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Detecting noise with shot noise using on-chip
photon detector
Y. Jompol1,*,w, P. Roulleau1,*, T. Jullien1, B. Roche1, I. Farrer2, D.A. Ritchie2 & D.C. Glattli1

The high-frequency radiation emitted by a quantum conductor presents a rising interest in

quantum physics and condensed matter. However, its detection with microwave circuits is

challenging. Here, we propose to use the photon-assisted shot noise for on-chip radiation

detection. It is based on the low-frequency current noise generated by the partitioning of

photon-excited electrons and holes, which are scattered inside the conductor. For a given

electromagnetic coupling to the radiation, the photon-assisted shot noise response is shown

to be independent on the nature and geometry of the quantum conductor used for the

detection, up to a Fano factor, characterizing the type of scattering mechanism. Ordered in

temperature or frequency range, from few tens of mK or GHz to several hundred of K or THz

respectively, a wide variety of conductors can be used like Quantum Point Contacts (this

work), diffusive metallic or semi-conducting films, graphene, carbon nanotubes and even

molecule, opening new experimental opportunities in quantum physics.
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U
sing quantum conductors to detect high-frequency
radiations is very promising1–5. However, it faces some
fundamental issues. In particular, the important

mismatch between the quantum conductor impedance (Bh/e2)
and the circuit impedance (typically 50O) strongly limits the
sensitivity. Recent realizations of on-chip quantum detection6–12

have circumvented this issue using spatially close detectors with
larger impedance providing high sensitivity up to high frequency.
On-chip detectors have been realized using GaAs/AlGaAs two-
dimensional electron gas (2DEG)-patterned quantum dots8,9 and
Aluminium or Niobium SIS junctions6,10–12. The photon
response of quantum dots depends on an energy scale set by
their geometry, and that of superconducting junctions is limited
by a characteristic energy gap and both systems show tunnel
resistance variability. Regarding bolometric detectors their
efficiency depends on the phonon relaxation time, requires low
temperature and shows slow response time.

In this letter, we propose an on-chip radiation detection based
on photo-assisted shot noise (PASN). When a quantum
conductor is subjected to a time-dependent drain-source voltage,
electrons and holes are created which then scatter inside the
conductor13–16. Their partitioning between source and drain
contacts leads to a current noise called PASN. Remarkably, there
is a simple link between PASN and the incident radiation power
up to a noise Fano factor characterizing the statistics of

partitioning. This simple link is better understood if we remark
that PASN is the quantum manifestation of the rectification
property of ordinary shot noise17–20, which is proportional to the
absolute value of the drain-source voltage.

Results
Photon detection principle. Figure 1 shows the principle of the
on-chip detection. It consists of two separate excitation and
measurement circuit lines etched in a high-mobility 2DEG. Each
line involves two quantum point contacts (QPCs) in series. On
the upper line, the left QPC is the high-frequency emitter. When
biased by the dc voltage VE

ds, it generates shot noise up to the
frequency eVE

ds=h (refs 19,21). The right QPC tuned on a
conductance plateau acts as a stable series resistance RE

S
converting current noise into voltage noise. In the lower line,
the left QPC is the detector. In series with the right QPC, also
tuned on a resistance plateau RD

S , it experiences the emitter line
voltage fluctuations via the coupling capacitance CC up to the
cutoff frequency fmax (ref. 22; Supplementary Fig. 1). The number
of electron-hole pairs generated in the detector line is a direct
function of the radiated noise power integrated up to frequency
min eVE

ds=h; fmax
� �

(Supplementary Discussion 1 and
Supplementary Fig. 2). Their scattering by the QPC detector
generates a low-frequency PASN, which is measured. fmax

depends on all QPC resistances and on the self-capacitance Cself

of the 2DEG part between the QPCs in series.
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Figure 1 | Device structure. (a) Scanning electron microscope view of the

sample. The scale bar represents a 20mm length. Two independent circuit

lines defined by wet-chemical etching of the 2DEG are coupled via the

capacitance CC. On the upper line are patterned two QPCs in series: the

QPC emitter (in red), and the QPC series resistor (in white) tuned on a

plateau. On the lower line, the QPC detector is coloured in blue.

