
ARTICLE

Received 11 Jul 2014 | Accepted 1 Dec 2014 | Published 8 Jan 2015

Enhanced Moran effect by spatial variation
in environmental autocorrelation
Thomas M. Massie1,w, Guntram Weithoff1, Nina Kuckländer2, Ursula Gaedke1 & Bernd Blasius3

Spatial correlations in environmental stochasticity can synchronize populations over wide

areas, a phenomenon known as the Moran effect. The Moran effect has been confirmed in

field, laboratory and theoretical investigations. Little is known, however, about the Moran

effect in a common ecological case, when environmental variation is temporally auto-

correlated and this autocorrelation varies spatially. Here we perform chemostat experiments

to investigate the temporal response of independent phytoplankton populations to auto-

correlated stochastic forcing. In contrast to naive expectation, two populations without direct

coupling can be more strongly correlated than their environmental forcing (enhanced Moran

effect), if the stochastic variations differ in their autocorrelation. Our experimental findings

are in agreement with numerical simulations and analytical calculations. The enhanced Moran

effect is robust to changes in population dynamics, noise spectra and different measures of

correlation—suggesting that noise-induced synchrony may play a larger role for population

dynamics than previously thought.
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U
nderstanding the causes and mechanisms underlying
spatial synchrony of biological populations has
become a key issue in population ecology1–6. Several

mechanisms for explaining population synchrony have been put
forward, such as dispersal between populations and spatially
extended trophic interactions6. Synchrony may also arise from
spatially correlated environmental influences (Moran effect7,8).
Moran (1953) suggested that spatially separated populations,
which are regulated by the same density-dependent structure, will
tend to fluctuate in synchrony if they are exposed to similar
environmental variation. In particular, in the special case of linear
density dependence the cross-correlation between the regional
populations, rp, will be identical to that of the environment,
rp¼ r. This statement became known as Moran theorem7. Given
that environmental fluctuations can be spatially correlated over
large distances, the Moran effect was considered as a major
mechanism for generating population synchrony under
natural9–14 and laboratory conditions15–17. It was generalized to
include nonlinear density dependence, populations in non-
identical habitats, the influence of dispersal, cyclic populations,
species interactions and various combinations of these
factors9,12,18–23. All these studies found that the correlation of
independent populations, not coupled by dispersal, remains
bounded by the environmental correlation, rprr, which should
limit the Moran effect as a driver of population synchrony. Here
we show that the magnitude of the Moran effect can be
substantially enhanced, rp4r, in the common ecological case
that the environmental fluctuations are temporally autocorrelated
and this autocorrelation varies spatially.

Temporal autocorrelation refers to a relationship between
successive observations in a time series and can be described by
its noise colour. The term ‘colour’ derives from the analogy
between the spectral representation of Fourier-transformed time
series and the spectrum of (visible) light. A noisy signal is
called ‘white’ if successive values are uncorrelated so that no
frequency dominates. In contrast, red noise indicates positive
autocorrelation, that is, successive values are more similar than
expected by chance. Time series with red noise are dominated by
low-frequency fluctuations and are often found in nature, for
example, in climate variables and population densities24–29.
The colour of environmental noise can have a substantial
influence on population dynamics and persistence26,30–35

but, although relevant, its effect on population synchrony
has rarely been addressed. Previous theoretical investigations
revealed that reddened environmental noise may intensify
spatial synchrony19,30,36–38. These investigations, however, were
restricted to the case of identical noise colours in all populations,
despite the fact that empirical studies of a wide range of
environmental variables have revealed substantial variations in
noise colour between geographic regions and on gradients from
land to the ocean24,26,29,39–41.

In this communication, we study the Moran effect in response
to spatial variations in habitat properties and environmental
autocorrelation (noise colour). While spatial variability is
commonly thought to reduce population synchrony12,19,20,23,
here we perform a series of laboratory experiments to show that it
may either suppress or enhance the intensity of noise-induced
spatial synchronization: (i) in the absence of spatial variations
(identical habitats and noise colours) we reproduce the Moran
theorem, rp¼ r; (ii) spatial variations in habitat properties
suppress the Moran effect, rpor; and (iii) we provide evidence
from experiments, theoretical analyses and numerical simulations
that the Moran effect can be significantly enhanced, rp4r, by
spatial variations in environmental autocorrelation. Thus, our
major finding is the counterintuitive result that the correlation
between otherwise independent populations can be larger than

that of their respective environments (enhanced Moran effect) if
the populations experience environmental fluctuations with
different noise colour.

