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Topological superconductivity and unconventional
pairing in oxide interfaces
Mathias S. Scheurer1 & Jörg Schmalian1,2

Pinpointing the microscopic mechanism for superconductivity has proven to be one of the

most outstanding challenges in the physics of correlated quantum matter. Thus far, the most

direct evidence for an electronic pairing mechanism is the observation of a new symmetry of

the order parameter, as done in the cuprate high-temperature superconductors. Alternatively,

global, topological invariants allow for a sharp discrimination between states of matter that

cannot be transformed into each other adiabatically. Here we propose an unconventional

pairing state for the electron fluid in two-dimensional oxide interfaces and establish a direct

link to the emergence of non-trivial topological invariants. Topological signatures, in particular

Majorana edge states, can then be used to detect the microscopic origin of superconductivity.

In addition, we show that also the density wave states that compete with superconductivity

sensitively depend on the nature of the pairing interaction.
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T
he two-dimensional (2D) electron fluid that forms1 at the
interface between the insulators SrTiO3 and LaAlO3 is an
example of an engineered quantum system, where a new

state of matter emerges as one combines the appropriate building
blocks. The subsequent discovery of superconductivity2 in the
interface, along with the ability to control the ground state via
applied electric fields3 opened up intense research. The key open
question is whether electronic correlations promote novel phases,
such as unconventional superconductivity or exotic magnetically
ordered states4–8 and how such phases are related to each other.

Generally speaking, new states of matter can be sharply
distinguished from conventional behaviour when they break a
symmetry or differ in their topology. An example for the former
case are the cuprate high-temperature superconductors9,10. The
second category consists of topological insulators and
superconductors, which have recently had a major impact on
solid state physics11,12. Here the Bloch Hamiltonian, a mapping
from momentum space to the space of Hamiltonians, is not
adiabatically connected to the vacuum.

In this paper, we establish a direct connection between pairing
mechanism and topology of the superconducting state at the
interface: Unconventional pairing, that is superconductivity based
on the exchange of particle–hole excitations, leads to a topological
phase with Majorana bound states and related non-trivial
topological aspects. More specifically, we find a time-reversal
preserving topological superconductor that has attracted recent
attention13–18. In contrast, conventional electron–phonon
coupling in the same system would yield a topologically trivial
state. Consequently, our results allow to identify the unresolved
microscopic mechanism of superconductivity in oxide interfaces
by probing the topological properties of the pairing state.
We also study competing phases, expected to emerge nearby
superconductivity in the phase diagram. For a conventional
pairing mechanism we find charge density wave order, while an
in-plane spin density wave with magnetic vortices competes with
unconventional superconductivity.

Results
Interacting low-energy model. It is well known that the relevant
low-energy degrees of freedom at the interface are made up of the
titanium 3dxy, 3dxz and 3dyz orbitals19,20. There has been an
ongoing debate about why the concentration of transport carriers
is considerably lower than what is seen in local charge
measurements or expected from the polar catastrophe. One
widely accepted explanation21–23 is that the electrons in the 3dxy
states, that are spatially much closer to the interface than the
other orbitals, are mainly localized, whereas the electrons
occupying the 3dxz and 3dyz orbitals are delocalized. It indicates
that the key electrons at the interface, at least for understanding
superconductivity, reside in the 3dxz and 3dyz states. This picture
is confirmed by the experimental observation that the emergence
of superconductivity is correlated with the chemical potential
entering the 3dxz and 3dyz orbitals24,25.

Thus, we assume that the crucial states near the Fermi energy
of the oxide interface are made up of titanium 3dxz and 3dyz
orbitals. The orientation of the electron clouds leads to a wave
function overlap along the x direction that is much larger for 3dxz
states compared with 3dyz, and vice versa for the y direction. Each
orbital is then characterized by a light mass ml and a heavy mass
mh, leading to the experimentally observed strongly aniso-
tropic electronic structure19,20. For example, the energy of the 3dxz
states can be described by

exzðkÞ ¼
k2x
2ml

þ
k2y
2mh

; ð1Þ

where mh/mlC15y30. eyz follows from equation (1) by
interchanging kx and ky. In addition, the electronic properties
of the polar interface between insulating oxides is strongly
affected by the spin–orbit interaction. Due to the Dresselhaus–
Rashba effect26,27, the electronic states experience a momentum-
dependent splitting and mixing of spin states, naturally
explaining magnetotransport experiments28,29. The effect might
also be responsible for the observed phase separation in the
interfaces30. Focusing on the 3dxz and 3dyz states, the most
general form up to linear order in momentum that is consistent
with the C4u-point-group symmetry and time-reversal invariance
is given by

Hso kð Þ ¼ 1
2
lt2s3 þ a0t0 kxs2 � kys1

� �
þ a1t1 kxs1 � kys2

� �
þ a3t3 kxs2 þ kys1

� �
;

ð2Þ

where the Pauli matrices si and tj (i, j¼ 0y3) act in spin and
orbital space, respectively. To determine the coefficients ai in
equation (2), we performed a microscopic calculation (see
Supplementary Methods) first including the 3dxy orbital
together with the atomic spin–orbit coupling lL � S and the
hopping matrix elements idky (idkx) between the 3dxy and 3dxz
(3dyz) orbitals along the y axis (x axis). The amplitude d, which
can only be finite as the inversion symmetry is broken, has been
shown in ref. 31, to be an essential ingredient for understanding
the band structure of the interface electron system. Despite
being shifted down in energy by E0, we can project out the
3dxy band due to the spatial separation of the 3dxy and 3dxz (3dyz)
orbitals. This yields the spin–orbit coupling in equation (2)
with a0 ¼ � a1 ¼ � a3 ¼ 1

2dl=E0. The values lC20meV,
d/a0C40meV with a0 denoting the in-plane lattice constant,
and E0C250meV were determined in first principles
calculations31. As d and E0 depend sensitively on details
of the interface we use a0C10y50meVÅ, estimated from
magnetotransport experiments28.

