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Capture Hi-C identifies the chromatin interactome
of colorectal cancer risk loci
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Multiple regulatory elements distant from their targets on the linear genome can influence

the expression of a single gene through chromatin looping. Chromosome conformation

capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin

contacts. However, detection of functional enhancer–promoter interactions is precluded by its

effective resolution that is determined by both restriction fragmentation and sensitivity of

the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic

characterization of these physical interactions on a genome-wide scale. Single-nucleotide

polymorphisms associated with complex diseases often reside within regulatory elements

and exert effects through long-range regulation of gene expression. Applying this cHi-C

approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin

interactions in cis and trans involving these loci.
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I
t is now recognized that the expression of a single gene is often
influenced by multiple regulatory elements that can be
kilobases (kb) to megabases (Mb) upstream or downstream

of their targets1. Physical interactions between enhancers and
promoters can be identified by chromosome conformation
capture (3C2)-based methods, which are performed through the
digestion and re-ligation of fixated chromatin followed by
enumeration of ligation junctions3. While not all physical
interactions are regulatory, in addition to cis-regulation there is
evidence for trans-interaction4–7, which may be functional.
Although powerful, only interactions that have been considered
a priori can be detected using 3C. Extensions to 3C (for example,
4C4) allow for the sampling of all possible interactions with a
constant fragment. When multiple intra- and inter-chromosomal
targets are possible, an agnostic method of detection is required.
Although Hi-C7 enables the detection of long-range interactions
on a genome-wide scale, its effective resolution, which is
contingent on restriction fragments and experimental
sensitivity, prohibits the characterization of specific interactions.

Genome-wide association studies (GWASs) have identified
single-nucleotide polymorphisms (SNPs) that are associated with
complex diseases. As far as they have been deciphered these
SNPs reside within regulatory elements and exert effects through
long-range regulation of gene expression8–10.

Here we report a novel enhancement of Hi-C using target
sequence enrichment, capture Hi-C (cHi-C), allowing for state of
the art characterization of chromatin interactomes. We apply
cHi-C to 14 colorectal cancer (CRC) risk loci11–17 to identify key
long-range chromatin interactions involving these regions.

Results
Analysis of cHi-C data. The coverage of Hi-C was increased by
enriching for specific genomic regions using RNA baits—
providing for enrichment in excess of 130-fold (Supplementary
Table 1). Local structures within the genome (fragment length
bias, GC content and mapability), as well as unequal distribution
of restriction sites can bias contact frequency7. To adjust for this,
we normalized data on the principle of overall genome-wide
interactivity adapted for cHi-C (Supplementary Equation 1;
Supplementary Fig. 1). Since contact probability decreases with
distance, the interaction frequency of any pair of intra-
chromosomal loci was distance normalized (Supplementary

Fig. 2). Hi-C contacts represent an ensemble average of
functional, steric and random chromatin interactions. To
identify relevant interactions, we analysed the underlying
distribution of events, testing for significance.

Application of cHi-C to CRC risk loci. To apply cHi-C to the
1q41, 3q26.2, 8q23.1, 8q24.21, 10p14, 11q23, 12q13, 14q22.2,
15q13, 16q22.1, 18q21.1, 19p13.1, 20p12.3 and 20q13.33 CRC risk
loci11–17, we first refined the association signals. We used meta-
data from analysis of five GWAS of CRC18. At each risk locus we
defined our regions to include all SNPs with minor allele
frequencies of 2% or greater, and that were correlated (r240.2)
with the published SNP (Supplementary Table 2). We excluded
rare SNPs and used r2 (rather than D0) as the metric for linkage
disequilibrium, since GWAS are predicated on the assumption
that the arrayed SNPs have a reasonably high correlation with
common causal variants and while rare causal variants are also
possible, they are less likely19–21.

A total of 4.68Mb comprising these regions was subjected to
cHi-C in libraries generated in LS174T, LoVo and Colo205 CRC
cell lines. Inherent to the cHi-C method, interactions with the
captured regions were generated at increased coverage on a
genome-wide scale. For each cell line, next-generation sequencing
(NGS) reads comprising two fragments (Hi-C ditags, one
fragment each from the captured region and its ligated interacting
partner, respectively) were uniquely mapped to equally sized
genomic blocks (9 and 3 kb bins) and assigned to a genome-wide
enrichment contact matrix (Supplementary Fig. 3).

