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Kinetically tuned dimensional augmentation
as a versatile synthetic route towards robust
metal–organic frameworks
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Metal–organic frameworks with high stability have been pursued for many years due to the

sustainability requirement for practical applications. However, researchers have had great

difficulty synthesizing chemically ultra-stable, highly porous metal–organic frameworks in the

form of crystalline solids, especially as single crystals. Here we present a kinetically tuned

dimensional augmentation synthetic route for the preparation of highly crystalline and

extremely robust metal–organic frameworks with a preserved metal cluster core. Through this

versatile synthetic route, we obtain large single crystals of 34 different iron-containing metal–

organic frameworks. Among them, PCN-250(Fe2Co) exhibits high volumetric uptake of

hydrogen and methane, and is also stable in water and aqueous solutions with a wide range of

pH values.
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M
etal–organic frameworks (MOFs) with good stability
have been pursued for many years1–4. Chemically stable
MOFs, which are resistant to reactive species, are of

critical importance to a variety of applications, including gas
storage, carbon capture, separations and catalysis5–15. In
particular, robust MOFs that are easy to scale up and moisture-
resistant with high gas storage capacity are needed for automotive
applications. However, making robust MOFs with desired
structure, porosity and internal surface properties has always
been a challenge. Almost all MOFs, in particular moisture-
resistant MOFs constructed with high-valence metal ions, have
been made from the ‘one-pot’ synthetic route, making it difficult
to control the metal-containing nodes and therefore the topology
of the MOF16.

Problems arise when targeting chemically stable MOFs through
conventional one-pot reactions: The overall design of novel
MOFs with expected structures, even simple functionalization of
existing MOFs for targeted applications, becomes very challen-
ging because of the unpredictable in situ formation of inorganic
building blocks; mixed phases often come out together due to the
formation of diverse inorganic building blocks; polycrystalline or
even amorphous products are prone to form17, which not only
bring challenges in structure determination, but also influence the
properties of the targeted products. To address these problems,
we present a general method, which is derived from the
rationalization of the MOF growth process from both a kinetic
and a thermodynamic perspective, of synthesizing Fe-MOF single
crystals with preformed inorganic building blocks [Fe2M(m3-
O)(CH3COO)6] (M¼ Fe2þ ,3þ , Co2þ , Ni2þ , Mn2þ , Zn2þ ).
Overall, we synthesize large single crystals of 34 different Fe-
MOFs with thirty different ligands and mixed ligands by
rationally tuning the synthetic conditions. Among them, PCN-
250(Fe2Co) (PCN stands for porous coordination network),
which is stable in H2O for more than 6 months, exhibits not only
one of the highest total CH4 uptakes of 200V STP/V at 35 bar
and 298K, but also one of the highest total H2 volumetric uptakes
of 60 g L� 1 at 40 bar and 77K (refs 18,19).

Results
Rationalization of kinetics in the MOF growth process. Most
chemically stable MOFs are constructed with hard Lewis acidic
metal ions such as Fe3þ , Al3þ and Zr4þ when carboxylate
ligands (hard bases) are used20–25. Due to the strong electrostatic
interaction between the metal nodes and organic linkers,
the frameworks are relatively resistant to the attack of H2O
and acidic or basic reactants. However, the stronger coordination
bond is also more difficult to dissociate during the MOF
growth process, which results in insufficient structure
reorganization or defect reparation. As a result, highly
crystalline stable MOFs are extremely difficult to synthesize
under normal conditions.

The MOF crystal growth process is essentially ligand substitu-
tion on metal ions or clusters. As most substitution reactions of
octahedral complexes go through a dissociative mechanism,
ligand substitution reactions (X: initial coordinating ligand, L:
bridging ligand) on each individual inorganic building block
during MOF growth can be modelled as the stepwise substitution
on metal or metal clusters (M; Supplementary Fig. 1)