In Fig. 1a the bands that result from the combination of the
anisotropic masses in equation (1) and the spin–orbit coupling in
equation (2) are shown. Two of the four bands are pushed to
higher energies by the atomic spin–orbit coupling lt2s3 and can
thus be neglected for the following low-energy analysis as long as
the chemical potential is tuned sufficiently far away from the
bottom of these bands. The remaining two bands are split by
the Dresselhaus–Rashba coupling and show strong nesting in the
highlighted regions. The nesting is a consequence of the mass
anisotropy and becomes exact in the limit ml/mh-0.

This allows us to use a low-energy theory that involves only the
degrees of freedom in the vicinity of the most parallel slices of the
Fermi surface. In total, there are four equivalent strongly nested
subspaces that are related by the point-group symmetries.
Without loss of generality, let us focus on the one indicated in
red in Fig. 1a. In this subset of momentum space, we introduce

helicity annihilation and creation operators c(s,j) and cyðs;jÞ that
diagonalize the quadratic part of the Hamiltonian. Here s¼±
refers to the sign of kx and j¼ 1 (j¼ 2) denotes the outer (inner)
Fermi surface. To relate these operators to observables, Figs 1b,c
show the spin orientation and the orbital weight of the states in
the vicinity of the outer and inner Fermi surface, respectively. We
emphasize the similarity of both the form of the Fermi surface
and the spin/orbital textures to the results reported in ref. 20 for
the surface states of SrTiO3.

There are two types of interaction processes allowed by
momentum conservation, which we will refer to as backscattering
and forward scattering. The most general momentum-independent
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backscattering term is given by

Hback ¼
X3
s;s0¼0

X
q

J �s qð Þuss0 J þs0 � qð Þ; ð3Þ

where (s¼±)

Jss ðqÞ ¼
X
k;j;j0

c
y
ðs;jÞðkþ qÞðssÞj;j0cðs;j0ÞðkÞ ð4Þ

From now on, the Pauli matrices ss, as in equation (4), do not
describe the physical spin, but rather act in the abstract isospin
space of the local helicity operators. The momentum of the
operator c(s,j) is measured relative to the centre skj of the
corresponding red region in Fig. 1a. Using the phase convention
for the eigenstates defined in the Methods, one finds that the p-
rotation symmetry with respect to the z axis implies that u has to
be symmetric, uT¼ u. The remaining symmetries of the point
group then fully determine the interaction in the other three most
strongly nested subspaces. In addition, time-reversal symmetry
imposes the constraint uss0 ¼ 0 if either s¼ 2 or s0 ¼ 2. Let us first
assume that the cut-off L? for the momenta perpendicular to the
Fermi surface can be chosen smaller than the distance between
the inner and outer Fermi surface (below we will also discuss the
opposite limit of nearly degenerate Fermi surfaces). This means
that the red regions in Fig. 1a do not overlap. In this situation,
momentum conservation rules out further interaction processes
such that only u00, u11¼ � u22, u33 and u30¼ u03 can be non-
zero. As the notation in equation (3) is rather abstract, we
represent the four allowed backscattering terms in Figs 2a–d
graphically in the helicity basis. One finds two distinct intraband
Coulomb terms (U1, U2), interband Coloumb interaction (U0) as
well as pair hopping (J).

In case of forward scattering, where all four fermions have the
same index s, the combination of Fermi statistics and point
symmetries leads to only one independent coupling constant. The
associated process (V) is illustrated in Fig. 2e.

Pairing instabilities. Having derived the interacting low-energy
Hamiltonian, we can now deduce the associated instabilities. We
perform a standard fermionic one-loop Wilson renormalization

group (RG) calculation32, in which high-energy degrees of
freedom are successively integrated out yielding an effective
Hamiltonian with renormalized coupling constants. If, during
this procedure, some of the couplings diverge, the system will
develop an instability. Following refs 33,34 we identify the
physical nature of this instability by determining the order
parameter that has the highest transition temperature, allowing
for all possible (momentum independent) particle–hole and
particle–particle ordered states:

DDW
a;b :¼

X
k

cya ðkÞcbðkÞ
D E

; ð5aÞ

�DSC
a;b :¼

X
k

cya ðkÞc
y
bð� kÞ

D E
; ð5bÞ
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Figure 2 | Diagrammatic representation of the scattering processes.

