not sublattice A (Fig. 2f).
Surprisingly, although the output intensity of the probe beam
displays a similar conical diffraction pattern14,28 as shown in
Fig. 2c,g, their phase structure as monitored from interferograms
is dramatically different. In both cases, a global singly charged
vortex is created, as identified by a fork bifurcation in the central
fringes, although the topological charges are opposite (Fig. 2d,h).
It should be noted that the input beam initially contains no phase
singularity. In addition, when both sublattices A and B are
simultaneously excited or when the HCL is replaced by a single
triangular lattice, no integer vortex is generated. These results
suggest that the vortex generation and topological charge flipping
is a direct consequence of the special symmetry and sublattice
degree of freedom of the HCL, which will be confirmed later by
introducing the total AM and directly solving the Dirac equation.

Next, we experimentally demonstrate the pseudospin-mediated
vortex generation in a photonic graphene system—the HCL is

created by optical induction, which translates lattice intensity
pattern into refractive index change in a photorefractive
nonlinear crystal29–32. A detailed description of the
experimental setup is given in the Methods section. Typical
results are shown in Figs 3 and 4, which correspond to two
different methods of selectively exciting the two graphene
sublattices. The index change associated with the HCL is about
1.5� 10� 4, and the lattice constant is about 7 mm (Fig. 3a). The
BZ spectrum of the induced lattice shown in Fig. 3b is measured
separately using BZ spectroscopy with incoherent light33. In the
first method, three broad Gaussian beams forming a triangular
lattice pattern (Fig. 3e) are carefully aimed onto the three Dirac
points in the first BZ (Fig. 3f). To selectively excite the two
sublattices in the same experimental setting, the probe lattice has
the same period as the sublattices and it can be readily translated
along the transverse direction by moving the focus lens. Note that
the intensity/polarization of all beams is chosen such that there is
no nonlinear self-action of the probe beam. Clearly, when the
probe beam excites only sublattice A (Fig. 3c) or sublattice B
(Fig. 3g), there is not much difference in the output intensity
pattern after propagating 2 cm through the HCL, as in both cases
the beam exhibits a low intensity in central region due to conical
diffraction. However, the interferograms obtained with an
inclined reference plane wave indicate that not only is a singly
charged optical vortex created in each case, but also the
topological charge is flipped (opposite fringe bifurcation) when
the excitation shifts from sublattice A to B (Fig. 3d,h). Under the
same excitation condition, if the HCL is reconfigured into a single
triangular lattice (that is, only one sublattice is present), no fringe
bifurcation is observed in the interferograms. Likewise, when the
HCL is completely blocked, the three input beams propagate
independently and no vortex is observed whatsoever. These
simple tests indicate clearly that the observed vortex is not in any
way related to experimental artefacts. In fact, our experimental
observations agree well with the simulation results of Fig. 2.

Pseudospin-mediated vortex generation by two-beam excitation.
In the second method, only two interfering beams are used as the
probe, so only two Dirac points are initially excited (Fig. 4a).

A

B

Figure 2 | Numerical simulation of pseudospin-mediated vortex generation in photonic graphene. (a) The honeycomb lattice, and (e) the input

triangular lattice as a probe formed by three-beam interference. (b,f) Superimposed patterns (zoomed in) when only sublattice A (top row) or B

(bottom row) is excited. The output intensity patterns of the probe beam exhibit similar conical diffraction (c,g), but the interferograms obtained

with an inclined plane wave reveal opposite phase singularities in the centre (d,h) due to excitation of different pseudospin states (Parameters for

simulation are chosen close to those from experiment: the lattice spacing is 7 mm, the strength of refractive index modulation is 2� 10�4 and the

propagation distance is 20mm).
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Nevertheless, due to the HCL symmetry and Bragg reflection,
a new spectrum component emerges at the corresponding third
Dirac point (Fig. 4e). Amazingly, the far-field intensity pattern of
this new component (after a Fourier transform from momentum
k-space back to real space) exhibits opposite vortex singularities
as the two beams selectively excite sublattice A or B, revealed by
the phase pattern obtained from both experimental interferogram
(Fig. 4c,g) and numerical simulation (Fig. 4d,h). These results
indicate again that the observed vortices and associated charge
flipping arise from the honeycomb sublattice degree of freedom,
that is, the pseudospin.

