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Co-option of alternate sperm activation programs
in the evolution of self-fertile nematodes
Qing Wei1, Yanmei Zhao2,3, Yiqing Guo2,4, Julie Stomel1, Ryan Stires1 & Ronald E. Ellis1,2

Self-fertility evolved independently in three species of Caenorhabditis, yet the underlying

genetic changes remain unclear. This transition required that XX animals acquire the ability to

produce sperm and then signal those sperm to activate and fertilise oocytes. Here, we

show that all genes that regulate sperm activation in C. elegans are conserved throughout the

genus, even in male/female species. By using gene editing, we show that C. elegans and

C. briggsae hermaphrodites use the SPE-8 tyrosine kinase pathway to activate sperm, whereas

C. tropicalis hermaphrodites use a TRY-5 serine protease pathway. Finally, our analysis of

double mutants shows that these pathways were redundant in ancestral males. Thus, newly

evolving hermaphrodites became self-fertile by co-opting either of the two redundant male

programs. The existence of these alternatives helps explain the frequent origin of self-fertility

in nematode lineages. This work also demonstrates that the new genome-editing techniques

allow unprecedented power and precision in evolutionary studies.
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O
ne of the major questions in evolutionary biology is how
innovation occurs. Darwin1 suggested that novel traits
could be produced if older features were co-opted for new

uses and subsequent research has confirmed this idea2. However,
neither the qualities that determine which traits are co-opted to
produce new features, nor the mechanisms that implement these
changes are clear. For example, the genetic changes that led
treehoppers to express a modified wing structure on the first
thoracic segment3 or beetles to produce a head horn4 remain
obscure.

The origin of self-fertility in nematodes is ideal for tackling the
problem5. Self-fertile hermaphrodites originated independently in
three species of Caenorhabditis nematodes6–8 (Fig. 1a). This step
required XX animals to acquire the ability to (1) produce sperm
and (2) signal those sperm to activate and fertilise oocytes9. As
these transitions occurred recently, it might be possible to identify
the underlying changes by comparative analysis.

Studies with C. elegans showed that five genes are required to
initiate hermaphrodite sperm activation in that species—spe-8
(refs 10,11), spe-12 (refs 10,12), spe-19 (ref. 13), spe-27 (ref. 14)
and spe-29 (ref. 15). Mutations in any of these genes block
hermaphrodite self-fertility, but do not prevent male sperm from
activating and fertilising oocytes. All five genes are expressed in
sperm and three encode transmembrane proteins16. Furthermore,
SPE-8 is a protein tyrosine kinase whose localisation to the
plasma membrane in spermatids requires the other genes11. Thus,
these five proteins might define a complex located on the plasma
membrane that responds to an extracellular signal controlling
activation. Although one candidate for this signal is extracellular

zinc17, none of the proteins from the SPE-8 group has known
zinc-binding domains or zinc importation motifs.

Recently, the TRY-5 protease was shown to act in a second
sperm activation pathway, which functions only in males18,19.
Before mating, TRY-5 activity is inhibited by SWM-1, a protein
with two trypsin inhibitor-like domains20. During ejaculation,
large TRY-5 reserves are secreted into the seminal fluid, where
they activate male spermatids. Although their direct target is
unknown, one possibility is SNF-10, a membrane protein found
in sperm21.

Although try-5males are fertile, the spe-8; try-5 double mutants
are sterile, which indicates that these two signal transduction
pathways are redundant in C. elegans18. However, special
mutations in spe-6 (ref. 22), spe-4 (ref. 23) and spe-46 (ref. 24),
which are all required for spermatogenesis, can bypass the need
for these signals in the activation process. For example,
spe-6(hc163) is epistatic to both try-5 (ref. 18) and spe-8
(ref. 22), so the SPE-6 kinase probably acts within spermatids
to respond to extracellular signals and cause activation.

Intra-species crosses showed that some aspects of sperm
activation are conserved in Caenorhabditis, although the
molecular details remain unknown25. As experimental studies
using C. remanei revealed that female nematodes lack a
mechanism to activate sperm9, learning which methods of
sperm activation are used by hermaphrodites from diverse
species is critical for understanding the origins of self-fertility.
Here, we show that two redundant sperm activation pathways
have been conserved in Caenorhabditis. Hermaphrodites from
C. elegans and C. briggsae require the SPE-8 pathway to activate
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Figure 1 | All sperm activation genes are conserved throughout Caenorhabditis. (a) Percent identity of each protein to its C. briggsae ortholog. In the

phylogeny8 at left, each androdioecious species is marked in red. Percentages for newly described proteins are blue and for revised proteins are green.