(b) Equivalent circuit. In red, the emitter line is coupled via the coupling

capacitance CC to the detector line in blue. The self capacitances Cself have

been added that model the capacitance of each line between the two QPCs

to the ground.
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Figure 2 | Photocurrent measurement. (a) Schematic representation of

the experimental set-up for the photocurrent measurement. The scale bar

represents a 20mm length. The QPC emitter is excited by a sine wave

function VppB460mV at 174Hz. Resistances of 5 kO are used as current to

voltage converters. By measuring the output voltage Vout after the amplifier

(black triangle in the figure), with the excitation source as a reference

signal, we can extract the photocurrent. (b) The photocurrent as a function

of the total transmissions DD (x axis) and DE (y axis). On the upper graph is

represented the photocurrent as a function of DD (DE tuned to 0.45). The

right graph shows the photocurrent as a function of DE (DD tuned to 1.36).
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To understand the photon detection principle, let us first
assume that the detector line is excited by a coherent radiation at
frequency O/2p such that VE

ds tð Þ ¼ Vaccos Otð Þ. Electrons in the
detector line can absorb l photons of energy El¼ l:O by creating
an electron-hole pair with a probability P(El)¼ |Jl(eVac/:O)|2,
with Jl the lth Bessel function. Electrons and holes are
independently and randomly partitioned by the QPC detector
between left and right contacts. This generates a PASN whose
low-frequency spectral density of current fluctuations SPASNI is
given by13–16:

SPASNI ¼ 2e2

h
4kBTe

X
n

D2
D;n

"

þ 2
X
n

DD;n 1�DD;n
� � Xl¼þ1

l¼�1
ElP Elð Þ coth El

2kBTe

# ð1Þ

with Te the electronic temperature and DD,n the transmission of
the nth electronic mode contributing to the QPC detector
conductance GD, n¼ 1, 2,.... We introduce the Fano factor F
defined as F¼

P
nDD,n(1�DD,n)/

P
nDD,n. For weak ac voltage

eVacoo:O and zero temperature, a direct relation can be
established between the radiation power Prad ¼ V2

ac=2Zrad and
the current noise: SPASNI ’ 2GDFðZrade2=‘ ÞPrad=O, where Zrad is
the radiation impedance assumed smaller than the QPC detector
conductance GD and F the Fano factor. In equation (1), the sum
over the energies El gives the probability to generate electron-hole

pairs. This probability only depends on the excitation and not on
the details of the detector.

From equation (1), it is clear that the maximum PASN will be
obtained for total transmission DD¼

P
nDD,n¼ kþ 1/2, k an

integer. In addition to shot noise, a photon-assisted dc current Iph
is generated when considering the (weak) energy dependence of
the QPC transmission:

Iph ¼
2e
h

Z
dE � @f

@E

� � X
n

@DD;n

@E

 ! Xl¼þ1

l¼�1
E2
l P Elð Þ ð2Þ

f(E) is the equilibrium Fermi distribution. Photocurrent requires
the energy dependence of the QPC. After photons absorption,
electron-hole pairs are generated. As electrons and holes do not
have the same transmission, a net DC current is induced. The
energy dependence of transmission is strongly sample dependent
and makes the photocurrent response not universal. On the
contrary, the PASN response only depends on the Fano factor,
which can be measured from conductance for a single-mode
QPC, or is even universal, that is, 1/3, for a diffusive
conductor. Modelling the QPC transmission with a saddle point
potential23,24, it can be shown that @DD;n

@E / DD;n 1�DD;n
� �

:
maximum photocurrents will be also obtained at half-integer DD.

In the present case, the excitation is not coherent but due to
random fluctuations of the QPC detector drain-source voltage
that originates from the capacitive coupling with the noisy QPC
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Figure 3 | PASN measurement. (a) Schematic representation of the experimental set-up for the PASN measurement. The QPC emitter being biased emits

shot noise. Because of the capacitive coupling between the emitter and detector line, high-frequency voltage fluctuations are transferred in the detector

line, generating PASN. Shot noise measurements are done by converting the current fluctuations into the voltage fluctuations (noted dV1 and dV2) across a

parrallel inductor-capacitor resonant circuit (RLC circuit), cooled at 300mK using 3MHz resonant frequency and 300 kHz typical bandwidth. Homemade

cryogenic amplifiers, with ultra-low input voltage noise (0:2 nV=
ffiffiffiffiffiffi
Hz

p
) and located on the 3K stage, amplify the voltage fluctuations. Using fast acquisition

card and Fast Fourier Transform, the voltage noise cross-correlation hdV1dV2i is computed in real time. Then hdV1dV2i is converted into a current shot noise