In case of strong spin–orbit coupling, the combination of momentum

conservation, time reversal and rotation symmetry allow for four

independent backscattering processes (a–d) and one forward scattering

term (e). Solid and dashed lines refer to the outer and inner Fermi surface

and ± indicates the sign of kx in the four red regions of Fig. 1a.
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Figure 1 | The bands and the wave functions of our model. (a) The spectrum of the effective two-orbital Hamiltonian using the realistic parameters stated

in the main text. In this paper, we restrict the analysis on the four most strongly nested subspaces (highlighted in red and blue). The orbital weight (colour)

and orientation of the spin (red arrows) are illustrated in (b) and (c) for the outer and inner Fermi surface, respectively. Note that, as a consequence of time

reversal and p-rotation symmetry about the z axis, the spin has to lie in the xy plane.
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where a and b are double indices comprising helicity s¼± and
the Fermi surface sheet index j¼ 1,2. Near the Fermi surface, we
linearize the band dispersion E(k) C±ujk? with k? denoting the
component of the momentum perpendicular to the Fermi surface.
For simplicity, let us first focus on the situation u1¼ u2, which is
quantitatively a good approximation even when the chemical
potential gets closer to the bottom of these bands. Below, we will
also investigate the more general case u1au2.

If u1¼ u2, only u11 and u33 out of the five coupling constants
flow. In the associated flow diagram in Fig. 3a, we find two
regimes, denoted by (I) and (II), where the running couplings
diverge. Using the notation of Fig. 2, it holds �U1B �U2B
U0B ±J/2c|V|, U040, at the associated strong coupling fixed
points with þ and � referring to regime (I) and (II),
respectively. In both cases, the instability is of superconducting
type characterized by the two non-zero anomalous expectation
values DSC

ð� ;jÞ;ðþ ;jÞ
, j¼ 1,2, having equal modulus. As expected, there

is only intra-Fermi surface pairing, implying that only Kramers
partners are paired. In region (I), the superconducting order
parameters of the nearby Fermi surfaces have opposite sign, whereas
in (II) the sign is the same. The corresponding superconducting
states will be denoted by SCþ� and SCþþ , respectively. Rewriting
the order parameters in the spin basis, one finds a mixture of
singlet and triplet pairing, where both components are of equal
strength in the strongly nested domains and the triplet pairing
vector points perpendicular to the Fermi surface.

In the region (III), none of the coupling constants diverge,
which means that for sufficiently small bare couplings the system
will not develop any instability and, thus, reside in the metallic
phase.

To unveil the microscopic pairing mechanism of the two
superconducting states, we start from a repulsive Coulomb
interaction between the 3d orbitals and project onto the effective
low-energy theory. This places us into region (I) of the RG
flow in Fig. 3a. In contrast, an attractive interaction due to
electron–phonon coupling would lead to initial couplings in
region (II). Consequently, SCþþ results from conventional
electron–phonon pairing, whereas SCþ� is an unconventional
superconductor, where particle–hole fluctuations effectively
change the sign of u33.

Topological superconductivity. Both SCþ� and SCþþ respect
time-reversal symmetry as far as the degrees of freedom of the
nested subspaces are concerned. It is natural to assume that this
holds for the entire Fermi surface and that, in addition, the sys-
tem does not break the point symmetries relating the nested
segments. In this case the gap is finite on the entire Fermi surface
as seen in recent experiments35. Being fully gapped, it is obvious
to ask whether the time-reversal invariant 2D superconductor
(class36 DIII) is topologically trivial or non-trivial37, which is of
great interest as it strongly influences its physical properties.
The most prominent feature of a non-trivial topological
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Figure 3 | RG flow and the resulting phase diagrams. (a) The flow of the two running coupling constants in the case of identical Fermi velocities is
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regimes (I) and (II) the couplings diverge indicating that the system develops an instability. The red (blue) region corresponds to the bare couplings

for a microscopically repulsive (attractive) interaction. The schematic phase diagrams taking into account finite mass anisotropies are shown in part (b).

The non-flowing couplings determine the properties of the charge density wave as shown in (c) and (d) for the unconventional and conventional

superconductor, respectively. The nomenclature of the phases is explained in the main text.
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superconductor is the appearance of spin-filtered counter
propagating Majorana modes at its edge when surrounded by a
trivial phase38. It has been shown39 that, in the weak-pairing
limit, the associated topological invariant N 2 Z2 is fully
determined by the sign of the paring field on the Fermi
surfaces. For non-degenerate Fermi surfaces, it holds

N ¼
Y
j

signðdjÞ
� �mj ; dj ¼ cj TD

y
j

��� ���cj

D E
; ð6Þ

where the product involves all Fermi surfaces, cj and Dj denote
the wave function of the non-interacting part of the Hamiltonian
and the pairing field at an arbitrary point on the jth Fermi
surface. Furthermore, mj is the number of time-reversal invariant
points enclosed by the jth Fermi surface and T is the unitary part
of the time-reversal operator, given by T¼ it0sy in the basis of
equation (2). As, in the present case, both Fermi surfaces enclose
only one time-reversal invariant point, the superconductor is
topological (trivial) if the sign of dj is different (identical) on the
two Fermi surfaces. Note that no additional Fermi surfaces are
introduced when the continuum description of the theory is
replaced by the properly lattice periodic tight-binding
Hamiltonian. This is important as topological band theory is
only well defined for lattice periodic systems.