The model in Supplementary Fig. 1 illustrates how we can tune
the synthesis conditions to promote the flux of ligands on and off
a metal cluster and hence facilitate defect reparation and structure
reorganization. Consider a metal cluster fully bound to only
initial coordinating ligands. The rate of substitution for one of the
initial coordinating ligands with a bridging ligand (rs1)

rs1 ¼ k2 MX5½ �½L� ð1Þ

At steady state,

rs1 ¼
k2k1 MX6½ �½L�
k� 1 X½ � þ k2½L�

ð2Þ

Thus, X behaves as a competitor to L, and we can slow the rate
of bridging ligand attachment by increasing the concentration of
X. For the dissociation process of the bridging ligand, the reaction
rate is

rd1 ¼ k� 2 MX5L½ � ki ¼ Ae�
Ea
RT

� �
ð3Þ

For relatively soft Lewis acidic species such as Cu2þ and
Zn2þ , interactions with hard basic carboxylates are relatively
weak, so the activation energy Ea for the dissociation process is
small, which yields a large k� 2 and a fast dissociation process.
Meanwhile, the excess of solvent molecules could serve as an X
ligand to compete with the bridging ligand L, which slows down
the ligand substitution process. Consequently, ligand substitution
and dissociation rates are comparable, allowing sufficient
structure reorganization and defect reparation to form long-
range ordered structures under moderate conditions.

For hard Lewis acidic species such as Fe3þ , Al3þ and Zr4þ ,
their strong electrostatic interaction with the hard basic
carboxylate gives rise to a much larger Ea and smaller k� 2. Even
if solvent molecules act as an X ligand, the much larger k1 value
still causes unbalanced substitution and dissociation reaction
rates. As a result, direct synthesis of those MOFs usually results in
a long-range disordered (amorphous) product due to the lack of
structural reorganization. Since Ea is determined by the nature of
the metal and the coordinating ligand, increasing the synthetic
temperature T is an approach to raise k� 2 and facilitate the
ligand dissociation process. Unfortunately, higher temperatures
also accelerate the substitution process and an unbalanced
substitution–dissociation process still exists. To accelerate the
ligand dissociation process at higher temperature and maintain a
slow ligand substitution process, an extra competing reagent X,
which binds more strongly to the metal (smaller k1) than the
solvent molecule is necessary. With the assistance from the extra
competing reagent X, reversible ligand rearrangement could be
tuned to facilitate the crystallization process26,27. Because it is
actually the carboxylate and not the acid doing the substitution,
when the deprotonation process is taken into account, extra acetic
acid could simultaneously inhibit the deprotonation of the ligand,
which further slows down the substitution reaction and aids the
crystallization process.

Simplification of MOFs growth using preformed [Fe2M(l3-O)
( CH3COO)6]. As M3(m3-O)(COO)6 (M¼ Fe, Cr, Al, Sc, V, In) is
one of the most common building blocks in the reported trivalent
metal species containing MOFs28, to test our hypothesis, we used
[Fe2M(m3-O)( CH3COO)6] as the starting material and acetic acid
(acetate after deprotonation) as the competing reagent to grow
Fe-MOFs with many different ligands (Supplementary Methods).
[Fe2M(m3-O)(CH3COO)6] as isolated basic carboxylates have
been reported for decades29. Excellent solubility of these clusters
increases their feasibility as a starting material. Meanwhile, due to
the strong electrostatic interaction between Fe3þ and m3-O2� ,
the cluster is inherently robust enough to preserve the integrity of
the core while going through carboxylate substitution on the
periphery under solvothermal conditions. Moreover, the D3h

cluster itself possesses six carboxylate arms in a trigonal prismatic
arrangement, which allows facile construction of three-
dimensional frameworks through simple bridging. When
[Fe2M(m3-O)(CH3COO)6] is used as a starting material, direct
synthesis of Fe-MOFs can be considered as a pure ligand
substitution process and the framework growth can be
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rationalized by a traditional stepwise ligand substitution reaction
model (Supplementary Methods). Therefore, the addition of extra
competing reagent can tune both ligand substitution and
dissociation processes directly via concentration variation.

Consequently, with the assistance of acetic acid as a competing
reagent, we obtained large single crystals of 34 Fe-MOFs
containing the [Fe2M(m3-O)] building block (Supplementary

Data 1, Supplementary Figs 2–36, Supplementary Tables 1–31,
Supplementary Note 1).