We derived the chromatin interactome for the 14 risk loci,
defined as genome-wide generic chromatin interactions signifi-
cant at a 5% false discovery rate (FDR), in all of the three CRC
cell lines at 9 kb resolution (parametric test using a zero-inflated
Weibull distribution; Supplementary Data 1). These generic
contacts were observed at a significantly higher frequency to that
expected (Po10� 16, combinatorial test). Statistically significant
long-range interactions (410 kb) were shown at all 14 risk loci.
These contacts were not restricted to adjacent genes.

Transcription factor (TF)-binding-mediated chromatin inter-
actions can be detected within a certain interval of the actual core
TF-binding site (TFBS), depending on clusters formed by the
specific TF22. Therefore, we complemented the genome-wide
9-kb analysis (Supplementary Data 1) with an analysis at 3 kb
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Figure 1 | Heatmap of the 9-kb interaction matrix for the 8q24.21 capture region. Upper track shows five significant interactions (red) with two

of the test bins (green). Heatmap intensity values represent an average of the data from the three cell lines.
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resolution in close-cis (þ /� 5Mb of the risk linkage
disequilibrium (LD) block), revealing refined chromatin
interactions for nine of the 14 CRC risk loci (Supplementary
Data 2).

Interactions at specific risk loci. To date, the most extensively
studied cancer risk locus is at 8q24.21 (rs6983267)8,9,23. Figure 1
shows a heatmap for the enriched region encompassing this risk
locus with significant interactions highlighted. The majority of
interactions observed at 8q24.21 and in particular the known
interaction between rs6983267 and MYC (Fig. 2), occur within
a single chromatin interaction domain. Chromatin interactions
have been shown to segregate into Mb-sized local chromatin
domains, so-called topologically associating domains (TADs)24,25.
Interestingly, the TAD we identified at 8q24.21 in colonic tissue
(Fig. 2) overlays with and refines the corresponding TAD
boundaries identified by Dixon et al.25 in human cell lines
IMR90 and hESC (hg19/chr8:127880000–128800000 and hg19/
chr8:127920000–130840000), thus implying generic regulatory

function. At 8q24.21, we observed regulatory interactions at an
increased frequency within TADs. Specifically, in addition to
confirming the interaction between rs6983267 and MYC, we
identified the MYC-regulated long non-coding RNA (lncRNA)
CCAT1 as an upstream interactor (Fig. 2). From cHi-C analysis of
non-CRC cell lines SUM44, GM12878 and IMR90 cell lines for this
8q24.21 region, in contrast to the generic interaction upstream of
PCAT1, the interaction peak at CCAT1 was not apparent in IMR90
and GM12878 (Supplementary Fig. 4). These observations are
concordant with recent data from Xiang et al.26 showing the role of
CCAT1-L, a CRC-specific isoform of the CCAT1 lncRNA, in intra-
chromosomal looping with the MYC gene promoter regulating
MYC transcription.

At 3q26.2, several elements significantly interact withMECOM,
a transcriptional regulator and oncoprotein affecting transform-
ing growth factor-b signalling in CRC27 (Fig. 3). At 11q23,
interactions with a region encoding the uncharacterized protein
AB231705 were consistently seen at 3 and 9 kb resolution (Fig. 3).
Genome-wide analysis of the 11q23 locus revealed both far-cis-
and trans-interactions mapping close to the ETS1 oncogene28
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Figure 2 | Integrative annotation of the 8q24 risk locus. (a) Topologically associating domain (TAD) borders at 8q24.21 consistently observed in LS174T,

LoVo and Colo205 cell lines, as determined by domain calling on the directionality index (DIX). Positive and negative values indicate preferential

downstream and upstream interactivity of a bin, respectively. (b) Statistical significance of the CRC association across the region; the darker the colour

the stronger the association. The top associated SNP in the region is rs6983267. (c) Statistically significant looping interactions. Test bins in green,

interactor bins in red. (d) Regulatory elements in HCT116.
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(Fig. 3). Two different sets of looping interactions were seen at
14q22.2, consistent with genetic association data, suggesting
the existence of two independent risk loci17 (Supplementary
Figs 5–22). The high chromatin interactivity at 14q22.2 reflects a
high density of promoters and enhancers in this region. For the
15q13, 18q21.1 and the 20p12.3 loci, the interaction network
identifies a target gene proximal to the risk variant and regulated
by distal elements. For others, conversely, the network suggests
risk loci to participate in far-cis- and trans-regulation of genes
implicated in cancer, including TRPS1 (8q23)29, TPO (10p14)30,
VEZT (12q13)31 and RAN (12q13)32, all recurrently mutated in
CRC33,34 (Supplementary Figs 5–22).