Inserting the order parameters derived above, we obtain the
pairing Hamiltonian

Hpair ¼ D0

X
k;j;j0

cð� ;jÞð � kÞMj;j0cðþ ;j0ÞðkÞþH:c:;

M ¼ g0s0 þ g3s3;
ð7Þ

with g0 ¼ u00 þ 2u11 þ u33, g3 ¼ 2u30 for the superconductor
SCþþ and g0 ¼ 2u30, g3 ¼ u00 � 2u11 þ u33 for the SCþ� state.
Calculating dj in equation (6), one finds (see Methods for more
details) that the superconductor is topological if g0j jo g3j j and
trivial for the reversed inequality sign. At g0j j ¼ g3j j, the gap
closes as is characteristic for a topological phase transition.
Recalling the flow depicted in Fig. 3a, one immediately sees that
SCþþ is trivial, whereas SCþ� is a topological superconductor.
Accordingly, the experimental observation of topological features
of the superconducting state implies that the pairing mechanism
must be unconventional as it is the case for SCþ� . Vice versa, a
trivial state is only consistent with conventional, electron–phonon
induced superconductivity.

Note that the pairing states obtained here differ from the
results of former studies40–42 of interacting single-band models
with Rashba spin–orbit coupling for the following reasons: The
anisotropic masses lead to strong nesting, the inclusion of two
orbitals allows both for more independent interaction terms and
for additional spin–orbit couplings that crucially affect the spin
textures.

Furthermore, we emphasize the difference of our result to
recent work43–46 proposing the emergence of Majorana fermions
in the heterostructure as a consequence of the coexistence
of magnetism and superconductivity. In that case, however,
(physical, spin-1/2) time-reversal symmetry is broken, whereas
the SCþ� state found here is time-reversal invariant.

Competing phases and spin textures. Eventually, our RG flow
will always favour a superconducting state. However, by succes-
sively reducing the characteristic energy scale, we are increasingly
sensitive to details of the low-energy theory and, consequently,
the fact that the nesting is not perfect becomes relevant. For any
finite ml/mh, the strongly nested domains of the Fermi surface
have a non-vanishing curvature, thus, eventually forcing the RG
flow to stop. If the flow is terminated before any of the
coupling constants diverges, other phases competing with

superconductivity can emerge, as illustrated in Fig. 3b. In the
associated mean-field equations, all coupling constants can now
be of the same order and, hence, the resulting diagram of com-
peting phases depends on all couplings, also on those that do not
flow. The analysis yields that either a charge density wave
(CDW12) or three different spin density waves (SDW11, SDW22,
SDW12) are possible or the corresponding superconducting states
are dominant for arbitrary ml/mh as shown in Fig. 3c,d. The
superscripts in the density waves CDWij and SDWij refer to the
particle–hole expectation value DDW

ð� ;iÞ;ðþ ;jÞ (and i2j, if iaj) that
is non-zero in the respective phase. The difference between
CDW12 and SDW12 is the relative sign of DDW

ð� ;iÞ;ðþ ;jÞ and
DDW
ð� ;jÞ;ðþ ;iÞ, rendering the order parameter symmetric and anti-

symmetric under time reversal in the former and in the latter
case, respectively.

The spatial structure of the charge and spin density waves can
easily be determined from the wave functions of the system and
the order parameters DDW

a;b . In analogy to the discussion of the
superconducting states, we assume that no additional point-group
symmetry is broken. In the case of the CDW12 phase, one then
finds that the local charge density is given by

rðxÞ / cos ðQ12 � xÞþ . . . ; ð8Þ

where Q12¼ k1þ k2 is the associated nesting vector. The first
contribution stems solely from the nested subspace highlighted in
red in Fig. 1a and the ellipsis stands for the terms emanating from
the remaining three subspaces, which are fully determined by the
p/2 rotation and reflection symmetry at the xz plane. The
resulting charge profile is illustrated in Fig. 4a. Note that the
periodicity crucially depends on the ratio of the x and y
component of the nesting vector Q12.

Similarly, the spatial structure of the spin density waves
SDW12 and SDW11, SDW22 can be calculated (for details see
Supplementary Methods) yielding the textures shown in Fig. 4b
and Fig. 4c, respectively. Here we have used that, in the red
regions of Fig. 1a, the spins are approximately aligned along the y
axis (see Fig. 1b,c). Within this approximation, the expectation
value of the spin lies in the xy plane in case of the spin density
phase SDW12. The 2D vector field is a lattice of vortices, both
with positive and negative winding numbers. In the phases
SDW11 and SDW22, the spin is free to rotate in three dimensions.
One finds a complicated periodic arrangement of isolated
skyrmions and antiskyrmions, as well as closely bound
skyrmion–antiskyrmion pairs (see Fig. 4d). The emergence of a
skyrmion lattice that leads to interesting physical effects (see for
example ref. 47), is consistent with recent work8,48 pointing out
that these magnetic topological defects naturally appear as
solutions of the Ginzburg–Landau equations for systems with
spin–orbit interaction.

On top of that, the difference between the density wave phases
in Figs 3c,d neighbouring the superconducting states SCþ� and
SCþþ can be exploited to gain information about the pairing
mechanism in the heterostructure. As the orbital contribution to
the magnetization is negligible for large mass anisotropies, the
experimental observation of in-plane magnetization5 is only
consistent with the SDW12 state. This implies that the
superconducting phase of SrTiO3/LaAlO3 is supposed to be
unconventional and topologically non-trivial.