Discussion
Even though the ligands shown in Fig. 1b vary in symmetry,
functionality, connectivity and size, the structure of the [Fe2M(m3-
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O)] building block is maintained in these frameworks. Thus, the
new synthetic strategy can be viewed as a dimensional augmenta-
tion process from zero-dimensional metal-containing nodes of
[Fe2M(m3-O)] to three-dimensional nets. Partial substitution on
the [Fe2M(m3-O)] clusters has also occurred when complete
substitution becomes incompatible with some of the ligands
because of symmetry requirements or steric hindrance.

To demonstrate our versatility of the kinetically tuned
dimensional augmentation strategy, MOFs with distinct struc-
tural features are discussed in detail.

PCN-240, constructed from L3, is isostructural to MIL-88 with
the acs-a topology (Fig. 2a)3. Usually, L3 tends to form the MOF-
74 structure with two hydroxyl groups participating in
coordination. However, when starting from [Fe2M(m3-
O)(COOCH3)6], the in situ formation of the one-dimensional

chain can be avoided and only a simple substitution reaction
occurs between carboxylates, leaving two hydroxyl groups free
for other potential modifications. With elongated ligands L5
and L9, which allows sufficient space for catenation, twofold
perpendicular interpenetration and threefold parallel
interpenetration have been observed, respectively. Interestingly,
the interpenetration restricts the flexibility in each single net and
therefore stabilizes the framework and generates permanent
porosity (Fig. 2a). The mixed ligand strategy is challenging due to
the high probability of obtaining mixed phases, especially for
MOFs on the basif of high-valence metals whose structure
determination relied almost exclusively on powder X-ray
diffraction. When starting with pre-assembled metal clusters,
the interference from side reactions generating different inorganic
building blocks is eliminated. The mixed ligand MOFs can be
more easily synthesized with the kinetically tuned dimensional
augmentation strategy, which allows for growing single crystals
instead of powders. Using the combinations of L15 and L5, as
well as L15 and L8, we obtained large single crystals of PCN-280
and PCN-285 (Fig. 2b).
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Figure 2 | Functionalization and mixed ligands in Fe-MOFs.

(a) Functionalized MIL-88 isostructure, 2-fold and 3-fold self-

interpenetration. (b) PCN-280(interpenetrated) and PCN-285(non-

interpenetrated) constructed from mixed ligands.
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PCN-234 is isostructural to MIL-59 with the CaB6 net
(Fig. 3a)30. When the ligand is functionalized by bulky groups
like -CN, the limited distance between each ligand prevents
complete substitution on the [Fe2M(m3-O)] cluster and forces the

formation of a 5-connected cluster with acetic acid as the
remaining terminal ligand (Fig. 3b), giving rise to PCN-236. This
connectivity reduction also occurs with the tetrahedral ligands: in
PCN-265, L29 slightly stretches from the ideal Td symmetry to
D2d symmetry to form a 6-connected [Fe2M(m3-O)]-containing
framework, while the smaller tetrahedral ligand L28 is too rigid to
bend and maintains the original Td symmetry in PCN-264.
Complete substitution on the [Fe2M(m3-O)] core is unable to
form a long-range ordered structure with Td symmetric L28, so
the connectivity of the [Fe2M(m3-O)] cluster is reduced to four
(Fig. 3c). This reduced connectivity on the [Fe2M(m3-O)] cluster
is first discovered here in these Fe-MOFs, which is also an
evidence of the substitution reaction of the preformed basic
carboxylate.

Although all the Fe-MOFs are synthesized under similar
conditions, the optimal concentration of acetic acid for each one
varies greatly. According to our rationalization, extra acetic acid
should slow down the substitution reaction rate, which shows the
kinetic influence. When the concentration of acetic acid was
much lower than the optimal value, gels or amorphous products
were obtained, which suggests insufficient control of the
substitution and dissociation balance (Supplementary Methods).
When the concentration of acetic acid is too high, solutions
remain clear with no solid products even after a long period,
which suggests a thermodynamic equilibrium in the solution. If
MOF formation is expressed as an equilibrium (Supplementary
Fig. 37) and the formation of clear solution is treated as the point
of a positive Gibbs free energy, then the amount of acetic acid is
actually an indication of relative values for the framework’s free
energy of formation. The entropic effects can be clearly observed
from the synthetic conditions (Supplementary Table 32). For
ligands with similar size and connectivity, MOFs containing
Fe2MO clusters with lower connectivity always need a lower
concentration of acetic acid as the competing reagent. Meanwhile,
for Fe2MO clusters with the same connectivity, ligands with
higher connecting numbers always need more acetic acid.
Assuming these MOFs have similar enthalpies of formation, the
concentration change of acetic acid is consistent with the entropy
change. Moreover, even if the connectivity of clusters and ligands
are the same, the amount of acetic acid for those MOFs still varies
(Supplementary Table 33), which could be attributed to an
enthalpic effect (Supplementary Methods).