Theoretical analysis with the Dirac equation. To gain further
insight of the underlying physics of pseudospin and unveil its AM,

we directly analyse the normalized Dirac equation (equation (2)).
Unlike the single-wavefunction description of the paraxial Schrö-
dinger equation (equation (1)), the wave dynamics in the Dirac
system is directly mapped into the two-component spinor wave-
function with components cA and cB. Consequently, there is
absolutely no meaning in any form of interference between these
two components. However, it is physically relevant to separate
the wavefunction of the paraxial equation C(r,z) discretely
according to its spatial location as CAðr; zÞ ¼ CðRA

m;n; zÞ and
CBðr; zÞ ¼ CðRB

m;n; zÞ, where RfA;Bg
m;n are the position vectors of

the sublattice elements A and B with indices (m,n) located in the
same Wigner-Seitz cell as r ¼ x̂xþ ŷy. We introduce the total
AM along z-direction as J¼ Lþ S, where L ¼ ðr�pÞ � ẑ is the
orbital AM, S¼ msz/2 is the pseudospin (m¼ 1 or � 1, and sz is
the respective Pauli matrix), p̂ ¼ � ir. The average total lattice

K
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Figure 3 | Experimental observation of vortex generation by initial excitation of three Dirac points. (a) The honeycomb lattice optically induced

in a nonlinear crystal, and (e) the probe beam at the input to the lattice containing no phase singularity. (b) Measured Brillouin zone spectrum of the

induced lattice, and (f) the k-space spectrum of the input beam matching the three marked Dirac points in b. The white dashed lines mark the first BZ.

(c,g) Output intensity patterns when only sublattice A (top row) or B (bottom row) is excited. The inserts illustrate the selective excitation of two

sublattices by the probe beam corresponding to Fig. 2, which leads to opposite vortex singularities as identified from the interferograms (d,h).

A

B

Figure 4 | Experimental observation of vortex generation by initial excitation of two Dirac points. (a) The input intensity pattern and k-space spectrum

of the probe beam from two-beam interference, and (e) its output spectrum. Notice the new spectral component appearing at the third Dirac point

due to Bragg reflection. (b,f) Output far-field intensity patterns generated at the third Dirac point when only sublattice A (top row) or B (bottom row)

is excited. The insets illustrate the selective excitation of two sublattices by the probe beam. (c,g) Opposite vortex singularities observed from the

interferograms of b and f. (d,h) Output phase structure obtained from corresponding numerical simulation, where the opposite singularities are illustrated

by the white arrows.
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AM with respect to the spinor wavefunctions cA and cB is then
given by

Jh i ¼ Lh iþ Sh i

¼
Z
R2

Z
� ic�

A
@

@f
cA � ic�

B
@

@f
cB þ

m
2

cAj j2 � cBj j2
� �� �

dx dy:

ð3Þ

As an example, when m¼ 1, any excitation of sublattice A (or B)
will have a positive (or negative) contribution to the total AM of
the system.

Typical numerical and analytical results obtained from the
above Dirac equation are presented in Fig. 5a,b. Details of the
calculations are given in the Supplementary Information section.
To selectively excite a pseudospin eigenstate, we first separate
the wavefunctions and the Floquet-Bloch modes discretely
according to its spatial location in the two sublattices, and
then solve the Dirac equation numerically with a Gaussian
modulation of the separated Bloch modes as initial condition:

CfA;Bgðr; z ¼ 0; mÞ ¼ ufA;BgKm
ðrÞe� r=r0ð Þ2=2, C{B,A}(r, z¼ 0; m)¼ 0,

where ufA;BgKm
are the Floquet-Bloch modes localized at {A,B}

lattice sites at Km. Note that close to the six Dirac points
m¼ 1,y,6 the Floquet modes are degenerate when m¼ 2n, and
m¼ 2nþ 1. Furthermore, even/odd values of m characterize

opposite local phase structures such that ufA;BgK2m
¼ ðufA;BgK2mþ 1

Þ�. The
respective optical field in the Dirac limit is then given by
cfA;Bgðr; z ¼ 0Þ ¼ e�ðr=r0Þ2=2 along with c{B,A}(r, z)¼ 0. At the
input plane, the pseudospin is the only term that contributes to
the total AM. However, from both the operator perspective (that
is, expressing (@xþ im@y) in polar coordinates) and utilizing the
Green’s function, it is clear that when the sublattice A (or B) is

initially excited, the field in sublattice B (or A) will be generated
with a topological charge m (or � m). This is clearly illustrated in
the numerical results of Fig. 5a. The asymptotic structure of the
beam is derived by a combination of the steepest descent
and stationary phase approximations (as detailed in the
Supplementary Material). Specifically, when the sublattice A is
initially excited, the analysis leads to

cAðr;ZÞ ¼ Fþ ðrÞe�ðZþ rÞ2=ð4r20Þ þ F� ðrÞe�ðZ� rÞ2=ð4r20Þ ð4Þ

cðmÞ
B ðr;ZÞ ¼ meimf Gþ ðrÞe�ðZþ rÞ2=ð4r20Þ þG� ðrÞe�ðZ� rÞ2=ð4r20Þ

h i
;

ð5Þ
which confirms the vortex generation in sublattice B. Likewise,
when sublattice B is initially excited, due to the transformation
cA 2 cB, x -� x, y - y (holding for the Dirac system and
thus for the above formulas), the optical field cA is generated with
opposite vorticity �m. As shown in Fig. 5b, the asymptotic
calculations are in excellent agreement with numerical results.
Importantly, both our calculation and simulation show that, at
propagation distances where the conical diffraction becomes
appreciable, the amplitude profiles of the two spinor components
become identical, thus resulting in zero lattice spin as also seen
from equation (3). In fact, the initial pseudospin is completely
transferred to the final orbital AM of the system, that is,
hSii ¼ hLif. This explains the optical vortex (AM) generation in
the HCL observed in our experiment. To substantiate our
argument, we revisit the Schrödinger equation (equation (1)) with
a HCL potential but perform numerical computations following
the above procedure of decomposing the optical field into its
spinor components. The results are shown in Fig. 5c–h, where the
interferograms of the two components are examined separately.
Evidently, when the spinor state A (or B) is excited, the initial
positive (or negative) value of the total pseudospin is converted to

−1

+1

Figure 5 | Theoretical analysis of the pseudospin-mediated vortex generation. (a,b) Pseudospin-mediated vortex generation calculated directly from the

Dirac equation. When only one of the spinor components cA (cB) is given an initial Gaussian-modulated excitation, the output intensity at z¼ 30 is

identical (top panel of a) but the corresponding phase is different. The left (right) bottom panel of a shows the vortex phase of cB (cA), whereas the other

component has uniform phase. Comparison between results from numerical solution (dark) and asymptotic calculation is shown in b. (c–h) Intensity and

phase of the output optical field obtained from numerical simulation of the paraxial model with a graphene-type HCL potential based on decomposing the

optical field into its spinor components. In the top (bottom) row, only sublattice A (B) is initially excited with a Gaussian modulation, which leads to similar

intensity patterns (c, f) but opposite phase structures. The second column (d,g) shows the interferograms of the wavefunction CA and the third column

(e,h) shows the corresponding interferograms of CB. These components CA and CB are derived by restricting the paraxial wavefuction C to the discrete

locations that are determined by the lattice elements A and B (see the relevant discussion in the text and Supplementary Information section). When the

eigenstate of the lattice spin corresponding to A (B) is initially excited, a vortex is generated in the sublattice B (A) with a topological charge þ 1 (� 1),

respectively. For illustration purposes, we crop the area outside a disk that consists almost solely of the irrelevant plane-wave contribution.
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a vortex AM with a topological charge þ 1 (or � 1) carried
completely by sublattice B (or A).