Discussion
As the Z2 invariant N is a rather abstract way of classifying
superconducting phases, it is worthwhile to gain intuitive
understanding for why identical (different) signs of the pairing
fields lead to a topologically trivial (non-trivial) superconductor.
Imagine starting from the standard s-wave singlet BCS
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superconductor, characterized by an isotropic, spin-degenerate
Fermi surface, where only Kramers partners are paired. Turning
on terms that break inversion and rotation symmetry, this phase
can be continuously deformed into the SCþþ state without
closing the gap as illustrated in Fig. 5. This proves that the SCþþ

phase is, exactly as the BCS superconductor, topologically trivial.
Importantly, relative phases between the pairing fields of the two
Fermi surfaces cannot be introduced adiabatically without
breaking time-reversal symmetry. Therefore, deforming the BCS
state continuously into the SCþ� superconductor necessarily
involves a closing of the gap on one of the Fermi surfaces. At this
gap closing, a topological phase transition occurs as we have
shown mathematically by calculating the invariant N for the
SCþ� state. Note that a similar topological phase has been found
very recently in a prototype model of 2D 3He-B with the
assumption of Rashba spin–orbit coupling49.

Our link between topology and pairing mechanism allows to
unveil the unknown microscopic physics of the superconductor by
observing signatures of Majorana bound states: In case of the
unconventional SCþ� state, counter propagating Majorana modes
are expected to be localized on a length scale of the order of the
coherence length2 xC 100nm at boundaries to trivially gapped
phases. These modes can be probed experimentally, for example,
using tunnel spectroscopy or via thermal conductivity
measurements50. From the material science point of view, it is
important to distinguish between ‘intrinsic’ and ‘extrinsic’
topological superconductors. In ‘extrinsic’ systems (see, for
example, refs 16–18) Cooper pairs are injected via the proximity
effect from a non-topological superconductor into another
conductor that is thereby driven into a topological
superconducting phase. The SCþ� state is an ‘intrinsic’

topological superconductor, where the pairing and the non-trivial
topology emerges from the material’s internal dynamics, which
could simplify probing Majorana physics. One additional advantage
of oxide interfaces for investigating Majorana modes is that
boundaries of highly controllable shape between superconducting
and insulating phases can be realized experimentally, either via
locally reducing the thickness of the LaAlO3 crystal51 or using a
voltage-biased atomic force microscope tip52.
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kxkx
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Figure 5 | Illustration of the topological properties. The value of the

pairing field at the inner (blue) and outer (orange) Fermi surface is shown

for the s-wave singlet BCS superconductor as well as for the SCþþ/SCþ�

phases. The topologically trivial BCS state is adiabatically connected to the

SCþþ superconductor, whereas a continuous deformation into the SCþ�

phase requires closing the gap at some point along the path.
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Figure 4 | The spatial structure of the different density wave phases. (a) The charge density pattern of CDW12. In SDW12, where the nesting vector is

again given by Q12¼ k1þ k2, the spin S lies approximately in the xy plane. As shown in (b) using red arrows to indicate the direction of the spin, one finds a

lattice of vortices. In case of SDW11, the nesting vector is 2k1 and we observe a lattice of skyrmions and antiskyrmions as illustrated in (c), where the red

arrows indicate the direction of the xy components of the spin and the black lines are the zeros of its z component S3. (d) One of the emerging closely

bound skyrmion–antiskyrmion pairs. The texture of SDW22 (nesting vector 2k2) is identical to SDW11 up on replacing S3-�S3. In all plots, a nesting

vector of the form (2, 0.48)Q has been assumed.
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As already stated above, we have also considered the case
of different Fermi velocities, u1au2 (see Supplementary Note 1
for more details of the analysis). Then all four back-
scattering couplings, the interaction terms in Figs 2a–d,
flow. Nonetheless, exactly as before, the leading instability
is generically superconducting for sufficiently large mass
anisotropies. Detuning the Fermi velocities leads to a crossover
from the superconductors SCþ� and SCþþ , which are

characterized by DSC
ð� ;1Þ;ðþ ;1Þ

��� ��� ¼ DSC
ð� ;2Þ;ðþ ;2Þ

��� ���, to a pairing state

where the anomalous expectation value DSC
ð� ;jÞ;ðþ ;jÞ is only finite

on the Fermi surface with the larger Fermi velocity. Note that, in
this limit, the associated mean-field Hamiltonian still describes
pairing on both Fermi surfaces due to the pair hopping term,
giving rise to a fully gapped phase. Remarkably, we again find that
the superconductor resulting from the conventional electron–
phonon pairing mechanism is topologically trivial, whereas the
unconventional superconductor is non-trivial. This proves that
the correspondence between the pairing mechanism and the
topological properties of the superconducting phases in the
heterostructure holds irrespective of the values of the Fermi
velocities.

For completeness, we have also investigated the case of very
weak spin–orbit interaction where the energetic cut-off of the
low-energy model is much larger than the spin–orbit splitting
(see Supplementary Note 2). Then the red regions in Fig. 1a
merge pairwise and, consequently, momentum conservation is
much less restrictive making more backscattering terms possible.
Surprisingly, even in this situation, the observation of a
topologically non-trivial superconducting phase is only consistent
with the pairing mechanism being unconventional.