We demonstrate this effect in experiments with living
organisms under well-defined conditions, using chemostats
containing populations of the green alga Chlorella vulgaris
(Chlorococcales). We investigate the population dynamics of
two isolated populations, NA and NB, experiencing correlated
environmental stochasticity (Fig. 1). We impose environmental
variation on the chemostat populations by altering the
dilution rates, dA(t) and dB(t), at discrete time intervals of 1 or
2 h, using computer-generated random numbers. Thereby, the
dilution rates are cross-correlated by r¼C(dA,dB) and auto-
correlated with noise colours a and b. This stochastically
correlated forcing is the only way in which the two systems are
coupled. Using light extinction as a proxy of algal biomass42, we
measure the population densities with an unusually high
temporal resolution of 5-min intervals. The two populations
respond to the stochastic forcing with fluctuations that are cross-
correlated by rp¼C(NA,NB). This population correlation, in
general, is different to the correlation of the input signals. Thus,
this experimental set-up allows us to model environmental
variation and its synchrony, as well as the population response
and transformation of this synchrony (that is, the Moran effect)
in a well-controlled laboratory system.

Results
Identical chemostat systems. We present results from three
different experimental scenarios. First, we tested whether popu-
lations would follow the behaviour expected from the Moran
theorem. For this, we parameterized both chemostat systems
identically, imitating identical habitats, that is, the average dilu-
tion rates and the resource supply concentrations had the same
value for both systems (see Methods). In six consecutive runs, the
populations experienced white noise (a¼b¼ 0) that was cross-
correlated between the two populations with coefficients r in the
range from 0 to 1 (for parameters and exact values of r see
Table 1). The populations responded to the stochastic forcing
with correlated population dynamics, with cross-correlations that
correspond to that of the environmental forcing, rpEr (see
Fig. 2a). These results agree with the prediction from the Moran
theorem and confirm the hypothesis that correlated stochastic
forcing can synchronize the dynamics of noninteracting
populations.

Variation in habitat properties. Second, we tested whether sto-
chastic forcing is able to synchronize populations that differ in
their key habitat properties. For this, we imposed different values
of average turn-over rate (dilution) and carrying capacity
(resource supply concentrations) on the two systems, so that one
habitat was characterized by high nutrient availability but also
high mortality, whereas both factors were lower in the other one
(see Methods). Again, the populations experienced six treatments
of white noise with cross-correlation coefficients in the range
between 0 and 1 (for exact values and parameters see Table 1). In
our experiments we observed that stochastic forcing is able to
synchronize even populations living in non-identical habitats
(Fig. 2b). However, the cross-correlation of population density
was consistently smaller than that of the environmental driving,
rpor. This finding confirms results from field and theoretical
studies12,19,20,23.

Variation in environmental autocorrelation. In the third
scenario, we tested the response of two populations with identical
habitats under the influence of differently autocorrelated noise.
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In theory (see Methods) this would allow for enhancing input
noise correlations, rp/r41. For this, the two experimental
populations were adjusted to have identical habitat conditions.
However, in contrast to the previous scenarios, we implemented
temporal autocorrelations (noise colour) in the time series of
dilution rates (see Methods). We performed a series of 11
experimental runs, each representing a combination of differing
autocorrelation parameters a and b roughly adjusted within the
range [0,0.9] (see Table 1). In our experiments we observed that
in autocorrelated environments the correlation of the populations
can significantly exceed that of the environmental shocks
(Fig. 2c). To compare this experimental finding with theoretical
expectations, we plot the synchrony amplification factor rp/r as a
function of the realized noise correlation r and the difference in
autocorrelation parameters |a�b| (Fig. 3). A value of rp/r¼ 1
(solid line in Fig. 3) corresponds to the expectation from the
Moran theorem. However, the experimental findings demonstrate
that, in contrast to the naive expectation, the input correlation of
the environmental fluctuations is amplified by the population
dynamics, by more than 300% for large differences in auto-
correlation parameters. This synchrony amplification, rp/r,

increases in strength as the difference in noise colours |a�b|
becomes more pronounced.