To validate cHi-C results for 3q26.2, 8q24.21, 11q23 and
14q22.2, we used 4C-seq to examine close-cis-interactions
(20 interactions, four viewpoints overlapping significant cHi-C
contacts) in CoLo205, LoVo and LS174T cell lines. In all cases,
significant cHi-C contacts were reflected consistently in the
4C-seq profiles (Fig. 4). In addition we designed fluorescence
in situ hybridization (FISH) probes to validate seven far-cis-
(45Mb) and seven trans-cHi-C interactions (Supplementary
Table 3; Fig. 5) as an orthogonal methodology4. Seven of the
assays were informative in terms of probe specificity and minimal
number of counts required to establish a statistically significant
relationship between probe co-localization (Supplementary
Table 3). For these, co-localization frequencies were all
significantly higher than background frequencies (Po0.05
Fisher’s exact test; also significant after FDR correction;
Supplementary Table 3).

Contacts are enriched at functional motifs. We integrated
the CRC risk interactome with association fine-mapping and
epigenetic profiling data defined by ChromHMM (Methods).
Within GWAS signals, chromatin interactions were significantly
enriched at sites overlaying the strongest SNP association
(P¼ 8.54� 10� 3 Fisher’s exact test; Supplementary Table 4).
cHi-C contacts were enriched for regulatory elements (both
enhancers and promoters: Po10� 7 Fisher’s exact test), and this
enrichment showed evidence for being tissue specific (Methods;
Supplementary Table 6). Functional chromatin interactions have
been proposed to arise from specific TF binding3,35. Integrating
cHi-C data with CRC-specific TFBSs identified by chromatin
immunoprecipitation (ChIP)-Seq (433 TFs in LoVo cells),
chromatin interactions were significantly enriched for shared
TFs (P¼ 1.14� 10� 14 Fisher’s exact test; Supplementary Fig. 23).
A priori this may be reflective of an increased specific TF binding
at functional variants. While not universal, there is evidence that
evolutionary conservation can be indicative of regulatory
elements36. It was therefore possible to delineate SNPs with
evidence for being causative on the basis of their profiles for
evolutionary conservation, TF binding and chromatin state
(Methods; Supplementary Table 5).

Discussion
To increase the effective resolution of conventional Hi-C by a
factor of n requires n2 sequencing reads, which is therefore
prohibitive for general implementation. In contrast, the target
sequence capture approach described herein allows for increasing
the effective resolution in an approximately linear fashion, and
therefore represents a far more cost-effective approach to
identifying important chromatin interactions. HindIII restriction
sites are located in the human genome at an average of 3 kb apart,
limiting the intrinsic resolution that can be achieved. Experi-
mentally, the effective resolution of cHi-C is also dictated by the
coverage, which impacts both on the normalization and the
statistical modelling procedure. The iterative bias normalization
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Figure 3 | Annotation of significant chromatin interactions at 3q26.2

and 11q23. A genome-wide analysis at 9 kb resolution of 3q26.2 (b) and

11q23 (d) and a close-cis- (±5Mb) analysis at 3 kb resolution of the

same two regions (a,c) were performed.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7178

4 NATURE COMMUNICATIONS | 6:6178 | DOI: 10.1038/ncomms7178 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


procedure, adapted from the iterative correction and eigenvector
decomposition (ICE) protocol37, applied to our data set was
shown to converge at the intrinsic 3 kb resolution for close-cis
(o5Mb) and at a three times lower resolution (9 kb) for genome-
wide contacts, respectively (Supplementary Fig. 24). Furthermore,
we were able to fit a parametric distribution to the resulting
normalized reads (that is, convergence to a stable maximum of
the likelihood optimization; Supplementary Fig. 25).

In our application of cHi-C to examine the CRC risk loci,
in addition to identifying long-range cis-interactions our
observations provide evidence to support the previously reported
existence of trans-interactions4–7. While such inter-chromosomal
interactions can be predicted from nuclear organization, it
remains to be established whether they have direct functional
significance.