Finally, we point out that the pairing state of a many-body
system is always a consequence of the combination of electron–
phonon and electron–electron interactions. Even if phonons
enhance a sign-changing pairing state, the electron–phonon
coupling alone prefers quite generally conventional pairing (see,
for example, refs 53–55). This includes the recently proposed
scenario, where odd-parity pairing states and related topological
superconductivity13 are predicted to occur in systems with an
electron–phonon coupling that is singular at long wavelength and
closely tied to inversion symmetry56,57. The interesting
mechanism of refs 56,57 does not apply to the oxide interfaces
studied here, as inversion symmetry is broken, the transferred
momentum is finite, and since tunnelling data indicate a fully
established superconducting gap35. Thus, we conclude that for the
oxide interfaces the established link between topology and
microscopic mechanism is robust.

In summary, our analysis reveals that the phase diagram of the
2D electron fluid forming at the interface between the perovskite
oxides LaAlO3 and SrTiO3 combines two fascinating notions of
condensed matter physics: Topology and unconventional super-
conductivity. We find that, very generically, the observation of
signatures of topologically non-trivial superconductivity, such as
the appearance of Majorana bond states, directly implies that the
underlying pairing mechanism must be unconventional. In
addition, the spin density wave phases competing with topolo-
gical superconductivity show topological spatial textures as well.
Depending on the value of the coupling constants, we find lattices
of both skyrmions and vortices.

Methods
Phase convention for the helicity states. Using a path-integral representation,
the quadratic part of the theory can be written as

S0 ¼ T
X
on

X
k

�CaðkÞ � ionda;b þHa;bðkÞ
� �

CbðkÞ; ð9Þ

where k�(on, k) and C, �C are four-component Grassmann fields describing
spinful fermions in the 3dxz and 3dyz orbitals. Furthermore, H is the Hamiltonian
defined in the main text characterized by the anisotropic masses (1) and the spin–
orbit coupling in equation (2).

We diagonalize S0 by performing the unitary transformation

CaðkÞ ¼ Ua;a0 ðkÞfa0 ðkÞ; �CaðkÞ ¼ U�
a;a0 ðkÞ�fa0 ðkÞ; ð10Þ

where

UðkÞ ¼ f1ðkÞ;f2ðkÞ;f3ðkÞ;f4ðkÞ½ � ð11Þ

with fa(k) denoting an eigenvector of H(k). As explained in the main text, we can
restrict the analysis of instabilities to one of the most strongly nested subspaces and
introduce helicity fields c(s,j) and �cðs;jÞ in the local coordinate systems yielding

S0 ¼
Z
k

�cðs;jÞðkÞ � ion þ sujk? þ sjZ
� �

cðs;jÞðkÞ ð12Þ

after linearizing the spectrum. Here s1¼ þ 1, s2¼ � 1 and Z denotes the spin–orbit
splitting in the case of quasi-degenerate Fermi surfaces. For stronger spin–orbit
coupling, where the four red regions in Fig. 1a are disjoint, one has Z¼ 0 by
construction. The different regimes of the quasi one-dimensional description in
equation (12) are summarized graphically in Supplementary Fig. 1. In equation (12)
and in the following, we use the compact notation k�(on, kk, k?) andZ

k

� � � ¼ T
X
on

Z Lk

�Lk

dkk
2p

Z L?

�L?

dk?
2p

. . . ; ð13Þ

where L? and L8 are the momentum cutoffs normal and tangential to the Fermi
surface.

To make the helicity operators unique, we have to fix the phases of the
eigenstates in equation (11). This is achieved by exploiting the invariance of the
Hamiltonian under p-rotation Rc2 and time-reversal Y. The former symmetry
implies that

HðkÞ ¼ Rc2
CHð� kÞRc2y

C ; Rc2
C ¼ it0s3; ð14Þ

and hence we can construct the eigenstates with negative kx from those with
kx40 via

fað� kÞ:¼Rc2y
C faðkÞ; kx40: ð15Þ

Consecutive application of time reversal and p-rotation leads to the k-space
local antiunitary symmetry

HðkÞ ¼ t0s1H�ðkÞt0s1 ð16Þ

of the Hamiltonian. Thus, we can adjust the phases of the eigenstates such that

faðkÞ ¼ t0s1f
�
aðkÞ ð17Þ

for kx40. From equation (15), it follows that equation (17) actually holds also for
kxo0.

Representation of the symmetries. Having fixed the phases of the local eigen-
states, the representation of time-reversal and p-rotation symmetry on the helicity
fields is well defined. Note that the remaining elements of the point-group C4u
cannot be represented on c and �c as these symmetry operations act between dif-
ferent most strongly nested subspaces. For the very same reason, however, these
symmetries are also irrelevant when deriving the most general interaction within
one of the subspaces.

Time reversal acts according to

Caðo; kÞ
Y�!ðis2Þa;b �Cbðo; � kÞ; ð18aÞ

�Caðo; kÞ
Y�!Cbðo; � kÞ ðis2Þb;a ð18bÞ

in the basis of equation (9). Using equations (15) and (17), one can derive the
transformation behaviour

cð� ;jÞðo; kk; k?Þ
Y�! � i�cð� ;jÞðo; � kk; � k?Þ; ð19aÞ

�cð� ;jÞðo; kk; k?Þ
Y�! � icð� ;jÞðo; � kk; � k?Þ ð19bÞ

in the helicity basis. Similarly, for the p-rotation symmetry, we find

cð� ;jÞðo; kk; k?Þ
Rc2
�! � cð� ;jÞðo; � kk; � k?Þ ð20Þ

and the same for �c.