Theoretical analysis. The phenomenon of an enhanced Moran
effect is confirmed by theoretical analysis. Linear theory allows
the amplification factor rp/r to be calculated for independent
populations, having identical linear population demography
described by the density regulation parameter a (see Methods,
equation 7). Expanding this result for small values of a and dif-
ferences in autocorrelation |b� a| yields

rp
r

� 1þ 1
2
a2 b� að Þ2: ð1Þ

The deviation between the synchrony amplification factor and
the expectation from the Moran theorem, rp/r� 1, scales
quadratically with both the difference in autocorrelation, a�b,
and the density regulation parameter a. Thus, in independent
populations described by linear demography the cross-correlation
of population numbers can be larger than that of their stochastic
environment, rpZr. Such an enhanced Moran effect arises if the
noise colour differs between the two populations, |b� a|40. If
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Figure 1 | Noise-induced synchronization in two independent populations. (a) Experimental set-up to explore the response of two populations NA and NB

to correlated stochastic forcing, realized as chemostat systems of C. vulgaris. The two systems are coupled only by their correlated noise input, which

is generated by data preprocessing. For each system, Gaussian distributed white noises, xA(t) and xB(t), are generated that are cross-correlated by

r¼C(xA,xB). To implement temporal structure, the generating noises are filtered through an autoregressive AR(1) process with autocorrelation parameters

a and b, respectively. The resulting time series determine the experimental dilution rates (dA(t), dB(t)) of the chemostats in defined time intervals Dt and
are cross-correlated by r¼C(dA,dB). The correlation between chemostat population densities NA(t) and NB(t) is then measured by rp¼C(NA,NB).

(b–e) Typical population response (here shown for the case of two identical populations and white noise, a¼ b¼0, trial 1). (b) Normalized dilution rates

dA(t) and dB(t) and d, normalized population densities NA(t) and NB(t) of system A (blue) and system B (red). Circles indicate the respective values at the

time instances when dilution rates were set to a new value. Further shown is the pairwise correlation (black circles) and the regression line (green)

of normalized dilution rates r¼0.80 (c) and of population densities rp¼0.71 (e). The green dotted lines show the 95% confidence intervals;

0.68rrr0.87 (s.e.¼0.047) and 0.56rrpr0.82 (s.e.¼0.064). For illustration, the diagonal is indicated as black line.
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both autocorrelation parameters are equal, a¼b, the Moran
theorem rp¼ r is reproduced. Note that it is not the noise colour
in itself, but its variation between habitats, which is crucial for an
enhanced Moran effect. In fact, with increasing autocorrelation
parameters in both populations, their difference |b� a| must
eventually obtain a small value, which inhibits synchrony
amplification. This conforms to classic findings about the
tracking error to environmental variability32. More reddened
noise in both systems should enable the populations to track the
environment more closely, thereby reducing the possibility of an
enhanced Moran effect.

These analytic results are confirmed by the experimental
findings (Fig. 3). Interestingly, in general, the experiments showed
even larger values of the amplification factor rp/r than predicted
from linear theory. Numerical simulations with time-continuous
chemostat models, closely following the experimental system (see
Methods and Supplementary Fig. 2), were in agreement with the
experimental findings and showed that these results are robust.
We could observe the enhanced Moran effect in very different
settings. It prevailed for different measures of cross-correlation
(Supplementary Fig. 6), for higher-order autoregressive popula-
tion dynamics (Supplementary Figs 10 and 11), for non-identical

Table 1 | System characteristics of all experimental trials.

1-121-12
Scenario

Trial no. Ri,A (lmol l� 1) Ri,B (lmol l� 1) hdAi (per day) hdBi (per day) r (per day) a b |a�b| r rp

1 1 80 80 0.74 0.73 0.20 — — — 0.80 0.71
2 80 80 0.76 0.71 0.20 — — — 0.20 �0.17
3 80 80 0.75 0.75 0.20 — — — 0.60 0.80
4 80 80 0.72 0.76 0.20 — — — 0.00 0.21
5 80 80 0.75 0.77 0.20 — — — 0.40 0.48
6 80 80 0.72 0.72 0.20 — — — 1.00 0.96

2 7 80 40 0.76 0.39 0.15 — — — 0.80 0.68
8 80 40 0.74 0.43 0.15 — — — 0.20 0.07
9 80 40 0.77 0.40 0.15 — — — 0.60 0.79
10 80 40 0.76 0.44 0.15 — — — 0.00 �0.09
11 80 40 0.75 0.38 0.15 — — — 0.40 �0.02
12 80 40 0.77 0.42 0.15 — — — 1.00 0.48