The risk loci identified by GWAS are providing novel insights
into disease biology. Compared with the great number of risk loci
identified, the functional basis of only a limited number have,
however, been elucidated to date. Where a GWAS association
signal can be unambiguously assigned to a single SNP or can be
defined by a restricted set of SNPs mapping to a small genomic
region, 4C-seq38 undoubtedly provides a powerful method for the
sampling of all possible interactions with such a constant
fragment. However, in most cases the regions of association are
not so well defined requiring multiple interrogations. The
introduction of cHi-C provides an agnostic means of rapidly
exploring many large genomic regions as viewpoints in contrast
to 4C-seq. Contemporaneously with our cHi-C methodology has
been the introduction of Capture-C39, which allows for the
identification of close-cis-regulatory elements for a number of
regions in a single experiment. Capture-C may afford better
resolution to cHi-C, as it is based on a four-base pair (bp)
restriction cutter, as compared with our current implementation
of cHi-C, which has been based on a six-bp cutter. While there
are no filtering statistics so far for Capture-C, the absence of a
biotin pull-down may have the consequence that cHi-C may offer
a superior signal to noise ratio compared with Capture-C, cHi-C
addressing non-ditag fragment background contamination.
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Figure 4 | 4C-seq analysis of cHi-C contacts at different genomic regions. The top three tracks of each panel show 4C-seq interactions for Colo205,

LoVo and LS174T cell lines with significant Hi-C contacts overlapping the 4C-seq viewpoint on the fourth track. Genes and transcripts mapping to

respective regions are also shown. The 4C-seq viewpoints have been indicated as light-blue-shaded boxes and with arrows pointing at them.

(a) 3q26.2, (b) 8q24.21, (c) 11q23 and (d) 14q22.2.

Figure 5 | Analysis of co-localization frequencies at cHi-C contacts using

interphase FISH. Three-colour probe sets were designed to cover cHi-C

test bins (green), far-cis-interactor bins (red) and control elements (blue),

the latter picked randomly at B5Mb distance from the interactor bin

(Supplementary Methods; Supplementary Table 3). Shown are

representative raw (left) and in silico processed (right) images from

probe set cis_5 (Supplementary Table 3) applied onto interphase nuclei of

LS174Tcells (scale bars, 5mm), confirming the significant cHi-C interaction

at the 18q21 risk locus (9kb_contact_135; Supplementary Data 1).

(a) Co-localization of the test bin with the cHi-C interactor bin.

(b) Co-localization of the test bin with the control element. Co-localization

of cHi-C interactions as shown in a was observed at significantly higher

frequency compared with random background co-localization as shown

in b (Supplementary Table 3).
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Here our analysis has been predicated on observing significant
interactions in all three CRC cell lines subjected to cHi-C. While
this has afforded an opportunity to reveal generic interactions
that play a role in divergent aetiologies, we acknowledge that it is
likely that cell-specific interactions will exist in CRC; additionally,
some may be specific to cell lines rather than CRC per se.

Our analysis has revealed a complex interaction network for
most of the risk loci often implicating bi-directional regulation, as
well as long-range interactions. While these remain to be
elucidated, we were able to confirm documented interactions
and reveal novel interactions between these and plausible
biological candidates, thus extending knowledge of salient
networks. At 8q24, in addition to confirming the interaction
between rs6983267 and MYC, we identified CCAT1 as an
upstream interactor. CCAT1 is upregulated in CRC40,41 and
intriguingly CCAT2, another lncRNA that is encoded by the
rs6983267 locus, is a regulator of MYC and a Wnt target42.
Collectively, these data suggest a regulatory network involving
looping interactions between CCAT2, CCAT1 and MYC, as well
as Wnt-feedback regulation.

Similarly, the cHi-C contacts between MECOM and the strong
promoter signal at TERC suggest common regulation of both
cancer genes. Moreover, these data are consistent with variation
affecting TERC as the genetic basis of the 3q26.2 association43.
At 11q23, interactions with the region encoding AB231705 map
to C11orf53, C11orf92 and C11orf93, which have recently shown
to be the functional basis of the 11q23 association44.

Overall, the chromatin contacts within the CRC risk
interactome preferentially map to regulatory elements consistent
with the tenet that many of the common CRC susceptibility loci
influence transcriptional regulation networks. The significant
improvement in effective resolution of cHi-C over conventional
Hi-C allows us to identify interacting regions and refine
association signals. In combination with additional high-
resolution techniques, this should allow for delineation of specific
interacting motifs. Our study therefore provides the basis for
furthering our understanding of the mechanisms underscoring
GWAS signals for complex diseases.

Methods
Definition of CRC risk loci. The strength of SNP associations at each of the CRC
risk loci was defined from a previously published meta-analysis of five GWASs of
Northern European ancestry totalling 5,626 CRC cases and 7,817 controls18.

cHi-C experiments. The application of target sequence capture to the Hi-C
protocol is outlined in Supplementary Fig. 26.

