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Controlling coherence via tuning of the population
imbalance in a bipartite optical lattice
M. Di Liberto1, T. Comparin1,2, T. Kock3, M. Ölschläger3, A. Hemmerich3 & C. Morais Smith1

The control of transport properties is a key tool at the basis of many technologically relevant

effects in condensed matter. The clean and precisely controlled environment of ultracold

atoms in optical lattices allows one to prepare simplified but instructive models, which can

help to better understand the underlying physical mechanisms. Here we show that by tuning

a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase

transition from a superfluid into various Mott insulating phases forming a shell structure in

the superimposed harmonic trap. The Mott shells are identified via characteristic features in

the visibility of Bragg maxima in momentum spectra. The experimental findings are explained

by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears

similarities with the loss of coherence in cuprate superconductors, known to be associated

with the doping-induced buckling of the oxygen octahedra surrounding the copper sites.
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R
apid and precise control of transport properties are at the
heart of many intriguing and technologically relevant
effects in condensed matter. Small changes in some

external parameters, for example, an electric or a magnetic field,
may be used to significantly alter the mobility of electrons.
Prominent examples are field effect transistors1 and systems
showing colossal magneto-resistance2. Often, the control is
achieved via structural changes of the unit cell, leading to an
opening of a band gap. In iron-based superconductors, the
variation of pressure is a well-known technique to control their
transport properties3. In certain high-Tc superconductors,
pulses of infrared radiation, which excite a mechanical vibration
of the unit cell, can for short periods of time switch these systems
into the superconducting state at temperatures at which they are
actually insulators4. In La-based high-Tc cuprates, the drastic
reduction of Tc at the doping value of x¼ 1/8, known as ‘the 1/8
mystery’, is connected to a structural transition that changes the
lattice unit cell5.

Ultracold atoms in optical lattices provide a particularly clean
and well-controlled experimental platform for exploring many-
body lattice physics6. Schemes for efficient manipulation of
transport properties can be readily implemented and studied with
great precision. In conventional optical lattices, tuning between a
superfluid and a Mott insulating phase has been achieved
by varying the overall lattice depth V0, with the consequence
of changing the height of the tunnelling barriers and the
on-site contact interaction energy7. The equivalent is not easily
possible in condensed-matter systems, since the lattice depth is
practically fixed.

In this work, we present an ultracold atom paradigm, where
tuning the system between a superfluid and a Mott insulator
becomes possible via controlled distortion of the unit cell. This
distortion acts to adjust the relative depth DV between two
classes of sites (denoted by A and B) forming the unit cell and
allows us to drive a superfluid-to-Mott insulator transition

without altering the average lattice depth. We can access a rich
variety of Mott insulating states with different integer popula-
tions of the A and B sites, which give rise to a shell structure in
the finite harmonic trap potential, leading to characteristic
features in the visibility of Bragg maxima in momentum spectra.
We compare our observations with quantum Monte Carlo
(QMC) and Gutzwiller mean-field calculations, thus obtaining a
detailed quantitative understanding of the system. In the
following, we first describe our experimental set-up; then, we
theoretically investigate the behaviour of the visibility for two
different cases: first, for fixed barrier height V0, by varying DV
(bipartite lattice), and second, for DV¼ 0 (monopartite lattice),
by tuning the lattice depth V0. Although monopartite lattices
have been previously studied in great detail, and QMC
calculations have provided a good fitting of the visibility curve
measured experimentally8, here we show more accurate data and
argue that the main features of the curve can be understood in
terms of a precise determination of the onset of new Mott lobes
in the phase diagram.

Results
Description of the experimental set-up. We prepare an optical
lattice of 87Rb atoms using an interferometric lattice set-up9–12. A
two-dimensional (2D) optical potential is produced, comprising
deep and shallow wells (A and B in Fig. 1a) arranged as the
black and white fields of a chequerboard. In the xy-plane,
the optical potential is given by V (x, y)¼ �V0

[cos2(kx)þ cos2(ky)þ 2cos(y) cos(kx) cos(ky)], with the tunable
well depth parameter V0 and the lattice distortion angle y. An
additional lattice potential Vz (z)��Vz,0 cos2(kz) is applied along
the z-direction. To study an effectively 2D scenario, Vz,0 is
adjusted to 29Erec, such that the motion in the z-direction is
frozen out. Here, k�2p/l, Erec�:2k2/2m, m denotes the
atomic mass and l¼ 1,064 nm is the wavelength of the lattice
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Figure 1 | Lattice potential. (a) Sketch of the lattice geometry within the xy-plane. l¼ 1,064nm denotes the wavelength of the laser light. (b) The potential

along the dashed trajectory in a is plotted for y¼0.51p and V0¼ 6Erec (thick grey line) with the first and second bands represented, respectively, by the red

and blue horizontal bars. (c) The first two bands are plotted versus y for V0¼6Erec. (d) The red and blue squares show the relative number of atoms