3 13 80 80 0.84 0.82 0.25 0.87 0.65 0.22 0.75 0.84
14 80 80 0.84 0.80 0.25 0.87 0.33 0.54 0.42 0.78
15 80 80 0.84 0.77 0.25 0.87 0.02 0.85 0.20 0.72
16 80 80 0.82 0.80 0.25 0.65 0.33 0.32 0.82 0.91
17 80 80 0.82 0.77 0.25 0.65 0.02 0.63 0.52 0.67
18 80 80 0.80 0.77 0.25 0.33 0.02 0.31 0.88 0.89
19 80 80 0.77 0.78 0.25 �0.18 0.20 0.38 0.72 0.88
20 80 80 0.72 0.71 0.25 0.04 0.55 0.51 0.76 0.91
21 80 80 0.85 0.86 0.25 0.42 0.70 0.28 0.79 0.87
22 80 80 0.85 0.84 0.25 0.42 0.85 0.43 0.40 0.71
23 80 80 0.86 0.84 0.25 0.70 0.85 0.15 0.74 0.81

Listed are the values (obtained from measurement in the finite time series) for the resource supply concentrations in systems A (Ri,A) and B (Ri,B), the average dilution rates in systems A (hdAi) and B
(hdBi), the s.d. of the dilution rates (s), the autocorrelation parameters in systems A (a) and B (b), the absolute difference between the autocorrelation parameters (|a� b|) and the correlation
coefficients of the environment (r) and the populations (rp) in scenario 1 (Gaussian white noise; identical habitats), 2 (Gaussian white noise; differing habitats) and 3 (coloured noise; identical habitats). In
scenario 3, trials 13–18 were obtained in a single run with four chemostats. Owing to malfunctioning of chemostats, trials 19 and 29 were obtained in two runs with two chemostats and trials 21–23 from a
single run with three chemostats.
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Figure 2 | Moran effect in different experimental treatments. Population correlation rp in dependence of the environmental correlation r (black circles).

(a) Identical systems, white noise: the correlation of the population equals that of the environment rp¼ r (Moran theorem). (b) Non-identical systems,

white noise: the population correlation is smaller than the environmental correlation rprr. (c) Identical systems, differently autocorrelated noise. Even

though the two populations are non-interacting, the correlation of the populations exceeds that of the environment rp4r (enhanced Moran effect). Error

bars show 95% confidence intervals from a sample of 10,000 noise replicates (r), and from resampling measured correlations by bootstrapping (rp). The

diagonal lines indicate the expected outcome of the Moran theorem rp¼ r.
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populations, that is, when the population regulation parameter a
varied between two populations (Supplementary Fig. 12), and
nonlinear population dynamics (realized as two noise-driven
logistic maps, Supplementary Fig. 13). These simulations confirm
that non-identical or nonlinear population dynamics, in general,
suppress noise-induced synchrony, but show also that the
enhanced Moran effect is maintained even under these
conditions. Finally, correlation amplification also prevailed for
different types of autocorrelated noise, including 1/f b-noise
(Supplementary Fig. 14). Our simulations show that the
correlation amplification factor increases with the difference in
spectral exponents also for long-term correlations in the noise;
however, the dependence on the noise colour can be non-
monotonous so that the largest correlation amplification is
obtained for intermediate values of noise colour.

Discussion
How can this counterintuitive behaviour be explained? On the
basis of fundamental information theoretic concepts, the mutual
information between two non-interacting systems (a measure of
the full statistical interdependence) cannot increase. Thus, the
mutual information between the population densities {NA(t),
NB(t)} cannot exceed the mutual information between the driving
signals {dA(t), dB(t)}. However, this does not apply to the
(Pearson) cross-correlation coefficient, which evaluates the signal
values in both systems at the same time instances, while the full
temporal history in the mutual relationship between two signals is
coded in the cross-correlation function, or equivalently the cross-
spectrum7,43. If two autocorrelated signals differ in their noise
colour, aab, some mutual interdependence, that is inherently
present in the signals, will be distributed differently in the
frequency components and can, in principle, not be detected by
means of the cross-correlation coefficient.

In our experimental setting this is evident in the reduced
correlation r of the autocorrelated dilution rates compared with
the larger correlation r of the white generating noises (Fig. 1a).
This hidden correlation in the stochastic driving signals can be
unmasked, when it is imposed on a population that effectively

responds to the stochastic forcing as a low-pass filter (see
Methods). Thereby, increasing the difference in autocorrelation,
a�b, does not result in an enhanced population synchrony.
Instead, larger differences in noise colour reduce the correlation r
between the environmental variables more strongly than
the correlation rp between the population densities. As a
consequence, the ratio between input and population signals,
that is, the correlation amplification factor rp/r, can increase—
which finally leads to the enhanced Moran effect.