Cell culture and formaldehyde crosslinking. Hi-C experiments were performed
in three CRC cell lines, LS174T, LoVo and Colo205, grown in Eagle’s minimal
essential medium (with 1% non-essential amino acids), Ham0s F12 and RPMI 1640,
respectively, complemented with 2mM glutamine and 10% fetal bovine serum. Cell
lines were obtained from ‘Cancer Research UK Cell Services’, London, UK.
Formaldehyde crosslinking of 10–30 million cells was performed by substituting
standard culture media with fetal bovine serum-free media containing 2%
formaldehyde for 5min at room temperature. Crosslinking was quenched by
addition of glycine to a final concentration of 125mM. Adherent cells (LS174T and
LoVo) were scraped off the culture flask after crosslinking. Cells were washed twice
with cold PBS, snap-frozen in liquid nitrogen and stored at � 80 �C before
preparation of the Hi-C library.

Hi-C library preparation. Hi-C library preparation, comprising cell permeabili-
zation, chromatin fixation, HindIII digestion, biotin labelling, ligation and crosslink
reversal was performed as described in van Berkum et al.45 with the following
minor changes: (i) prior to biotin labelling, samples were incubated at 65 �C for
25min with SDS, subsequently quenched by Triton-X and both reagents added at a
final concentration of 1.3%. (ii) The final concentration of biotinylated dCTP
during labelling was 0.025mM. (iii) Following proteinase-K digestion of the
post-ligation sample RNA was digested by addition of 40 mgml� 1 RNAse-A for 1 h
at 37 �C. (iv) Following biotin pulldown, DNA was fragmented peaking at 500 bp.
No fragment size selection was performed.

Capture library design. A SureSelect Custom Target Enrichment Library covering
the 14 CRC risk loci, represented by 18 tagSNPs, was designed using eArray
software (Agilent, Santa Clara, CA, USA). Biotinylated RNA baits were generated
to capture genomic sequence within LD blocks to which tagSNPs associations
mapped (Supplementary Table 2). LD data were extracted using SNAP46 based
on CEU HapMap47 phase 3, imposing parameters r240.2 and a minor allele
frequency of 42%. LD measures for tagSNPs not included in HapMap were
extracted from the thousand genomes (1000g) pilot data48. The region to be
enriched encompassing the 8q24 risk locus was extended to 1.118Mb centring on
rs6983267. The total enrichment target of 4.683Mb was submitted to Agilent
eArray software, generating 43,380 120-mer RNA baits designed to tile the non-
repetitive fraction of the test regions at 3� coverage. Our design scale, tiling the
total regions of interest after masking repeats, fitted the size ranges of commercially
available Agilent SureSelect Custom Target Enrichment kits. Notably, designing
baits for sequences 4500–1,500 bp (depending on NGS fragment distribution)
from a HindIII restriction site does not yield in improvement of the enrichment
efficacy, which should be considered when facing limitations in bait numbers.

Target enrichment. Target enrichment for the 15 test regions was performed
based on the SureSelect protocol (Agilent) but incorporating the following
modifications: (i) biotinylated Hi-C ditags bound to streptavidin beads were
amplified pre-hybridization directly from beads using 7–10 PCR cycles in up to
96 parallel 50ml reactions. Subsequently, PCR products were pooled, purified using
Agencourt Ampure XP beads (Beckman Coulter, Brea, CA, USA) and concentrated
using a speedvac concentrator to achieve the required input concentration for bait
hybridization (500 ng). (ii) Enriched fragments were amplified post hybridization
again directly from the streptavidin beads, using 10–12 cycles of PCR.

Paired-end NGS. Three target-enriched Hi-C libraries, representing the CRC cell
lines LS174T, LoVo and Colo205, were sequenced on multiple flow cell lanes on an
Illumina HiSeq2000 (Illumina, San Diego, CA, USA) generating 50 or 100 bp
paired-end reads.

NGS read mapping. Sequencing data were processed through a custom pipeline
formed of publicly available and in-house developed tools (Supplementary Fig. 26).
Due to the nature of Hi-C ditags, single-end mapping was applied to the paired-
end reads. Preliminary analyses of sequencing data comprising 100-bp reads
showed that a length of 50 bases maximally generated uniquely aligned reads.
Therefore, to obtain the required read depth for high-resolution analysis, libraries
were re-sequenced on several flow cell lanes generating 50 base reads. Resulting
FASTQ files from several sequencing patches were merged per cell line. Reads were
mapped to the GRCh37/hg19 human genome assembly using Stampy v1.0.15
ref. 49 running the Burrows–Wheeler Aligner with standard single-end parameters.
Re-establishment of the reads’ paired-end nature as well as paired-end-based
removal of PCR duplicates was performed using Picard tools (http://picard.
sourceforge.net). Uniquely aligned read pairs were selected based on a mapping
quality score threshold of MAPQ430 (Stampy PHRED score). Details on read
depth and filtering statistics of each cHi-C library are provided in Supplementary
Table 7.