(normalized to the total particle number and plotted versus DV/V0) associated with the Bragg peaks enclosed by red and blue circles in e, respectively. The

filled (open) squares are recorded for Vz,0¼0 (Vz,0¼ 22Erec). The error bars indicate the statistical errors for five measurements. The solid lines are

determined by a full-band calculation (neglecting interaction) with no adjustable parameters. (e) Momentum spectra (V0¼ 6Erec, Vz,0¼0) are shown with

DV¼0 (left) and DV/V0¼0.5 (right) with the respective first Brillouin zones imprinted as dashed rectangles.
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beams. Apart from the lattice, the atoms experience a nearly
isotropic harmonic trap potential. Adjustment of y permits
controlled tuning of the effective well depths of the deep and
shallow wells V±�V0(1±cos(y))2 and their difference
DV�Vþ �V� ¼ 4V0cos(y) (see Fig. 1b). The effective mean
well depth �V0 ¼ ðVþ þV� Þ=2 ¼ V0½1þ cos2ðyÞ� is only weakly
dependent on y. For example, within the interval 0.46oy/
po0.54 one has cos2(y)o0.015 and hence �V0 � V0. Tuning of y
significantly affects the effective bandwidth, as shown in Fig. 1c.
At y¼ p/2, the A- and B wells become equal, which
facilitates tunnelling as compared with values yap/2, where
the broad lowest band of the y¼p/2-lattice splits into two
more narrow bands.

We record momentum spectra, which comprise pronounced
Bragg maxima with a visibility V (specified in the Methods
section) depending on the parameters V0 and DV. The
distribution of Bragg peaks reflects the shape of the underlying
first Brillouin zone, which changes size and orientation as DV is
detuned from zero. This is illustrated in Fig. 1d,e. In Fig. 1e
two spectra recorded for DV¼ 0 (left) and DV/V0¼ 0.5 (right)
are shown. For DV¼ 0 (the special case of a monopartite square
lattice), the increased size of the first Brillouin zone gives rise
to destructive interference, such that the ±(1, ±1):k-Bragg
peaks indicated by the red circle vanish. As DV is detuned from
zero, a corresponding imbalance of the A- and B populations
yields a retrieval of the ±(1, ±1):k-Bragg peaks. This is shown
in Fig. 1d for the case of approximately vanishing interaction
energy per particle UE0 (Vz,0¼ 0) by the filled red squares
and for UE0.3Erec (Vz,0¼ 22Erec) by the open red squares.
It is seen that the interaction energy significantly suppresses
the formation of a population imbalance and corresponding
±(1, ±1):k-Bragg peaks.

Model. For low temperatures and for large lattice depths V0, the
system is described by the inhomogeneous Bose–Hubbard
model13,14

H ¼ � J
X
hi;ji

a
y
i aj þ h:c:

� �
�

X
i

~mini þ
U
2

X
i

ni ni � 1ð Þ;

ð1Þ

where J is the coefficient describing hopping between nearest-
neighbour sites, U accounts for the on-site repulsion and ~mi is a
local chemical potential, which depends on the frequency o of the
trap and on the sublattice: ~mi ¼ mA;B �mo2r2i =2. The ratio U/J is
a monotonously increasing function of V0/Erec.

Bipartite lattice DVa0. The visibility measured for fixed V0 as a
function of DV (see Fig. 2) exhibits a region of rapid decrease.
When the lattice barrier is large, for example, V0¼ 12Erec, a
modest detuning DVB0.25V0 is able to completely destroy
phase coherence with the consequence of a vanishing visibility.
At smaller barrier heights, for example, V0¼ 6Erec, superfluidity
remains robust up to significantly larger values of DV.
To explain this behaviour, we performed a mean-field
calculation using the Gutzwiller technique15 for the
Bose–Hubbard model given by equation (1). The values of
J and Dm¼mA� mB have been estimated from the exact band
structure and U has been calculated within the harmonic
approximation. The total number of particles has been fixed
to N¼ 2� 103 and the trap frequency takes into account
the waist of the laser beam (see Methods and Supplementary
Note 1). We performed large-scale Gutzwiller calculations in
presence of a trap, thus going beyond local density
approximation16,17 (see Methods).