SI. (b) Measured excess shot noise SI (thermal noise being subtracted) as a function of dc voltage VD
ds across the QPC detector, when the QPC series

resistor is opened and the transmission is tuned to 0.17. (c) Measured PASN SPASNI as function of the VE
ds accross the QPC emitter. QPC emitter and

detector are tuned at DD¼DE¼0.5. Both series resistances are tuned on the first plateau.
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emitter. The above expressions can be generalized, giving the
PASN as:

SPASNI ¼ 2e2

h
4kBTe

X
n

D2
D;n

"

þ 2
X
n

DD;nð1�DD;nÞ
Z

EPðEÞ coth E
2kBTe

dE

# ð3Þ

and the photocurrent:

Iph ¼
2e
h

Z
dE � @f

@E

� � X
n

@DD;n

@E

 !Z
E2PðEÞdE ð4Þ

The generalized probability distribution P(E) is similar to the
P(E) function used in the dynamical Coulomb blockade theory
(Supplementary Discussion 2). It is a direct function of the
radiation power to be detected, which as a shot noise itself is
maximum for DE¼ 0.5.

Photocurrent measurement. We first focus on the photocurrent
whose measurement set-up is described in Fig. 2a. Source Vin

leads to a current in the upper line and to the voltage difference
VE
ds across the emitter. The resulting shot noise induces a photo-

current Iph in the detector. We modulate Vin at frequency 174Hz
and detect the induced photocurrent using lock-in techniques.
Series resistances are tuned on a plateau for each line, whereas the
emitter and detector transmissions are varied. Following the
saddle point potential model of a QPC23,24, the transmission of

the nth mode can be written DD;nðVgÞ ¼ 1=ð1þ e2pðV0 �VgÞ=Vg;nÞ,
where Vg,n is related to the negative curvature of the saddle
point potential. The photocurrent is given by (Supplementary
Discussion 3):

Iph ¼
e
h
1
D
kBT�

Ee
2

Cself

X
n

2p
Vg;n

DD;nð1�DD;nÞ ð5Þ

Vg,n and the lever arm D¼ qE/qVg are extracted from a study of
the differential QPC conductance versus gate and bias voltages.
We have introduced T�

E as the effective noise temperature of the
circuit, which, up to a coupling factor, includes a combination of

the shot noise temperature of the emitter: 1�DEð Þ eV
E
ds

2kB
plus other

equilibrium thermal noise contributions of the circuit surround-
ing the detector QPC. The coupling capacitance CC appears in T�

E
via the transimpedance of the system, which characterizes the
strength of the coupling. Considering the geometry of CC,
independent simulations give CCB1 fF.

The colour plot in Fig. 2b shows the measured photocurrent as
a function of the emitter and detector transmissions DE and DD,
up to two transmitting orbital electronic modes. Above the
colour plot, the photocurrent is plotted as a function of DD

for a fixed value of DEB0.45. As expected, it is maximum for
half transmission of the emitter electronic modes and vanishes
for integer transmission. These measurements have been
found essential for a fine calibration of the electrical circuit and
for complementary characterization of the PASN effect
(Supplementary Fig. 3).

PASN detection. We now consider PASN measurements. The
cross-correlation noise measurement set-up is described in
Fig. 3a. To characterize the detector line, the QPC detector
transmission is set to DD¼ 0.17, whereas a dc bias is applied on
the detector line. The resulting shot noise measured, black dots in
Fig. 3b, perfectly agrees with the theory in red solid line. We
extract an electronic temperature Te¼ 310mK close to the fridge
temperature T¼ 300mK. Then, we turn off the applied bias on
the detector line and the QPC emitter is biased and also tuned at
transmission DE¼ 0.5. Both series resistances are tuned on the
first plateau. Because of the coupling capacitance, voltage fluc-
tuations are reported on the detector line. The only dc current
flowing through the detector line being the weak dc photocurrent,
no detectable transport shot noise is expected. However, we detect
some noise, confirming that the PASN detection works as
illustrated in Fig. 3c, black circle. The detected PASN, DSPASN;DI , is
expected to be (Supplementary Discussion 4):

DSPASN;DI ’ � 4e2

h
DDð1�DDÞ

e2

Cself

T�
E

6Te
ð6Þ

Here, considering P(E) takes only important values for
EookBTe, a low-energy expansion of equation (3) has been
made. The T�

E VE
ds

� �
=Cself amplitude compatible with the detector

geometry (estimated Cself¼ 3 fF and CC¼ 0.9 fF) and obtained
from photocurrent measurements can now be compared with the
noise measurement. The theoretical prediction (red solid line)
following equation (6) also includes an additional term because of
heating effect. We discuss this point in the following.