Filtering for bona fide Hi-C contacts. Experimental background50, comprising
circularized, non-digested and self-ligated fragments as well as fragments lacking
HindIII restriction sites, was removed based on read orientation and distances to
the nearest restriction sites. Bona fide Hi-C contacts are the fraction of the raw
contact data set, which fulfil the criteria advocated (Supplementary Table 7).

Analysis of Hi-C contacts. Adopting the notation of Lieberman-Aiden et al.7 the
genome-wide ith row, jth column matrix entry is defined by the number of Hi-C
contacts between locus i and locus j. A genome-wide coordinate system based on
build GRCh37/hg19 was implemented. After removal of non-bona fide Hi-C
contacts, each set of Hi-C ditags was allocated to the genome-wide enrichment
contact matrix Mij. Because of target enrichment, data analysis necessitates
‘enriched versus enriched’ (E–E; that is, highly enriched for interaction counts),
‘enriched versus non-enriched’ (E–N; that is, enriched for interaction counts) and
‘non-enriched versus non-enriched’ (N–N; that is, not enriched for interaction
counts) interactions to be processed separately (Supplementary Fig. 3). In our
experiments bins were defined as blocks of 9 or 3 kb. Bins populated by entries of
the contact matrix were filtered according to pre-loaded mapability and restriction
fragment tracks. Only valid bins of E–E and E–N, containing HindIII sites and
having an average mapability 40.5, were considered for further analysis. We used
a moving window (that is, 10Mb, size restricted by computational power) to bin
the contacts and to generate the genome-wide interaction matrix split into
heatmaps (Supplementary Fig. 1).

Correction of bias in cHi-C. Local structures of the genome such as location of
restriction sites in respect to bins (fragment length bias), GC content and map-
ability can influence Hi-C contact frequency resulting in bias37,50. Furthermore,
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binning at high resolutions close to the average restriction fragment length may
result in bias augmentation introduced by the unequal distribution of restriction
sites over bins. To adjust for such biases, binned Hi-C contact matrices were
normalized based on principles previously articulated24,35,37,51, but adapted to the
target-enriched setting. To normalize the data, we computed for each bin i its
weight wi by counting the number of reads mapping to bin i at trans-loci across the
genome. The quantity wi was computed for each column of the genome-wide
contact matrix. Similarly, the total number Ni of populated contact matrix entries
for each bin was computed. The total number of contacts and populated bins,
Wi and Ai, respectively, were determined. Finally, the normalized weights
ŵi¼wi �Ai/(Ni �Wi) were computed and used to normalize matrix entries Mij

(Supplementary Equation 1). The resulting recursion relation (Supplementary
Equation 1) defining our bias normalization procedure updated these weights,
under iteration, until convergence was achieved. To ensure convergence of all ŵi to
unity within the specified precision, bins with initial weights wi more than three s.d.
below the mean weight were discarded prior to starting the recursion relation. For
computational reasons, we performed bias normalization adopting a moving
window of 10Mb (Supplementary Fig. 1).

Distance normalization of cHi-C data. After bias normalization, each contact
between a pair of inter-chromosomal loci was distance normalized according to the
expected contact frequency. Consistency between contact frequency profiles
computed by applying a weighted average-smoothing procedure on different
chromosomes and/or target-enriched regions resulted in a template contact fre-
quency profile (Supplementary Fig. 2). The scaling behaviour, previously reported7,
and characterized by a power law with an estimated exponent of � 1.08 in a wide
range of distances (0.5Mbrdr7Mb) was confirmed in our study, where we
measured an exponent of � 0.97. Over low distance, 9 kbodo0.5Mb, a different
exponent value, � 0.52, was observed (Supplementary Fig. 2). The contact
frequency profile was used to distance-normalize the interaction frequency of each
target bin. To avoid over-correction in cis outside the test regions, the degree of
coverage at sites of interactor bins was used to adjust contact frequency counts.
Specifically, if coverage was low, distance normalization was less penalizing.