In Fig. 3a, we show the evolution of the fraction of particles in
the B sites (which we assumed to be the shallow wells).
As DV increases, the number of bosons in the B sites decreases
because of the excess potential energy required for their
population. Within the tight-binding description, this is
captured by the increased chemical potential difference between
A- and B sites as DV grows. Our calculations predict a
critical value DVc for which the population of the B sublattice
vanishes. As shown in Fig. 3a, DVc becomes smaller as V0

increases. This corresponds to the observation in the phase
diagram shown in Supplementary Fig. 5 and discussed
in Supplementary Notes 2 and 3 that the area covered by
the Mott insulating regions with vanishing B populations
(filling gB¼ 0) increases as the hopping amplitude is reduced.
The critical values DVc for different values of V0 are also
shown in Fig. 2 as a dashed white line on top of the experimental
data for the visibility. This line consistently lies on experimental
points corresponding to constant visibility (V � 0:5),
where phase coherence is rapidly lost, and suggests the onset
of a new regime.

In Fig. 3b it is shown that, in addition to the population of the
B sites, also the condensate fraction at the A sites approaches zero
beyond the critical value DVc (see the inset in Fig. 3a for the total
condensed fraction); in this regime, the density profile displays
only sharp concentric Mott shells of the form (gA, gB)¼ (g, 0)
where the integer filling g of the Mott regions can reach g¼ 4 (see
Supplementary Fig. 6). This can be understood by considering
that in the new regime where B sites are empty, the particles
populating A sites can only delocalize (and thus establish phase
coherence) by hopping through the intermediate B sites. Since
these are second-order processes, they are highly suppressed
when Dm is large enough, and the system has to become an
imbalanced Mott insulator.
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Figure 2 | Visibility measurements in the bipartite lattice. The visibility

(parametrized by the colour code shown on the right edge) is plotted as a

function of the well depth parameter V0 (measured in units of the recoil

energy Erec) and the potential energy offset difference DV between shallow

and deep wells in the bipartite lattice. The dashed line corresponds to the

theoretical calculation of the points where the fraction of particles

nB¼
P

iABni/N of the B sublattice vanishes (nBo5.5� 10� 3). The grid with

the experimental points is shown in Supplementary Fig. 9.
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In the new Mott insulating regime, particle–hole pairs are
responsible for a non-vanishing visibility, as in the conventional
case in absence of imbalance18. By performing the perturbation
theory on top of the ideal Mott insulating state
|MIi¼PiAA|giiPjAB|0ij, the ground state can therefore be
written as (see Supplementary Note 4).

j cGi ¼ 1� J2

2D2

� �
jMIi� J

D

X
hi;ji

a
y
i aj jMIi

� 2J2

UD

X
hi;jiA

ayi aj jMIi� J2

UD

X
hhi;jiiA

ayi aj jMIi;

where D�U(g� 1)þDm. The first term is simply the unperturbed
term with a wavefunction renormalization, whereas the linear
term in J describes particle–hole pairs with the particle sitting on
the A site and the hole in the neighbour B site, or vice versa. The
last two terms are second-order processes that involve
intermediate B sites and describe particle–hole pairs within the
A sublattice only. This ground state leads to the visibility

V ¼ c1J=Dþ c2J
2=UDþ c3J

2=D2; ð3Þ
where c1 ¼ � 2 �gþ 1ð Þ 1� r1ð Þ, c2 ¼4 �gþ 1ð Þ 2r1 þ r2 � 3ð Þ,
c3 ¼ � 4 �gþ 1ð Þ2 r1 þ 3ð Þ 1� r1ð Þ, with r1 � cosð

ffiffiffi
2

p
pÞ �

� 0:266 and r2 � cosð
ffiffiffi
8

p
pÞ � � 0:858. By using the average

filling �g in the trap as a fitting parameter, we found that the
theoretical visibility curve compares reasonably well with the
experimental data both in magnitude and scaling behaviour, with
an average filling of the order �g � 3 (see Fig. 4). A perturbative

description of the visibility data for large y by means of
equation (3) is only possible in a window V0E11±1Erec,
where sufficient data points are available in the low-visibility tail
with values of the visibility large enough to be measured with
sufficient precision to allow fitting.