We open the series QPC of the detector line such that the
current-to-voltage fluctuation conversion is now mediated by the
smaller resistance of the long resistive mesa. Then we apply a
fixed bias VD

ds and sweep the detector transmission (red circles in
Fig. 4a). As expected, the shot noise is maximum for DD¼ 0.5 and
cancels for DD¼ 1. The slight disagreement with the theoretical
prediction (red solid line) around DDB0.7 reveals a weak ‘0.7’
anomaly25–28. Then we tune the series QPC on its first plateau
and repeat the same experiment (black circles). Surprisingly, the
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Figure 4 | Transmission dependence of the PASN. (a) Red dots: measured

shot noise as a function of DD for an opened series QPC together with our

theoretical model (red solid line). Black dots: same measurement with the

series QPC tuned on a plateau. The non-zero value of tefhe noise for DD¼ 1

results from heating effect. In both cases, VD
ds ¼ 150mV. The noise due to

the heating of the series resistance has been subtracted. (b) Red dots:

measured PASN as function of DD for the series QPC tuned on the first

plateau and a fixed DEB0.5 (theoretical prediction represented by a black

solid line). The applied DC bias is VE
ds ¼ 6mV.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7130

4 NATURE COMMUNICATIONS | 6:6130 | DOI: 10.1038/ncomms7130 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


shot noise does not cancel anymore for DD¼ 1. To understand it,
we must consider heating effects (Supplementary Discussion 5).
As the size of the QPC is much smaller than the electron-phonon
relaxation length, there is a temperature gradient from the QPC
to the ohmic contacts assumed to be at the base temperature
of the fridge. Combining Joule heating together with the
Wiedemann–Franz law, we obtain17 (Supplementary Fig. 4):

T2
e ðVdsÞ ¼ T2

fridge þ
24
p2

G
Gm

ð1þ 2G
Gm

ÞðeVds

2kB
Þ2 ð7Þ

with Gm the total conductance linking the QPC to the ohmic
contacts and Tfridge the base temperature. Considering this effect,
a QPC tuned on a plateau will not be noiseless anymore. We find
a good agreement with measurements, black solid line.

We now apply VE
ds ¼ 6 mV on the emitter line, fixing DEB0.5

to get the maximum emitted signal. In Fig. 4b, the PASN
is measured as a function of DD. The non-zero value of the
shot noise for DD¼ 1 results from the similar heating effect
(Supplementary Fig. 5).

Discussion
The agreement between theory and experimental data confirms
our good understanding of the ‘on-chip’ detection mechanism:
both photocurrent and PASN result from the same photon-assisted
effect. As the photon current detector is based on the energy
dependence of the transmission, which is strongly geometry
dependent, it raises the question of the use of such a detector
based on a common calibration. On the contrary, PASN detection
only depends on the transmission. For metallic diffusive system,
the Fano factor is even constant 1/3 (ref. 29) and such a detector
could be used on a large scale. Regarding the photodetection
efficiency, there is a competition between the direct coupling CC

of the two lines and the shortcut to the ground characterized by
Cself. In the future, we will increase the number of fingers of the
interdigitated CC and reduce the area between the QPC to lower
Cself, and therefore reach the most efficient regime where
Cself � CC.

To conclude, we have described a way of detecting high-
frequency voltage fluctuations based on PASN measurement and
seconded by photocurrent measurement. If the latter depends on
the details of the mesoscopic conductor used, PASN is universal
up to a noise Fano factor. The PASN approach for noise or
photon radiation detection can be applied to other systems. This
technique offers the possibility to probe mesoscopic properties at
very high frequency (GHz and THz) of various materials (GaAs,
graphene, carbon nanotube).

Methods
Emitter and detector lines were patterned using e-beam lithography on a
high-mobility 2DEG formed at the GaAs/GaxAl1� xAs heterojunction. The 2DEG,
located at a depth of 100 nm below the surface, has a density of 1.8� 1011 cm� 2

and mobility of 2.69� 106 cm2V� 1 s� 1. Measurements were performed in
cryogen-free 3He cryostat at 300mK (base temperature).
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