C. remanei has duplicates of spe-12 and spe-27. (b) Representative alignment of SPE-29 sequences, prepared using MUSCLE45. A conserved transmembrane

domain is marked with the core in black and variable edges in grey46. For brevity, C. sp. 5 has been abbreviated C05 in the figure.
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their sperm, whereas hermaphrodites from C. tropicalis require
the TRY-5 pathway. The ability to co-opt either of two alternative
signal transduction pathways could explain the frequent origin of
self-fertility in this group of animals.

Results
Sperm activation genes are conserved in Caenorhabditis. To
begin, we identified orthologs of all C. elegans sperm activation
genes in the eight-related species for which partial genome
sequences were available. Previously, only 23 of these sperm
activation genes had been identified. Using BLAST searches and
phylogenetic comparisons, we refined these predictions and
identified the remaining 33 genes (Fig. 1, Supplementary Fig. 1).
We used degenerate oligonucleotides to clone Cbr-spe-12, which
was missing from the genome assembly, and the PCR to isolate
missing parts of Ctr-spe-8 and Ctr-spe-27. Our results show that
the ancestor of Caenorhabditis had orthologs of all seven sperm
activation genes. Moreover, each of the encoded proteins has
conserved elements, like the transmembrane domain of SPE-29
(Fig. 1b) or the kinase domain of SPE-8. As the common ancestor
and six species are male/female, none of these genes is likely to
function exclusively in hermaphrodites.

We used reverse transcription PCR (RT–PCR) to characterise
the expression of each gene in C. briggsae. The five members of
the C. elegans spe-8 group are expressed in spermatids16, where
they respond to an unknown signal. In C. briggsae, their
expression is also correlated with spermatogenesis—the
transcripts are present in larval hermaphrodites, larval males
and adult males, but absent from adult hermaphrodites (Fig. 2a
and Supplementary Fig. 2). Thus, genes of the spe-8 group appear
to produce sperm proteins in C. briggsae, as they do in C. elegans.
By contrast, C. briggsae try-5 and swm-1 transcripts were detected
in all animals, including adult hermaphrodites.

The SPE-8 group regulates XX sperm activation in C. briggsae.
To learn how these genes functioned, we used TALENs to
generate knockout mutants of key members of the spe-8 group in
C. briggsae26–28 (Fig. 3a). We found that mutations in Cbr-spe-8
and Cbr-spe-19 caused XX animals to produce inactive spermatids
(Fig. 3b), which prevented self-fertility (Fig. 3c). This effect was
strongest for frame-shifting alleles, which are probably null, and
more mild for Cbr-spe-19(v173), which inserts six amino acids.
Because the C. briggsae mutant males were fertile, all of these
strains could be maintained as male/hermaphrodite populations,
so the mutant oocytes function normally. In addition, some
sperm in these mutant hermaphrodites could be transactivated by
seminal fluid from males, restoring self-fertility (Fig. 3d). This
entire suite of phenotypes resembles that of their C. elegans
counterparts10,13.

As the spe-8 group of genes predated the origin of self-fertility,
we wondered if the similarity between C. elegans and C. briggsae
was caused by chance or a developmental bias29 that favoured the
use of these genes in hermaphrodites. Thus, we examined a third
androdioecious species—C. tropicalis (formerly sp. 11) (refs 8,30).
Null alleles in Ctr-spe-19 and Ctr-spe-27 had only a mild effect on
reproduction, and the mutant hermaphrodites were all self-fertile
(Fig. 3e). Thus, the spe-8 group is required for hermaphrodite
sperm activation in C. elegans and C. briggsae, but not in
C. tropicalis. Another pathway must activate sperm in
hermaphrodites of that species.

TRY-5 regulates XX sperm activation in C. tropicalis. Next, we
studied the try-5 pathway, which regulates sperm activation in
C. elegans18 and A. suum19 males. TRY-5 is a trypsin protease
that cleaves an unknown target on the surface of sperm. In

C. elegans, TRY-5 is secreted by the male gonad, and its activity is
blocked by the protease inhibitor SWM-1, preventing premature
activation20. We found that knocking out swm-1 caused male
sperm to activate prematurely in both C. briggsae (Fig. 4a,b) and
C. tropicalis (Fig. 5a). These results show that the role of SWM-1
has been conserved. Null alleles of C. briggsae try-5 had no
phenotype on their own, but did suppress swm-1 mutations
(Fig. 4a,b), implying that Cbr-SWM-1 works through TRY-5 to
control activation (Fig. 4c). Similarly, knocking down try-5
activity in C. tropicalis suppressed the premature activation
caused by swm-1 mutations in that species (Fig. 5a,b). These
phenotypes all resemble those seen in C. elegans18,20. However,
we were surprised to find that Ctr-try-5 males were infertile, so
the spe-8 group of genes is not sufficient for sperm activation in
males of this species (Fig. 5c).