Monopartite lattice DV¼ 0. Adjustment of DV¼ 0 produces the
special case of a conventional monopartite square lattice, exten-
sively studied in the literature during the past decade7,18–20.
Experiments in three-dimensional cubic lattices have suggested
that the formation of Mott shells within the external trap could be
associated with the appearance of kinks in the visibility18,19,
whereas experiments in 2D triangular lattices have rather
detected an instantaneous decrease21. Arguable attempts were
made to interprete small irregularities in the observed visibility in
this respect. On the theoretical front, a QMC study of the one-
dimensional trapped Bose–Hubbard model22 has shown the
appearance of kinks in V as a function of U/J. Unfortunately, this
study, employing a trap curvature proportional to J rather than
V0, appears to have limited relevance for experiments. More
realistic QMC simulations of 2D and three-dimensional confined
systems have been able to quantitatively describe the momentum
distribution23 and the experimental visibility8,24, however, with
no indications for distinct features associated with Mott shells. To
clarify this long-standing discussion, we have recorded the
visibility of Fig. 2 along the DV¼ 0 trajectory versus V0 with
increased resolution in Fig. 5. Guided by an inhomogeneous
mean-field calculation indicating that the local filling g is lower
than 4, we computed the critical J/U values for the tips of Mott
lobes with g¼ 1,2 and 3, making use of the worm algorithm as
implemented in the ALPS libraries25–27. Superimposed upon the
experimental data, we mark in Fig. 5 with (blue) dashed lines the
values of V0/Erec corresponding to the values of J/U at the tip of
the Mott lobes obtained by QMC. As V0 is increased in Fig. 5,
four different regimes are crossed. For small values of V0 (regime
I), most of the system is in a superfluid phase. Increasing V0

yields only little loss of coherence due to increasing depletion, and
hence the visibility remains nearly constant. When the first Mott
ring with g¼ 1 particle per site is formed, the system enters
regime II, where the visibility decreases slowly but notably as the
g¼ 1-Mott shell grows. When the second Mott insulating ring
with g¼ 2 arises (regime III), a sharp drop of the visibility occurs
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Figure 4 | Comparison of the measured visibility with the theory at large

imbalance. The data shown are for V0¼ 10.8 Erec (squares) and

V0¼ 11.44 Erec (circles). The red dashed (dash-dotted) line is obtained by

fitting the last four data points with equation (3) using the average filling �g

as a fitting parameter. We obtain respectively �g ¼ 2:75 � 0:23 and
�g ¼ 3:77 � 0:31. The data for V0¼ 10.8 Erec are shifted along the vertical

axis by 0.1. The error bars represent the statistical variance of typically 4–5

independent measurements.

0

0.2

0.4

0.6

0.8

T
ot

al
 c

on
de

ns
at

e 
fr

ac
tio

n 
�

0.50 0.51 0.52 0.53

0.4

0.5

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4

ΔV/V0

C
on

de
ns

at
e 

fr
ac

tio
n 

� A
P

ar
tic

le
 fr

ac
tio

n 
n B

12

11

10

9

8

7

6
0.5 0.51 0.52 0.53

V
0 

(E
re

c)

V0 =8 Erec

V0 =9 Erec

V0 =10 Erec

V0 =11 Erec

V0 =12 Erec

�/�

Phase angle � (�)

Figure 3 | Gutzwiller results in the trap. (a) Particle number fraction on

the B sites (nB). The inset shows the total condensed fraction r¼
P

iri/N.
(b) Condensate fraction on the A sites (rA¼

P
iAAri/N, where ri ¼ jci j 2,

with ci the mean-field order parameter) as a function of DV for increasing

values of V0 and fixed total number of particles N¼ 2� 103, calculated with

the Gutzwiller ansatz. The key shows the colour code for both, the curves in

a and b.
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indicating a significantly increased growth of the Mott insulating
part of the system with V0. Finally, when the third Mott ring with
g¼ 3 forms or closes in the centre of the trap, only a small
superfluid fraction remains in the system, such that the visibility
cannot further rapidly decrease with V0 (regime IV), that is, a
quasi-plateau arises in Fig. 5. The red solid line shows that for
large V0 the visibility acquires a (U/J)� 1 dependence, in
agreement with a result obtained by the first-order perturbation
theory in J/U (ref. 18).