Discussion
Before closing, we emphasize that the total AM of the system J
would not be conserved but should we ignore the pseudospin,
simply because the orbital AM itself in the HCL is not conserved.
In fact, the pseudospin represents the hidden AM due to the
sublattice degree of freedom in the Dirac system of the HCL.
The transverse derivatives associated with the Dirac equation
(equation (2)) can be written as @x±i@y¼ e±iy(@r� (i/r)@y),
thus if one spinor component does not carry vorticity, the second
spinor component is going to be ‘compatible’ only if its
topological charge is þ 1 or � 1. We note that our vortex
generation and topological charge flipping is achieved by exciting
the two sublattices at the same K valley (see Fig. 3) in a uniform
(non-strained) HCL, thus no pseudomagnetic field is involved22.
The observed pseudospin AM does not result from the valley-
dependent nonzero Berry curvature at the K and K0 valleys34.
Experimentally, by exciting the same sublattice but from the two
different sets of the valleys, we were unable to see any difference.
Finally, we also mention that the concept of pseudospin could be
extended to other types of lattices, such as the Kagome and Lieb
lattices. In fact, with the Lieb lattices, it was recently suggested
that the pseudospin is not merely a mathematical formality but
rather has a physical effect35.

In summary, we have demonstrated both theoretically and
experimentally the pseudospin-mediated vortex generation in
photonic graphene. Our results indicate clearly that the
pseudospin is of real AM, observable and measurable. As this
AM arises as a direct outcome of the Dirac equation also widely
studied in graphene systems and topological insulators, we
envisage our results will have broader impact to other branches of
physics and material sciences. In addition, our work also brings
about a new mechanism to generate optical vortices which may
find applications in photonics.

Methods
Optical induction and probing the photonic graphene. The experimental
setup (see Supplementary Fig. 1) relies on the optical induction method14,29,30,
which leads to a honeycomb pattern of refractive index change in a nonlinear
photorefractive crystal. We probe the pseudospin states by launching three or two
interfering beams as the probe to the HCL, and monitor the output transverse
intensity pattern and the phase of the probe exiting the lattice. To do so, we use a
beam from an argon-ion laser operating at 488 nm wavelength and split it into two
beams, one being ordinarily polarized for ‘writing’ the HCL pattern into the crystal
and the other being extra-ordinarily polarized for probing the pseudospin states.
The writing beam passes through a rotating diffuser, turning into partially spatial
incoherent, before it is sent through a specially designed amplitude mask. The mask
generates either three interfering beams that together generate a triangular lattice
interference pattern, or six interfering beams that generate a HCL pattern. Such
intensity patterns remain invariant during propagation through the crystal. For the
experiment of Fig. 3, the HCL was generated by employing the self-defocusing
nonlinearity on the triangular intensity pattern14, as used in our previous work
with graphene edge states20. In this case, the refractive index pattern is the
‘negative’ of the intensity pattern of the lattice-inducing beam. For the experiment
of Fig. 4, the HCL was generated by employing the self-focusing nonlinearity on the
honeycomb intensity pattern, so in this latter case, the refractive index pattern
matches the intensity pattern directly36. In both cases, a honeycomb pattern of
waveguide arrays (photonic graphene) is established, with the same structure as
shown in the left insert in Supplementary Fig. 1.

The probe beams, either by interfering three beams to a triangular pattern as for
Fig. 3 or by interfering two beams to a linear fringe-like pattern as for Fig. 4, are
affected by the induced HCL and propagate under the influence thereof. In our
experiment, the probe beams are appropriately focused and fine-tuned so they are
aimed into the desired Dirac points in the first Brillouin zone of the HCL as shown
in the right insert in Supplementary Fig. 1.
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