From the perspective of a ‘super-observer’, with full informa-
tion also about the generating time series xA,B(t), this effect may
not seem to be very surprising. An omniscient observer, however,
does not reflect ecological reality. In the field, an observer will
experience only the environmental signals acting on the
populations (together with their corresponding auto- and cross-
correlation), without information about the underlying causes
that have generated these time series. From the perspective of this
field observer, the measurable input noise correlation is
‘surprisingly’ enhanced when it is passed through the AR-filter
of the non-interacting populations. These problems can be
resolved by taking the full mutual relationship between multi-
variate signals into account. Notwithstanding this, it is the
common praxis in ecological field studies to quantify population
synchrony by the cross-correlation coefficient, even though it
yields a restricted insight into the time series.

Our findings are thus highly relevant for the understanding of
field observations where differently autocorrelated time series
prevail. In our experimental exploration of the enhanced Moran
effect, we covered the wide range of spatial variation in
autocorrelation that is known from empirical studies of
environmental variables, including air and water temperatures
in and around lakes, rivers and oceans24,26,29,39–41. Organisms
distributed over broad ranges or even on a global scale are very
likely to be encountered in such habitats. This is especially true
for eukaryotic microorganisms44 and many phyto- and
zooplankton species45,46 often possessing the key roles in their
habitats. On the basis of these observations, we should expect
differently autocorrelated environmental variability, as used in
our experiments, to be prominent in wild populations.
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Figure 3 | Enhanced Moran effect in differently autocorrelated environments. Observed correlation amplification factor rp/r (black filled circles) as a

function of (a) the environmental correlation r(a,b) and (b) the difference in autocorrelation parameters |a� b|. Red circles show the amplification factors

theoretically expected from an AR(1)-process with a¼0.97 (equation 7) for the respective, experimentally realized parameter combination r(a,b); green
circles show the amplification factors obtained from chemostat simulations (equation 11). Grey dots show amplification factors simulated by an AR(1)-

process for 20,000 randomly chosen autocorrelation parameters a and b, taken from a uniform distribution in the range [0,1]; grey lines give the upper and

lower boundaries. Error bars show 95% confidence intervals from a sample of 10,000 noise replicates (r and |a�b|), and from resampling measured

correlations by bootstrapping (rp/r). The horizontal lines rp/r¼ 1 indicate the expected outcome according to the Moran theorem.
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On the other hand, in the field not all implicit assumptions that
went into the design of our model set-up will be completely
satisfied. In free-living populations, the Moran effect will be
further complicated by additional confounding factors, such as
differences in habitat properties, density dependence, trophic
interactions, long-range dispersal or long-term correlations. All
these factors can potentially interfere with the intensity of noise-
induced population synchrony, which sets limitations to the
applicability of our analytic formulaequations (1) and (7). Our
numerical simulations revealed, however, that the phenomenon
of an enhanced Moran effect is robust to such factors, confirming
that our main results also hold under more general settings, at
least qualitatively (see Supplementary Figs 10–14).

The derivation of our main theoretical result, equations (1) and
(7), is not specific to ecological populations and should apply in
general to linear systems under the influence of differently
autocorrelated noise. Thus, the enhancement of the Moran effect
by spatial variation in autocorrelation is universal and should play
an important role also in other disciplines where autocorrelated
stochastic influence is prominent. Important examples are the
synchronization of epidemic outbreaks (for example, Cholera47 or
Malaria48) in separate regions by climate events, the functioning
and correlated firing in populations of neurons in different
regions of the cortex49,50, and the regulation of genetic and
biochemical networks51,52.

Methods
Chemostat set-up. Monoclonal batch cultures of the green algae C. vulgaris
(Chlorococcales) were kept in a climate chamber at 23.3±0.4 �C and constant
fluorescent illumination at 110 mEm� 2 s� 1 (preventing synchronization by light–
dark cycles) and served as stock cultures for the chemostat experiments. Resource
concentrations were adjusted to be nonlimiting or only weakly limiting (nitrogen
being the growth-limiting resource). We used sterile, modified Woodshole WC
medium after Guillard & Lorenzen (1972, pH¼ 6.8). Nitrogen concentrations were
sufficiently low to limit algal growth and were set to 80 mmol l� 1 (phosphorus to
nitrogen ratio P/N80¼ 1/1.6) by adjusting the amount of NaNO3. The medium
contained trace metals, vitamins and other nutrients in non-limiting concentra-
tions. For stock cultures we used medium containing a nitrogen concentration of
320mmol l� 1. We used glass chemostat vessels of 1.5 l volume and adjusted the
culture volume to B800ml. To provide homogeneous mixing and to prevent CO2

limitation, algal cultures were bubbled with pressurized, sterile air. We used an
automated light extinction measurement system42,53,54. Light extinction was
measured as light transmittance (wavelength¼ 880 nm) through a sterile syringe
that pulled out and pushed back 10ml of chemostat content every 5min, being
therefore a quasi-continuous, noninvasive method.