When we examined hermaphrodites, we found that
C. tropicalis try-5 mutations blocked self-fertility, whereas
C. briggsae try-5 mutations had no effect (Fig. 4d). Sterile
Ctr-try-5 hermaphrodites produced normal oocytes, because
they made cross progeny when fertilised by males. However,
some sperm were completely inactive and others had spiky
projections rather than pseudopods, which might indicate
defective activation (Fig. 4e). Thus, TRY-5 is required for sperm
activation in C. tropicalis hermaphrodites, whereas the spe-8
group is essential in C. elegans and C. briggsae hermaphrodites.
As one might expect given this result, try-5 expression in
C. tropicalis hermaphrodites is high relative to that of swm-1
(Fig. 2b).
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Figure 2 | Sperm activation genes are expressed in males and some

hermaphrodites. (a) Semi-quantitative RT–PCR analysis of RNA from

independent samples of each indicated age and sex. The genes spe-4 and

spe-6 were control spermatogenesis genes and the ubiquitin gene ubq-2

was a loading control. (b) Real-time RT–PCR analysis of the indicated genes

and animals at the L4 larval stage. There were three biological replicates of
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SPE-8 and TRY-5 pathways were redundant in ancestral males.
To learn how these differences originated, we studied C. briggsae
males. These experiments were motivated by genetic tests showing
that the TRY-5 and SPE-8 pathways are redundant in C. elegans
males18. We found that Cbr-try-5 males produced numerous
progeny when crossed with Cbr-try-5 spe-19 hermaphrodites, but
that Cbr-try-5 spe-19 males produced few or none (Fig. 6a). This
decrease in male fertility shows that these sperm activation
pathways are redundant in C. briggsae. Given the phylogeny, this
result implies that the common ancestor was a male/female species
that used both pathways to activate male sperm (Fig. 6b).

Why have these redundant pathways been conserved? Studies
of C. elegans showed that some mutants in the spe-8 group
decreased male fertility, so these genes might control additional
aspects of sperm function12,15. When we tested Cbr-spe-19 and
Ctr-spe-19 males by crossing them with hermaphrodites, we
found that their sperm activated but competed poorly for
fertilisation (Fig. 7 and Supplementary Fig. 3). Thus, these
redundant activation pathways may have persisted because
they have additional, non-overlapping functions. However, in
C. tropicalis, the overlap between these activation pathways is

minimal, as the ctr-try-5 males are sterile (Fig. 5c). Thus, it is
possible that the functions of the SPE-8 and TRY-5 systems are
diverging in this species.

The sister species to C. briggsae lacks XX sperm activation. Our
data suggested that XX animals co-opt one of the male sperm
activation systems during the evolution of self-fertility. However,
this model rests on the idea that females in gonochoristic species
do not use sperm activations signals, which previously had been
tested only in C. remanei9. Thus, we carried out similar
experiments with the gonochoristic species C. nigoni, which is
so closely related to C. briggsae that the two can mate and
produce fertile offspring8,31. We found that C. nigoni XX animals
that were induced to produce spermatids, as well as oocytes by
RNA interference (RNAi) were not self-fertile (Fig. 8a), just as
observed with C. remanei. However, when we induced C. nigoni/
C. briggsae hybrids to produce spermatids, their sperm activated
and the animals made self-progeny (Fig. 8c). Thus, C. briggsae
produces a dominant factor that activates sperm in XX animals,
but C. nigoni lacks this factor.
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Discussion
These results point to a simple model for the origin of self-fertility
in hermaphroditic nematodes. The ancestor of the elegans group
was a male/female species6–8, and the males used two redundant
signals to activate sperm (Fig. 9a), whereas the females did not
produce either signal9 (Fig. 9b). When C. elegans, C. tropicalis and
C. briggsae began the transformation to self-fertility, the XX
animals co-opted one or the other of the male pathways
(Fig. 9c,d), but did not need both. As predicted by this model,
C. briggsae contains a dominant factor that can activate sperm in
intra-species hybrids.

The ability to co-opt specific genetic programs might underlie
the origin of many complex traits32 and could explain some
examples of parallel evolution33. Our data strongly support this
model, as we show that nematodes have co-opted male sperm
activation programs for use in newly evolving hermaphrodites.
More importantly, we found that two different sperm activation
programs can be co-opted for this purpose. Usually,
developmental biases or constraints are thought to prevent
certain types of variation from occurring, which prevents some

evolutionary transitions29. Our results imply that some patterns
of developmental regulation favour certain types of change, as the
existence of two sperm activation pathways in nematodes helps
explain why self-fertility has originated so frequently in this
group8. Thus, this system provides a concrete example of the
concept of evolvability in evolutionary developmental biology34.