Discussion
Several conclusions can be drawn from our experimental and
theoretical investigations: for monopartite lattices, the visibility
comprises characteristic signatures, which can be connected to
the position of the tips of the Mott insulator lobes in a m/U versus
J/U phase diagram calculated by QMC. Mean-field calculations
are insufficient, even when the inhomogeneity due to the trap is
taken into account. Deforming the unit cell of a bipartite lattice is
a means to efficiently tune a transition from a superfluid to a
Mott insulating state. The visibility displays distinct regions with
explicitly different slopes, as a function of the detuning between
the A and B sublattices. A pronounced loss of coherence occurs at
the critical value of the detuning DVc, at which the population of
the shallow wells vanish. Our work may shed some light also on
the behaviour of condensed-matter systems, where loss of phase
coherence occurs due to a structural modification of the lattice.
For example, in La2� xBaxCuO4 high-Tc cuprate, superconduc-
tivity is weakened at the structural transition from a low-
temperature orthorhombic into a low-temperature tetragonal
phase28. The same occurs for La2� x� yNdySrxCuO4 (ref. 5). This
structural transition corresponds to a buckling of the oxygen
octahedra surrounding the copper sites, which changes the nature
of the copper–oxygen lattice unit cell28. The critical buckling
angle yc¼ 3.6 deg for the destruction of superconductivity29 bears

similarities with the critical deformation angle yc (or equivalently
DVc) found here (see Supplementary Note 6 for a more detailed
discussion). Most of the present theoretical studies of high-Tc
superconductivity concentrate only on the copper lattice. We
hope that our results will inspire further investigations of the
specific role played by the oxygen lattice, and its importance in
preserving A phase coherence

Methods
Experimental details. Our experimental procedure begins with the production of
a nearly pure Bose–Einstein condensate of typically 5� 104 rubidium atoms (87Rb)
in the F¼ 2, mF¼ 2 state confined in a nearly isotropic magnetic trap with about
30Hz trap frequency. The adjusted values of the lattice depth V0 are determined
with a precision of about 2% by carefully measuring the resonance frequencies with
respect to excitations into the third band along the x- and y-directions. The
adjustment of y is achieved with a precision exceeding p/300 by an active stabi-
lization with about 10 kHz bandwidth. In a typical experimental run, the lattice
potentials V(x, y) and Vz(z) are increased to the desired values by an exponential
ramp of 160ms duration. After holding the atoms in the lattice for 20ms,
momentum spectra are obtained by rapidly (o1 ms) extinguishing the lattice and
trap potentials, permitting a free expansion of the atomic sample during 30ms, and
subsequently recording an absorption image. The magnetic trap and the finite
Gaussian profile of the lattice beams (beam radius¼ 100mm) give rise to a com-
bined trap potential. For Vz,0¼ 29Erec and V0¼ 18Erec this yields trap frequencies
of 73Hz in the xy-plane and 65Hz along the z-direction. The observed momentum
spectra comprise pronounced Bragg maxima with a visibility depending on the
parameters V0 and DV. These spectra are analysed by counting the atoms (nd,0) in a
disk with a 5-pixel radius around some higher-order Bragg peak and within a disk
of the same radius, but rotated with respect to the origin by 45� (nd,45). The
visibility is obtained as V ¼ ðnd;0 � nd;45Þ=ðnd;0 þ nd;45Þ (ref. 18).

Gutzwiller scheme. The Gutzwiller ansatz approximation used in this work is an
extension of the well-known procedure employed for the Bose–Hubbard model in
conventional monopartite lattices16,17 that takes into account the different local
energies for the sites of type A and B. The wavefunction is assumed to be a product
of single-site wavefunctions |fi¼Pi|fii. On each site the ansatz reads

j fii ¼
X1
n¼0

f ðiÞn jni: ð4Þ

We have included states up to n¼ 7 and considered real Gutzwiller coefficients for
an extended 69� 69 lattice, which is allowed because of the U(1) symmetry and the
fact that the ground state cannot have nodes, according to Feynman’s no-node
theorem.

As shown in Supplementary Note 2, the mean-field Hamiltonian can be written
as a sum of site-decoupled local Hamiltonians represented in the local Fock basis,
HMF¼

P
iHi. Each local Hamiltonian needs, as an input, the order parameters of

the neighbour sites (cB for the local Hamiltonian on sites of type A and vice versa).
One can thus use the following iterative procedure to determine the ground state at
a given value of J/U and ~mi=U : start with a random guess of the order parameters
cA,B, diagonalize the local Hamiltonians Hi, take the eigenvectors of the lowest

energy state (that is, the Gutzwiller coefficients f ðiÞn ), calculate the new order

parameters ci ¼ hayi i ¼
P
n

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
f ðiÞn f ðiÞnþ 1 and repeat the procedure until

convergence. In this way, we have obtained Fig. 3 and Supplementary Fig. 6 for the
density profiles. By collecting the points where the fraction nB of particles on the B
sites vanishes, as a function of DV/V0, for several values of V0, we find the white
line plotted in Fig. 2.
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