Symmetry analysis of the interaction. Now we will derive the most general
momentum-independent interaction of the low-energy theory consistent with the
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symmetries of the system. Let us write

Sint ¼
Z

k1 ;k2 ;k3 ;k4

�caðk4Þ�cbðk3Þcgðk2Þcdðk1ÞWab
gd dðk1 þ k2 � k3 � k4Þ ð21Þ

where the Greek letters are double indices comprising s¼± and j¼ 1,2. It turns
out that the dimensionless parameterization,

oab
gd ¼ Lk

2p2u1
Wab

gd ð22Þ

with

oðsa ;jaÞðsb ;jbÞ
ðsg ;jgÞðsd ;jdÞ ¼

V
ja ;jb
jg ;jd ðsÞ; sa ¼ sb ¼ sg ¼ sd ¼ s;

W
ja ;jb
jg ;jd ; ðsa;sb; sg; sdÞ ¼ ð� ; þ ; þ ; �Þ;

W
jb ;ja
jd ;jg ; ðsa;sb; sg; sdÞ ¼ ðþ ; � ; � ; þÞ;

�W
jb ;ja
jg ;jd ; ðsa; sb;sg; sdÞ ¼ ðþ ; � ; þ ; �Þ;

�W
ja ;jb
jd ;jg ; ðsa;sb; sg;sdÞ ¼ ð� ; þ ; � ; þÞ;

0; otherwise;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ

is very convenient for the following analysis. In equation (23), we have already
taken into account that only forward scattering (described by V) and backscattering
(W) are allowed by momentum conservation. Throughout this work, we assume
that Umklapp processes are not possible. Due to Fermi statistics, the forward
scattering tensors must have the form

V
ja ;jb
jg ;jd ðsÞ ¼ g0ðsÞ dja ;jd djb ;jg � dja ;jg djb ;jd

� �
; ð24Þ

whereas the backscattering tensor has 16 degrees of freedom, which we parametrize
according to

W
ja ;jb
jg ;jd ¼

X3
s;s0¼0

gss0 ðssÞja ;jd ðss0 Þjb ;jg : ð25Þ

Note that gss0puss0 with uss0 used in the main text to define the backscattering
terms.

Next, let us derive the constraints resulting from p-rotation symmetry.
Demanding that equation (21) be invariant under the transformation (20), we find

V
ja ;jb
jg ;jd ðþ Þ¼! Vja ;jb

jg ;jd ð� Þ; ð26aÞ

W
jb ;ja
jd ;jg ¼

!
W

ja ;jb
jg ;jd : ð26bÞ

Consequently, all forward scattering processes are characterized by one coupling
constant g0�g0(þ )¼ g0(� ). In terms of the representation in equation (25), the
second constraint is equivalent to gT¼ g, as stated in the main text.

Similarly, to make the interaction time-reversal symmetric, we require
invariance of equation (21) under equations (19a,b). Again using the
parameterization in equation (23), we find that V is not further restricted, whereas
the backscattering tensor has to satisfy

Wjd ;jg
jb ;ja ¼

!
W

ja ;jb
jg ;jd : ð27Þ

In the equation (25), this is equivalent to demanding gss0 ¼ 0 if either s¼ 2 or s0 ¼ 2
and, hence, we have

g ¼

g00 g10 0 g30
g10 g11 0 g31
0 0 g22 0
g30 g31 0 g33

0
BB@

1
CCA: ð28Þ

If the most strongly nested subspaces are disjoint, momentum conservation
rules out further interaction terms leading to the four independent backscattering
couplings discussed in the main text.

Microscopic interaction. An important part of our analysis is the identification of
the pairing mechanisms in the different superconductors. For this purpose, we
include matrix elements of the electron–electron interaction between the relevant
3dxy and 3dyz orbitals yielding both an intra- (U) and inter-orbital (U0) Hubbard
interaction, a Hund’s coupling (J H) term, as well as pair hopping (J ). In addition,
we use J H ¼J and U ¼U0þ2J valid for the usual Coulomb interaction, but our
results do not crucially depend on this assumption.

Projecting the interaction onto the low-energy theory, we find, using the model
defined in the main text,

g00 ’ g11 ’ g33; g00j j 	 g30j j ð29Þ
in case of disjoint support in momentum space. In this way, we can estimate the
initial conditions for the RG flow both for a microscopically repulsive (g0040) and
for an electron–phonon induced, attractive (g00o0) interaction. The two scenarios
correspond, respectively, to the red- and blue-shaded regions in Fig. 3a.

Wilson RG. In the Wilson approach, as discussed in detail for fermions with a
finite Fermi surface in ref. 32, fast modes with momenta L?e�Dlok?oL? , Dl
40, are integrated out yielding, after proper rescaling, an effective action with
renormalized parameters.

At one-loop order and for T¼ 0, we find that, in all three regimes considered in
this work, forward scattering is not renormalized, whereas the backscattering
tensor flows according to

dW
ja ;jb
jg ;jd

dl
¼

X
jm ;jn

4
xjm þ xjn

Wja ;jn
jg ;jmW

jm ;jb
jn ;jd �W

ja ;jb
jn ;jm W

jm ;jn
jg ;jd

� �
ð30Þ

with xj:¼ vj/v1. In the simplest case of strong spin–orbit coupling and u1¼ u2,
equation (30) is equivalent to

dg11
dl

¼ � 8g11g33;
dg33
dl

¼ � 8g211; ð31Þ

yielding the flow shown in Fig. 3a.