Significance of cHi-C interactions. Identifying biologically important chromatin
interactions above experimental background requires Hi-C contacts significantly
stronger than expected by chance. Aiming to identify the fraction of functional,
TF-mediated contacts, a parametric statistical model was fitted to the distribution
of the Hi-C data, assigning P values to contact frequencies. Test, cis and trans-
regions were analysed separately fitting a zero-inflated Weibull distribution to the
bias and distance-normalized contact frequencies. For the test region, all Hi-C
contacts were pooled, whereas for cis and trans a distribution was fitted separately
for each interval, using standard maximum likelihood techniques to estimate
distributional parameters. To avoid the significant Hi-C contacts impacting on
parameter estimation, the Weibull part of the zero-inflated Weibull distribution
was truncated to the lowest 95 percentiles during parameter estimation. Some of
the fitted distributions are shown in Supplementary Fig. 25. A P value for a given
cHi-C contact was calculated as the probability of observing an equally strong
or stronger contact under the fitted zero-inflated Weibull distribution. To adjust
P values for multiple testing, we computed FDR q-values52. A cHi-C contact was
deemed significant if it is corresponding qo0.05. To mitigate against cell-line-
specific interactions, here we considered only contacts achieving a qo0.05 in all
three CRC cell lines LS174T, LoVo and Colo205 (Supplementary Tables 3 and 4).
The P value for the overlap of chromatin interactions significant in the three cell
lines was obtained by computing the probability of observing an overlap of k or
more elements between three independent samples, each sample si consisting of ni
elements, sampled from a set Si of Ni elements, i¼ 1, 2, 3, with krmini{ni} and
S1DS2DS3. Assuming independence, not accounting for potential biases remaining
after the applied normalization for experimental and distance biases, we observed a
non-random occurrence of k¼ 147 overlaps between the three data sets, n(LS174T,
LoVo and Colo205)¼ 216379, 177893 and 217396, respectively, and N(LS174T,
LoVo and Colo205)¼ 97376960, 95608750 and 92912739, respectively. To examine
our ability to identify CRC-specific interactions at 8q24.21, we made use of
in-house cHi-C data generated for SUM44 and GM12878 cell lines, as well as
publicly accessible Hi-C data on IMR90 (ref. 53).

Calculation of enrichment factor. The enrichment factor is defined as the ratio of
on-target reads in a cHi-C test library (LS174T, LoVo and Colo205, respectively) to
that in a conventional Hi-C reference library. Here we made use of a publicly
available library in GM06990 cells7. PCR duplicates do not increase linearly with
increasing library size; hence it is essential to size-match (in terms of numbers of
raw NGS reads) test and reference libraries. NGS fragments randomly populate a
flow cell, and random subsets of reads were obtained by randomly selecting a sub-
area of the flow cell. The same mapping and filtering protocols (described above)
that were applied to the full libraries (Supplementary Table 7) were then applied to
the selected subsets (Supplementary Table 1). In addition, we estimated enrichment
by calculating the average read count per 9 kb bin in the off-target reads compared
with the average read count per bin in the on-target reads (Supplementary Table 1).

Validation of significant cHi-C contacts. To technically validate cHi-C results, we
applied 4C-seq38 to examine close-cis- (o5Mb) interactions at four of the 14 loci
(Supplementary Table 8). The 4C-seq experimental procedures are described in
detail in the Supplementary Methods. In addition, seven far-cis- (45Mb) and
seven trans-interactions (Supplementary Table 3) were validated using interphase
FISH as an orthogonal methodology4. Details on the FISH experiment and
determination of co-localization frequencies through automated image analysis are
described in the Supplementary Methods.

Refining interaction domains at high effective resolution. A directionality
index (DIX) for each bin was determined by quantifying the bias of a bin to interact
upstream/downstream. The null distribution of the DIX statistic D, under the
assumption of no bias, is related to a w2-distributed with 1 d.f.25, where
D¼ |A�B| � (B�A)/(AþB) and A/B is the number of upstream/downstream
contacts within 495 kb from a given 9 kb bin, respectively. Hi-C domain caller
software25 was used to obtain topological domains from the DIX using a hidden
Markov model.

Evaluating chromatin interactions for association overlap. Statistically sig-
nificant chromatin interactions at 9 k resolution (Supplementary Data 1) were
evaluated for overlap with high association signals from typed and imputed SNPs18

(http://tinyurl.com/whiffinetal2013). The P value assigned to the observation of
significant chromatin interactions being preferentially built by regions of strong
CRC risk association was calculated as follows: the 15 test regions (Supplementary
Table 2) are covered by a total of 366 test bins passing the mapability filter at 9 kb
resolution. Out of those, 88 bins (24%) overlap low association P values (one order
of magnitude within the region’s lowest P value), whereas out of the 61 significant
test bins, 23 bins (38%) overlap low association P values (8.54� 10� 3, Fisher’s
exact test; Supplementary Table 4).