Experimental procedure. When the phytoplankton populations had reached a
steady state, we imposed correlated environmental variability on the chemostats for
a duration of 5 days. For this, we automatically altered the dilution rates at discrete
time intervals Dt, using computer-generated random numbers to steer the peri-
staltic pumps (see Supplementary Fig. 1 for an exemplary illustration of the
influence of the dilution rate on population densities and growth rates). Thereby,
the pairwise cross-correlation and the temporal autocorrelation of the sequence of
dilution rates were adjusted to a pre-determined value. The communication
between the computer and the peristaltic pumps was realized by digital/analog
input/output converters (Texas Instruments). The experiments comprise three
scenarios.

In the first scenario (see Fig. 1), we set up two (N¼ 2) identical chemostat
systems, parameterized by average dilution rate, hdAi¼ hdBi¼ 0.75 per day, and
resource (nitrogen) supply concentration, Ri,A¼Ri,B¼ 80mmol l� 1. In six
consecutive runs, the populations experienced white Gaussian noise with s.d.
s¼ 0.2 that was cross-correlated between the two populations with coefficients r of
B0.8, 0.2, 0.6, 0.0, 0.4 and 1.0 (for exact values see Table 1). Subsequent values of
correlation coefficients were chosen not to be in ascending or descending order to
avoid systematic errors. The s.d. was small enough to avoid the occurrence of
negative values in the noise generation process. The length of the time interval
between dilution rate changes was Dt¼ 2 hours, which allowed a total number of
n¼ 60 random shocks. Both, s.d. and interval length of the stochastic forcing
ensured significant effects on the populations.

In the second scenario, we set up two chemostats with differing levels of
dilution rates, hdAi¼ 0.75 per day, hdBi¼ 0.40 per day, and resource supply,
Ri,A¼ 80mmol l� 1, Ri,B¼ 40 mmol l� 1 (see Table 1). Again, the populations
experienced six treatments of white noise that was cross-correlated in the range
from 0 to 1 as in scenario 1 with Dt¼ 2 h. Given the lower value of hdBi,

the s.d. was decreased to s¼ 0.15 to make the occurrence of negative values in the
noise generation process of dB unlikely.

In the third scenario, we tested for synchrony in populations living in
differently autocorrelated habitats. We used a set-up of up to N¼ 4 chemostats,
which allowed us to measure N � (N� 1)/2¼ 6 independent pairwise correlations of
population densities in a single experimental run (see below). Basic habitat
properties were again identical (cf. first scenario); however, we decreased the
interval length to Dt¼ 1 hour in order to double the number of data points
(n¼ 120). This was necessary to improve the statistical significance in the
autocorrelated environments where the random shocks are not independent.
Simultaneously,
we increased the s.d. of the dilution rates to s¼ 0.25 to ensure distinct responses
in population densities (again avoiding negative values of dilution rates;
Supplementary Figs 4 and 5 exemplify the influence of noise colour on population
densities and growth rates).

Data analysis. Population synchrony between two time series x(t) and y(t) was
measured as Pearson’s correlation coefficient

r ¼ C xðtÞ; yðtÞð Þ ¼ xðtÞyðtÞh i� xðtÞh i yðtÞh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2
� �

� xðtÞh i2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yðtÞ2
� �

� yðtÞh i2
q : ð2Þ

Generation of autocorrelated noise. We used a two-step data preprocessing to
generate noises di(t) (i¼ 1yN) that are pairwise cross-correlated with the desired
correlation rij and temporally autocorrelated with ai (that is, the noise colour).