Mean-field equations and instabilities. As we are only interested in determining
the instability with the highest transition temperature, it is justified to linearize the
mean-field equations in the order parameters. Keeping only the leading terms in
the physically relevant limit Toou2L? , we find

DDW
a;b 
 Lja ;jb dsa ;� dsb ;þW

j0a ;jb
j0b ;ja

DDW
ð� ;j0aÞðþ ;j0bÞ

h
þ dsa ;þ dsb ;�W

jb ;j0a
ja ;j0b

DDW
ðþ ;j0aÞð� ;j0bÞ

i

ð32aÞ
and

�DSC
ð� ;jaÞðþ ;jbÞ 
 � 2Lja ;jbW

j0a ;j
0
b

jb ;ja
�DSC
ð� ;j0aÞðþ ;j0bÞ

; ð32bÞ

where

Lja ;jb :¼ log u1L?
T

� �� �xja þ log u1L?
T

� �� �xjb
xja þ xjb

ð33Þ

has been introduced. In equation (32b), it has been exploited that �DSC
a;b is anti-

symmetric such that it is sufficient to consider (sa,sb)¼ (� ,þ ). We see that, both
for the density wave and for the superconducting channel, solely order parameters
with sa¼ � sb are relevant. In addition, only the backscattering tensor W enters,
whereas forward scattering, V, does not have any role at all.

Expanding the density wave order parameters,

DDW
a;b ¼

X3
s;s0¼0

cs;s0 ðtsÞsa ;sb ðss0 Þja ;jb ; cs;s0 2 R; ð34Þ

and the anomalous expectation values,

�DSC
ð� ;jaÞ;ðþ ;jbÞ ¼

X3
s¼0

~csðssÞja ;jb ; ~cs 2 C; ð35Þ

in Pauli matrices we can rewrite equations (32a,b) more explicitly. The result for
strong spin–orbit coupling and identical Fermi velocities is summarized in
Supplementary Table 1. Inserting the asymptotic behaviour of the coupling
constants, that is g11B � g33-N and g11Bg33-�N in regime (I) and (II),
respectively, one finds the superconducting phases SCþ� and SCþþ discussed in
the main text. To derive the competing instabilities, we have investigated the flow
of all mean-field equations in Supplementary Table 1 according to equation (31)
and analysed which of the order parameters is dominant before superconductivity
eventually wins.

Calculation of the topological invariant. To obtain N in equation (6), we have to
relate the effective one-dimensional theory, equations (7) and (12), to the full
mean-field Hamiltonian,

H2D
MF ¼

X
k

Cy
a ðkÞHa;bðkÞCbðkÞ

þ 1
2

X
k

Cað� kÞDya;bðkÞCbðkÞþH:c:
h i

;
ð36Þ

defined on the entire 2D Brillouin zone. For simplicity, let us focus on the case of
strong spin–orbit coupling and u1¼ u2 (see Supplementary Notes 1 and 2 for the
other regimes of the system). Suppose that the free Hamiltonian H has been
diagonalized by applying the transformation in equation (10). Here we use the
convention that the eigenfunctions fa are sorted for every k such that the energy
increases with a. From equation (7), we know that the pairing term, that is the
second line in equation (36), must have the form

H2D
pair ¼ D0

X
j¼1;2

X
k2Sj

fjð� kÞMj;jfjðkÞþH:c:þ � � �: ð37Þ

Here Sj denotes the strongly nested domain in the vicinity of kj (see red regions in
Fig. 1a). The ellipsis in equation (37) stands for the pairing terms in the remainder
of the Brillouin zone. Using equation (10) to rewrite the f-operators in terms of the
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C fields, we find

Dya;bðkÞ ¼ 2D0Mj;j

�
f�
j ð� kÞ

�
a

�
f�
j ðkÞ

�
b
; 8k 2 Sj: ð38Þ

By construction, H is time-reversal invariant, which means that

yHHðkÞy� 1
H ¼ Hð� kÞ; yH ¼ eijis2K ð39Þ

with K denoting complex conjugation and arbitrary j 2 R. It is straightforward to
show that time-reversal invariance of the pairing term is equivalent to

e2ijs2D
yðkÞs2 ¼ �DðkÞ: ð40Þ

Using the phase conventions in equations (15) and (17) and writing D0¼ |D0|eir,
r 2 R, one finds that equation (40) is satisfied if

rþj ¼ � p
2
: ð41Þ

The matrix elements

dj :¼ fjðqjÞ yHKDyðqjÞ
��� ���fjðqjÞ

D E
; ð42Þ

where qj is an arbitrary point on the jth Fermi surface, can now be readily eval-
uated. Choosing qj¼ kj, one finds

dj ¼2ieijD0Mj;j fyj ðkjÞs2f
�
j ð� kjÞ

� �
fyj ðkjÞfjðkjÞ

� �

¼2ieijD0Mj;jf
y
j ðkjÞs2s1fjð� kjÞ

¼ � 2ieijD0Mj;jf
y
j ðkjÞfjðkjÞ

¼ � 2 D0j jMj;j;

ð43Þ

again exploiting equations (15) and (17) as well as, in the last line, equation (41).
The invariant is thus given by

N ¼
Y
j

signðdjÞ ¼
þ 1 ðtrivialÞ; g0j j4 g3j j;
� 1 ðnontrivialÞ; g0j jo g3j j:

	
ð44Þ
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