Annotating the epigenetic pattern at cHi-C contacts. We used ChromHMM54

to infer and characterize chromatin states by integrating information on histone
modifications to identify combinatorial and spatial patterns of epigenetic marks.
Aligned NGS reads (BAM format) from ChIP-Seq and DNAse-Seq experiments on
the CRC cell line HCT116 (Supplementary Table 9) were downloaded from
ENCODE55,56. Data consisting of replicates performed within and between
different laboratories belonging to the ENCODE project were combined using
WIGGLER (a.k.a. align2rawsignal)57. Read-shift parameters for ChIP-Seq data
were calculated using PHANTOMPEAKQUALTOOLS58. Using the ChromHMM
software, genome-wide signal tracks were binarized (including input controls for
ChIP-Seq data), and a set of learned models, using 43 random initializations with
32 different states, were generated on a representative chromosome (chr8). The
parameters of the highest scoring model were retained and model states were
pruned from 32 to 2 states. A 27-state ChromHMM model was shown to be stable
using Emission Parameter Correlation Comparison and was subsequently used for
segmenting the genome at 200 bp resolution (Supplementary Fig. 27). We also
trained ChromHMM with 64 different states, using 45 random initializations, but
found no advantage of segmenting the data with this increased number of states,
models with 32 and 64 different states being consistent with each other.

Evaluation for overlap with regulatory chromatin segments. Genome-wide
chromatin interactions at 9 kb resolution (Supplementary Data 1) were evaluated
for overlap with regulatory elements using two approaches. First, focusing on the
CRC cell line HCT116, we determined whether regulatory elements (enhancers and
promoters) are present at higher frequency within chromatin-looping interactors
than expected at random size-matched sites of the genome. A Monte Carlo
procedure was used, taking 107 random samples of 61 (number of significantly
interacting test bins) 9 kb bins along the genome. For each of these N samples and
for each class c of regulatory element (c¼ promoter or enhancer), the proportion
of bins overlapping with regulatory elements of class c was computed. A P value
(for the null hypothesis of no increase in overlap proportion with class c) resulted
from the fraction mc/N where mc¼ the number of samples with overlap propor-
tions larger than or equal to the observed overlap proportion. If mc¼ 0, a P value
o1/N is reported. Second, tissue specificity of overlaps was examined comparing
the CRC cell line HCT116 with nine other cell types (Supplementary Table 6).
Briefly, ChromHMM-based chromatin segmentation data for Gm12878, H1hesc,
Hepg2, Hmec, Hsmm, Huvec, K562, Nhek and Nhlf were retrieved from the
ENCODE database52,53 (Supplementary Table 6). Downloaded chromatin
segmentations were regrouped to a simplified four-state scheme (Supplementary
Table 10) to allow for direct comparison (Fisher’s exact test, Supplementary
Table 6).

Depicting evolutionary conservation profiles. To evaluate potential functional
variants within candidate causative elements (Supplementary Table 5), we used
phastCons59 (derived from sequence comparison of 46 vertebrates ) and genomic
evolutionary rate profiling (GERP)60,61 scores as measures for evolutionary
conservation. The phastCons score reflects the probability that a given nucleotide is
conserved; the score ranges from 0 to 1,

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7178 ARTICLE

NATURE COMMUNICATIONS | 6:6178 |DOI: 10.1038/ncomms7178 |www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://tinyurl.com/whiffinetal2013
http://www.nature.com/naturecommunications


where 1 is most conserved. The GERP score (range � 12.36 to 6.18) reflects
position-specific constraint, positive scores scaling with the level of constraint such
that higher scores indicate a greater level of evolutionary conservation.

Evaluating chromatin interactions for TF binding. To test whether specific TF
binding underlies significant chromatin interactions, we integrated the CRC
chromatin interactome data with TFBS profiles derived from LoVo cells. Peak files
generated from ChIP-Seq experiments for 433 TFs were screened for TFBSs shared
between test bins and interactor bins of each Hi-C contact. Eighty-nine of the 147
significant genome-wide Hi-C interactions at 9 k resolution shared at least one of
the assayed TFs. Hundred out of the total 433 TFs were found to be part of a shared
cluster (Supplementary Table 11). To test whether Hi-C interactions are more
likely to comprise shared TF binding compared with random 9-kb control bins of
comparable interactivity, control interaction pairs were modelled by permutation
(total n¼ 147; Supplementary Data 1), excluding pairs from the same test regions.
The Hi-C interaction pairs were tested against the permuted control set using a
Mann–Whitney U-test (Supplementary Fig. 23).

Statistical analyses and visualization. All statistics were performed using the R
suite62. Multi-track data on cHi-C interactions and associated genetic and
epigenetic features were visualized using visPIG63.
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