First, we generated cross-correlated, but not temporally correlated, ‘generating
noises’. For this we used N independent white noises zi(t), taken from Gaussian
distributions with zero mean and variance s2¼ 1. These independent noises were
multiplied with a correlation matrix A to establish the N generating noises xi(t) that
are pairwise correlated with adjustable parameters rij¼C(xi(t),xj(t)). Thus,
x(t)¼Az(t) with the matrix (N¼ 4)

A ¼

1 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

0
BB@

1
CCA ð3Þ

with diagonal elements:
a22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a221

p
, a33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a231 � a232

p
, a44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a241 � a242 � a243

p
, and off-

diagonal elements a21¼ r21, a31¼r31, a41¼ r41 and a32¼ (r32� a31a21)/a22,
a42¼ (r42� a21a41)/a22, a43¼ (r43� a31a41� a32a42)/a33. For smaller values of N
we used a submatrix of A (for example, to generate two time series, N¼ 2, we used
A¼ [1 0, a21 a22]). Note that the generating noises were introduced for
computational convenience and bear no ecological meaning.

In the second step, we added temporal structure (that is, noise colour) into the
xi(t), using a first-order autoregressive AR(1) process32,43

diðtþ 1Þ ¼ ai diðtÞþ xiðtÞ ð4Þ
with autocorrelation parameters ai (|ai|o1, parameters a and b in Fig. 1). Thereby,
the pairwise correlations between the noises are reduced to19,20

rij ¼ C diðtÞ; djðtÞ
� �

¼ rij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ið Þ 1� a2j

� �r

1� aiaj
� � : ð5Þ

After scaling to the desired s.d. and adding the mean dilution rate, we finally
obtained the actual environmental noises di(t) that are acting on the populations.
As negatively autocorrelated (blue) noise is rare (or rather not present) in
ecological systems, we chose most of the autocorrelation parameters ai to range
within 0.0 and 0.9. The actually realized autocorrelation in the finite time series
(measured by regression analysis and using the Matlab function ‘arcov’) slightly
deviated from this value (see Table 1). In one experimental run (trial 19), we
obtained an autocorrelation that was slightly negative (� 0.18).

In this procedure, the pairwise correlations rij of the generating noises are free
parameters. They can in principle be set to rij¼ 1, to achieve maximal pairwise
correlations of the dilution rates. In reality, however, environmental signals
will rarely be correlated by the maximal possible value that is consistent with their
specific autocorrelation. Therefore, we used a different parametrization and
in the experiment adjusted the rij to a smaller value. For convenience, we used

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ið Þð1� a2j Þ

q
= 1� aiaj
� �

so that the pairwise correlations between

the dilution rates are given as rij ¼ ð1� a2i Þð1� a2j Þ= 1� aiaj
� �2

.

Data processing. Before computing the correlation coefficients, all population
time series (from experiments and from simulations) underwent identical data
processing (Supplementary Fig. 3). First, the logarithmic light extinction values
were normalized to zero mean. Second, the time series were smoothed by a local
regression filter that uses weighted linear least squares and a second-degree poly-
nomial model (‘rloess’ filter from Matlab’s curve fitting toolbox, the span was set to
2% of the data points). Third, we applied detrending by subtracting a coarse fit that
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was generated with a Savitzky–Golay filter. This filter comprises a generalized
moving average with coefficients determined by an unweighted linear least-squares
regression and a second-degree polynomial model (‘sgolay’ filter from Matlab’s
curve fitting toolbox, the span was set to 100% of the data points). Finally, the
resulting time series was stroboscopically sampled at regular time intervals Dt
corresponding to the alterations in the dilution rate d(t), to obtain the discrete
times series N(t) of the population densities.

Analytic derivation of the enhanced Moran effect. We use an AR(1) process to
model the dynamics of two populations (A and B) at the discrete times t¼ 1yn
when the dilution rates are changed (Fig. 1).

NAðtþ 1Þ ¼ aNAðtÞþ dAðtÞ
NBðtþ 1Þ ¼ aNBðtÞþ dBðtÞ:

Here NA(t),NB(t) describe the log-transformed population densities, the noise
terms dA(t),dB(t) are generated as described above and the density regulation
parameter |a|o1 so that the AR(1)-process is stationary7. Analysis of the
experimental and simulated population densities showed that an AR(1)-process
gives a good fit to the stochastically perturbed chemostats independent of the noise
colour (see Supplementary Fig. 7). We estimated the density regulation parameter
for the experimental runs in scenario 3 using the Matlab function ‘arcov’ and
obtained a-values in the range 0.93–0.99, with a median of a¼ 0.97. We used this
value as our standard parameter (for example, in Fig. 3).