Methane uptake is highly related to the structure of the porous
material used19. Because of the structural diversity of the Fe-
MOFs synthesized by us, we turned to computational methods to
quickly predict their methane uptake (Supplementary Methods,
Supplementary Figs 44–47). In addition, we utilize an in silico
approach to predict a set of new structures and their methane
uptake (Supplementary Data 2 and Supplementary Methods).
Figure 4a shows the simulated deliverable capacities of our
predicted structures and those structures that have been
synthesized together with the experimental data of PCN-
250(Fe3) and PCN-250(Fe2Co). Our simulations suggest that
PCN-250 is indeed an outlying structure for vehicular methane
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storage using a 35–1 bar pressure swing. Interestingly, our
screening predicts that several of the synthesized Fe-MOFs have
very high deliverable capacities using a 65–5.8 bar pressure swing.
Also, our simulations confirm that PCN-250 has the highest 35
bar loading of all structures considered in this analysis
(Supplementary Figs 42 and 43).

PCN-250 consists of 6-connected [Fe2M(m3-O)] building
blocks and rectangular tetratopic L22 (Fig. 4b–d), which is
isostructural to the reported indium MOF31. Interestingly, PCN-
2500, another framework isomer of PCN-250, is found under
different synthetic conditions (Supplementary Methods). Along
one axis, ligands constructing the same cube in PCN-250 adopt
mirror configurations and are alternatively arranged. In PCN-
2500, ligands adopt the same configuration in the one cube and
mirror configuration in the adjacent cubes along any axis.
Experimental results show PCN-250(Fe2Co) that possesses total
CH4 uptake of 200 v/v at 35 bar and 298K (Fig. 4e), which is one
of the highest among all the reported MOFs. PCN-250(Fe2Co)
has a record high H2 uptake of 3.07wt% and 28 g L� 1 at 1.2 bar
and 77K (Supplementary Fig. 38). It also has one of the highest
total volumetric H2 uptakes, 60 g L� 1 (Supplementary Fig. 41), at
high pressure due to its high crystal density.

Both high uptake of H2 and CH4 can be attributed to suitable
size of the cage in PCN-250 and the well-dispersed, highly
charged open metal sites (Fig. 4f). Each cube in PCN-250 is faced
by L22 and the channels between each cube are surrounded by
high valent open metal sites. Therefore, all of the void space is
provided with adsorption sites, which can strongly interact with
both H2 and CH4 molecules. This results in efficient space
utilization to reach a high volumetric uptake and leads to an
induced polarization of gas molecules by high-valence metal
cations through charge-induced dipole interaction. This high-
valence metal ion and induced dipole interaction can polarize
additional layers of gas molecules, allowing multiple layers of gas
to adsorb without significant drop in the adsorption enthalpy.
The heat of adsorption is relatively low compared with a single-
site adsorption by orbital interaction, such as the Kubas binding
of hydrogen molecules. However, it is far-reaching, making it
nearly flat over a wide range of uptakes (Supplementary Figs 39
and 40, Supplementary Methods).

Even after the insertion of the softer Lewis acid M(II) in the m3-
oxo trimmer, the PCN-250 series still shows extraordinary
chemical stability. The powder patterns of PCN-250(Fe2Co)
remained unaltered upon immersion in glacial acetic acid and
pH¼ 1 to pH¼ 11 aqueous solutions for 24 h (Fig. 4g,h).
The framework of PCN-250(Fe2Co) remained stable under H2O
after 6 months (Fig. 4g,h, Supplementary Tables 34 and 35).
Moreover, the N2 adsorption isotherms of PCN-250(Fe2Co)
remain constant after all these treatments, which suggest no
phase transition or framework decomposition during all the
treatments. A combination of high uptake and chemical
stability is quite rare for MOFs, and this combination can
guarantee the reusability of the sorbent for industrial applications.
With its high gas uptake, extraordinary stability and excellent
scalability, PCN-250 is a viable candidate for natural gas storage
for automotive applications.