Although cases of convergent or parallel evolution provide
natural experiments that illuminate evolutionary processes, their
definitions remain controversial35,36. Usually, they are thought of
as distinct phenomena—parallel evolution occurs through the
independent origin and fixation of mutations affecting the same
gene, whereas convergence occurs when selection leads to
different solutions to the same problem. Our results show that
this distinction is often artificial, as the two Caenorhabditis
species evolved self-fertility by recruiting the spe-8 pathway to
control hermaphrodite sperm activation (parallel evolution) but a
third achieved the same end by recruiting the try-5 pathway
(convergent evolution).

Finally, our work shows that entire pathways in newly
described species can be subjected to precise evolutionary genetic
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comparisons through gene editing. Although RNAi has been
invaluable for evolutionary studies, phenotypes often vary
between species because of differential sensitivity to RNAi37,
rather than because the targeted pathways have changed. Even
more problematic, some phenotypes (like those of nematode
sperm) are often recalcitrant to RNAi. By contrast, gene editing
using TALENs26–28 or CRISPRs38,39 can produce comparable
alleles in each species. As these mutations allow rigorous
comparisons of phenotype, we anticipate that their use will
soon become routine.

Methods
Strains and genetics. C. briggsae mutants were derived from the wild isolate AF16
(ref. 40). They include: LGI: him-8(v188) (ref. 28); LGIV: she-1(v49) (ref. 41); LGV:
dpy-11(v241) (ref. 28), unc-51(v205) (ref. 28) and new mutations described in the
manuscript. C. nigoni RNAi experiments were done using JU1421 (M. Felix, pers.
comm.). C. tropicalis mutants were derived from the wild isolate JU1373 (ref. 8).
They include unc-23(v277) (ref. 28), him-8(v287), which deletes 9 nt and adds 4 nt,
and those described in the figures.

Cloning and sequencing. To identify the C. briggsae spe-12 gene, we used
degenerate nucleotides designed according to the CODE-HOP protocol42. Missing
portions of Ctr-spe-8 and C. sp. 5 spe-27 were amplified from genomic DNA using
flanking primers. PCR products were purified with a PCR Purification kit (Qiagen)
and sequenced (GeneWiz). Primers are listed in Supplementary Table 1.

RNA interference. Templates were amplified from mixed stage complementary
DNA or genomic DNA by the PCR, with primers that contained a T7 promoter
(Supplementary Table 1), purified with a PCR Purification kit (Qiagen) and
transcribed using MegaScript (Ambion). After annealing, double-stranded RNA
was purified with MegaClear (Ambion). RNAi was performed by injection43.

Semi-quantitative RT–PCR. Groups of five worms of the desired age and sex were
collected and processed as described44; two independent samples were prepared to
confirm reproducibility. RT–PCR was carried out using HotMaster Taq DNA
polymerase (5PRIME) and MMLV Reverse Transcriptase (Invitrogen). PCR
reactions were run for 35 cycles using primers from Supplementary Table 1.

Real-time quantitative RT–PCR. Groups of five worms of the desired age and
sex were prepared as described above; at least three independent biological repli-
cates and two technical replicates were assayed for each data point. For each
reaction, 1/20 of the total complementary DNA sample was used in a final volume
of 25ml, which included 12.5 ml of FastStart Universal SYBR Green Master (Rox,
Roche) and 6 mM primers (Supplementary Table 1). Amplification was 40 cycles,
using Applied Biosystems 7500 Real-Time PCR Systems. Samples that did not
show detectable amplification by the final cycle were arbitrarily assigned a Ct
value of 40.

The DCt values for swm-1 and try-5 were calculated for each group of L4 larvae,
and normalised to control ubq-2 transcript levels. Afterwards, �DDCt values were
calculated for each group by comparing transcript levels for each sex and species
with the corresponding swm-1 levels for those animals. Error bars are based on
standard error of the mean.

Microscopy. Sperm were isolated as described9. Whole worms and isolated sperm
were observed with differential interference contrast microscopy. Images were
captured with a Zeiss Axiocam digital camera and Zeiss AxioVision software and
assembled using Adobe Photoshop.

TALEN knockout mutants. TALENs were designed and produced as described28

(Supplementary Table 2). To create mutants, pairs of TALEN messenger RNAs
were injected into the gonads of adult hermaphrodites26. At 20 �C, the F1 progeny
from a 6 to 32 h time window were singled to new plates at the L4 stage, and those
F1 animals that carried new mutations were identified by phenotype or by PCR
analysis of the target site (primers in Supplementary Table 1).
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Fertility assays. To assess hermaphrodite fertility, individual L4 animals were
singled and transferred daily to new plates. After the mother was removed, each
plate was scored by inspection for the number of progeny. Male fertility was
assayed similarly, after crosses between single males and single females or
hermaphrodites.
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