With some algebra the correlation coefficient of the two AR(1) processes can be
calculated as21,55

rp ¼ C NAðtÞ;NBðtÞð Þ ¼ r
1� a2abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� a2b2Þð1� a2a2Þ
q : ð7Þ

Note that the synchrony amplification rp/r does not depend on the correlation
of the generating noises r. The Moran theorem rp¼ r holds true only if the noise
colours of both populations are identical a¼ b. Otherwise, for non-identical
noise colours aab, the cross-correlation between the two independent populations
will exceed the correlation of the environmental noises, rp4r (enhanced Moran
effect).

Note that our derivation of the synchrony amplification depends on a number
of implicit assumptions about the ecological situation that we model in our system.
In particular, the precise analytic form of equation (7) is limited to the case of
linear population dynamics, identical populations and habitat properties, the
absence of dispersal or other forms of population interactions, and the fact that the
noises have been generated by an AR(1) process. See Supplementary Methods and
Supplementary Figs 10–14 for different generalizations of this result, including
different measures of cross-correlation, non-identical and density-dependent
population dynamics, or long-term correlated noises.

The dependence of the synchrony amplification factor rp/r on the noise colours
and the density regulation parameter is visualized in Supplementary Figs 8 and 9.
In general, rp/r increases with the difference in noise colours between the two
populations. For small differences in noise colours it is possible to simplify
equation (7) by Taylor expansion. Setting E¼ b� a we obtain

rp
r
¼ 1þ 1

2
a

1� a2a2

� �2
E2 þO E3

� �
; ð8Þ

which can be expanded for small values of a to yield (equation 1, main text). If the
noise colour is restricted to red noise (a, b A[0,1]) the maximal amplification of
synchrony in equation (7) is obtained as a function of r for

rp
r
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2ð1� rÞ
p ; ð9Þ

while, as function of E¼ |a� b|, the synchrony amplification is restricted in the
range

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2E2

p � rp
r
� 1� a2ð1� EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2ð Þ 1� a2ð1� EÞ2
� �q : ð10Þ

These ranges are indicated as black lines in Fig. 3a,b.

Chemostat simulations. In addition to the simulations with the more generic
autoregressive models, we also used an ordinary differential equation model to
provide a more specific simulation of the population dynamics in our experimental
system. The model describes a chemostat, consisting of an algal population
of density N that grows on nitrogen as an essential resource with
concentration R56,57.

dR
dt

¼ dðtÞ Ri �Rð Þ� umax
R

K þR
N

dN
dt

¼ umax
R

K þR
N � dðtÞN:

The growth-limiting resource is supplied from an external medium with input
concentration Ri. The flow through the system is described by the time-dependent
dilution rate d(t). Resource uptake follows Monod kinetics f(R)¼ umaxR/(KþR)

with maximal growth rate umax and half-saturation constant K. The algae grow
according to the absorbed amount of resource, f(R)N, and are washed out from the
system by d(t)N.

To describe the stochastic forcing, the dilution rates were assumed to be time-
dependent, d(t), and were simulated as piecewise-constant stochastic function of
time, where the dilution rate is adjusted to a new value at fixed time intervals (every
or 1 or 2 h). Following the design of our experimental setting, we simulate two
uncoupled chemostat systems where the time course of the dilution rates is cross-
correlated by a pre-determined value, r, and, depending on the simulation run,
may also be autocorrelated in time. Thereby, d(t) is taken either to be identical to
the time course of the dilution rates in the experimental runs (Fig. 3, main text) or,
to obtain longer simulation runs, we generate correlated random numbers from the
same statistical distributions as in the experiments. As shown in Supplementary
Fig. 2, the model is able to accurately describe the population dynamics in our
laboratory experiment.

Parameter values were chosen to resemble the experimental system. The
resource concentration of the external supply medium Ri and the average dilution
rate hdi were chosen according to the values of the chemostat experiments. The
parameter values for maximum growth rate, umax, and half-saturation constant, K,
were chosen by hand to provide an optimal fit to our experimental results. We used
the maximum growth rate umax¼ 2.5 per day and the half-saturation constant
K¼ 45 mmol l� 1. These values are within the range of parameters that are reported
for related green algae in the literature. For example, umax¼ 0.79 per day (Chlorella
pyrenoidosa58), umax¼ 0.37–1.92 per day (C. pyrenoidosa59), K¼ 0.89 mmol l� 1

(C. vulgaris60), K¼ 4.5 mmol l� 1 (C. pyrenoidosa58) and K¼ 230 mmol l� 1

(C. pyrenoidosa61). The population synchrony, obtained from numerical
simulations, was highly robust to changes in these model parameters.
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