Methods
Preparation of preformed clusters. Fe2M(m3-O) (CH3COO)6 (abbreviated to
Fe2M in MOFs’ syntheses) (M¼Mn, Co, Ni, Zn) is prepared according to reported
procedure25:

A solution of sodium acetate trihydrate (42 g, 0.31mol) in water (70ml) was
added to a filtered, stirred solution of iron(III) nitrate nonahydrate (8 g, 0.02mol)
and the metal(II) nitrate (0.1mol) in water 70ml, and the brown precipitate was
filtered off, washed with water and with ethanol and dried in air. For M¼Zn, the
total volume of water used in the preparation was restricted to 70ml and a red-
brown precipitate appeared overnight.

Synthesis of PCN-233. L10 (15mg), Fe2Co (15mg) and acetic acid (0.4ml) in
2ml of N,N-dimethyl formamide (DMF) were ultrasonically dissolved in a Pyrex
vial. The mixture was heated in an oven at 120 �C for 12 h. After cooling down to
room temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-234. L11 (8mg), Fe3 (15mg) and acetic acid (0.4ml) in 2ml of
H2O were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 120 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-235. L11 (15mg), Fe2Co (15mg) and acetic acid (0.2ml) in
2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 24 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-236. L13 (15mg), Fe2Co (15mg) and acetic acid (0.1ml) in
2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-237. L12 (15mg), Fe2Co (15mg) and acetic acid (0.2ml) in
2ml of N-methyl pyrrolidone (NMP) were ultrasonically dissolved in a Pyrex vial.
The mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-238. L14 (15mg), Fe2Co (15mg) and acetic acid (0.1ml) in
2ml of NMP were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-240. L3 (10mg), Fe2Co (10mg) and acetic acid (0.25ml) in
2ml of N,N-diethylformamide and H2O (v/v¼ 1/1) were ultrasonically dissolved in
a Pyrex vial. The mixture was heated in an oven at 150 �C for 24 h. After cooling
down to room temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-241. L4 (10mg), Fe2Co (15mg) and acetic acid (0.8ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-242. L2 (10mg), Fe3 (10mg) and acetic acid (0.45ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-243. L8 (10mg), Fe3 (10mg) and acetic acid (0.45ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 48 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-245. L5 (10mg), Fe3 (10mg) and acetic acid (0.15ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-246. L7 (10mg), Fe3 (15mg) and acetic acid (0.2ml) in 2ml of
DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 120 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-247. L6 (10mg), Fe3 (15mg) and acetic acid (0.35ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-248. L9 (10mg), Fe2Co or Fe3 (10mg) and acetic acid (0.25ml)
in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The mixture was
heated in an oven at 150 �C for 24 h. After cooling down to room temperature, dark
brown crystals were collected by filtration.

Synthesis of PCN-250. L22 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn) (15mg) and
acetic acid (1ml) in 2ml of DMF were ultrasonically dissolved in a Pyrex vial.
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The mixture was heated in an oven at 140 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Large scale synthesis of PCN-250. L22 (1 g), Fe2M (Mn, Fe, Co, Ni, Zn,) (1 g)
and acetic acid (100ml) in 200ml of DMF were ultrasonically dissolved in a 500ml
Pyrex bottle. The mixture was heated in an oven at 140 �C for 12 h. After cooling
down to room temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-2500. L22 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn) (15mg) and
acetic acid (1ml) in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 140 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-251. L22 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn) (15mg) and
acetic acid (1ml) in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 140 �C for 12 h. After cooling down to room
temperature, dark brown crystals were obtained.

Synthesis of PCN252. L23 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn) (10mg) and acetic
acid (0.8ml) in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were colllected by filtration.

Synthesis of PCN-253. L24 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn,) (15mg) and
acetic acid (1ml) in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-254. L25 (10mg), Fe2M (Mn, Fe, Co, Ni, Zn) (15mg) and
acetic acid (1ml) in 2ml of NMP were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-255. L26 (10mg), Fe2Co (15mg) and acetic acid (0.5ml) in
2ml of NMP were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-256. L27 (10mg), Fe2Co (15mg) and acetic acid (0.4ml) in
2ml of NMP and 0.1ml n-pentanol were ultrasonically dissolved in a Pyrex vial.
The mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-257. L21 (10mg), Fe3 (15mg) and acetic acid (0.4ml) in 2ml
of NMP and 0.1ml n-pentanol were ultrasonically dissolved in a Pyrex vial. The
mixture was heated in an oven at 150 �C for 12 h. After cooling down to room
temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-260. L15 (15mg), Fe2Co (5mg) and acetic acid (0.25ml) in
2ml of NMP were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 24 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-261-NH2. L16 (15mg), Fe2Co (15mg) and acetic acid (0.22ml)
in 2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was
heated in an oven at 150 �C for 12 h. After cooling down to room temperature, dark
brown crystals were collected by filtration.

Synthesis of PCN-261-CH3. L17 (15mg), Fe2Co (15mg) and acetic acid (0.2ml)
in 2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was
heated in an oven at 150 �C for 12 h. After cooling down to room temperature, dark
brown crystals were collected by filtration.

Synthesis of PCN-261-Chiral. L19 (15mg), Fe2Co (15mg) and acetic acid (0.2ml)
in 2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was
heated in an oven at 150 �C for 12 h. After cooling down to room temperature, dark
brown crystals were collected by filtration.

Synthesis of PCN-262. L18 (10mg), Fe2Ni (10mg) and acetic acid (0.25ml) in
2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-263. L20 (10mg), Fe2Ni (10mg) and acetic acid (0.3ml) in
2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 73 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-264. L28 (10mg), Fe3 (10mg) and acetic acid (0.6ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 24 h. After cooling down to room temperature, dark brown
crystals were collected by filtration (Yield 80%).

Synthesis of PCN-265. L29 (10mg), Fe2Ni (15mg) and acetic acid (0.43ml) in
2ml of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated
in an oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-266. L30 (10mg), Fe3 (15mg) and acetic acid (0.3ml) in 2ml
of DMF were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.

Synthesis of PCN-280. L5 (10mg), L15 (10mg), Fe3 (10mg) and acetic acid
(0.2ml) in 2ml of NMP and 0.1ml n-pentanol were ultrasonically dissolved in a
Pyrex vial. The mixture was heated in an oven at 150 �C for 12 h. After cooling
down to room temperature, dark brown crystals were collected by filtration.

Synthesis of PCN-285. L8 (10mg) and L15 (10mg), Fe3 (10mg) and acetic acid
(0.2ml) in 2ml of NMP and 0.1ml n-pentanol were ultrasonically dissolved in a
Pyrex vial. The mixture was heated in an oven at 150 �C for 12 h. After cooling
down to room temperature, dark brown crystals were collected by filtration.

MIL-88 synthesis. BDC (10mg), Fe2Co or Fe3 (10mg) NMP 2ml and acetic acid
(0.2ml) were ultrasonically dissolved in a Pyrex vial. The mixture was heated in an
oven at 150 �C for 12 h. After cooling down to room temperature, dark brown
crystals were collected by filtration.
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2. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore

volumes and surface area. Science 309, 2040–2042 (2005).
3. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling

of hybrid frameworks. Science 315, 1828–1831 (2007).
4. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate

frameworks and application to CO2 capture. Science 319, 939–943 (2008).
5. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers.

Angew. Chem. Int. Ed. 43, 2334–2375 (2004).
6. Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework

with triangular channels. Science 340, 960–964 (2013).
7. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks.

Science 336, 1021–1023 (2012).
8. Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with

open iron(II) coordination sites. Science 335, 1606–1610 (2012).
9. Farha, O. K. et al. De novo synthesis of a metal–organic framework material

featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2,
944–948 (2010).

10. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal
organic frameworks with exceptional stability. J. Am. Chem. Soc. 130,
13850–13851 (2008).
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